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Machine learning-based tools are capable of guiding individualized clinical

management and decision-making by providing predictions of a patient’s future

health state. Through their ability to model complex nonlinear relationships, ML

algorithms can often outperform traditional statistical prediction approaches, but

the use of nonlinear functions can mean that ML techniques may also be less

interpretable than traditional statistical methodologies. While there are benefits of

intrinsic interpretability, many model-agnostic approaches now exist and can

provide insight into the way in which ML systems make decisions. In this paper,

we describe how different algorithms can be interpreted and introduce some

techniques for interpreting complex nonlinear algorithms.

KEYWORDS

opaque machine learning models, interpretability and explainability, decision-making
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1 Introduction

Machine learning (ML) techniques have demonstrated exceptional promise in

producing reliable predictions to inspire action across diverse industries. They have been

fundamental in the automation of complex tasks such as language translation, self-driving

vehicles, as well as internet search and recommendation engines. In oncology, there are

many applications across the care continuum from informing healthcare policy, managing

clinical operations, to providing individualized insights into direct patient care (1–4).

The principle of using data-driven prediction models to inform clinical oncology care is

not new, though the increased availability and maturity of the capabilities of ML techniques

has led to renewed interest in the topic. Traditional prediction tools tend to be developed

using statistical methodologies (5). For example, oncology nomograms often utilized linear
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algorithms to create tools with which future outcomes could be

predicted. These models were often based on ordinal least squares

regression techniques which offered straightforward interpretability

using coefficients. However, machine learning’s ability to

characterize nonlinear interactions between features has led to

potential issues with understanding the relationship between the

input features and the output prediction. These nonlinear

algorithms are often referred to as ‘black boxes’ which may

produce accurate predictions but at the expense of clear and

concise interpretability. Although many ML models can be

adequately thought of as ‘black boxes’, it is not true that all ML

algorithms are uninterpretable. In previous work (6, 7), we have

previously described a continuum of algorithms ranging from

‘Auditable Algorithms’ to ‘Black Boxes’ and argued that

interpretability necessarily became more difficult and the ability

to estimate highly complex nonlinear models increased.

In recent years, the machine learning community has produced

several significant advancements into providing some level of

interpretability for complex nonlinear algorithms (8, 9).

Explainability and interpretability are two tied concepts (10).

There are no clear and widely-accepted definitions of these terms,

so we will use a working definition inspired by other sources (11).

Explainability refers to the ability to describe the elements of an ML

model, which might include the provenance and nature of the

training data, weights, and coefficients of the models, or the

importance of different features in deriving the prediction (10).

Explainability asks the question “can we describe the different

elements of the model?”. The concept of interpretability goes

beyond that of description of explainability and asks “can we

understand the reasoning behind the model’s prediction?” (11,

12). In this paper, we will focus on the description of features and

explanation approaches that make an ML model interpretable by

allowing humans to gain insight into model reasoning and

consistently predict model outputs.

Interpretability is an important concept within clinical ML as

model performance is unlikely to be perfect, and the provision of an

interpretable explanation can aid in decision-making using ML

models. The importance of interpretability for all ML-based

decision-making algorithms is demonstrated in the United States

Government’s Blueprint for an AI Bill of Rights which introduces

“Notice and Explanation” as a key principle for ML-based

prediction models (13). Additionally, the U.S. Food and Drug

Administration (FDA) guidelines for clinical decision support

systems (CDSS) highlight the importance of providing the basis

of predictions (14), and other regulatory and standards in

healthcare and other industries (15).

For oncology practice, ML-based tools are often developed

and used to support high-stakes decisions, such as diagnosis (16,

17), advance care planning communication (18, 19), and treatment

selection (20). Providing only predictions is not enough to solve all

problems for these tasks, and a model should provide explanations

concerning its decision-making to allow human reasoning and

preventative actions (11). Furthermore, interpretability is essential

to ensure safety, ethics, and accountability of the models for ML

models supporting oncology decisions (11). Inaccurate or biased

predictions generated by a ML model can result in unintentional
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harms on both patients and institutions. In such cases, an

explanation in model decision-making process pertaining to

erroneous or discriminative predictions enables model auditing,

debugging, and refinement to ensure model performance and

fairness (11, 21).

Models making predictions using different types of data should

be interpreted by different approaches. For instance, a common

approach to interpret ML models leveraging image data is the

salience map highlighting a portion of an image that is most

relevant to model decisions (22). Many explanation approaches,

such as attention, are also available for the provision of insights into

the decision-making processes of models leveraging unstructured

text data using natural language processing (23). As there is

increasing enthusiasm for leveraging electronic health record data

to construct predictive decision-making tools (19, 24, 25), we focus

this paper on approaches most useful in deconstructing decision-

making processes of opaque ML models using tabular data.

Nevertheless, many of the interpretation approaches we covered

are not data type constrained (23, 26).

In this manuscript, we demonstrate how interpretability and

explainability of machine learning models can be informed both by

algorithm selection and the applications of so-called “model

agnostic” methods at the population and individual levels (8, 9).

We also describe several of the benefits and limitations of both

intrinsic interpretability such as that provided with logistic

regression versus model agnostic methods. Additionally, we argue

that interpretability can go beyond the drivers of an individual

prediction and may also encompass methods to understand the

quality, relevance, and distributions of training, testing, and

inference data features which we used to inform the model. The

intention of this manuscript was not to provide an exhaustive

summary of state-of-the-art ML interpretation approaches but to

introduce the concept of ML interpretability and explainability with

practical examples to raise awareness of the topic among the

oncology research community. For enthusiastic readers, there are

systematic reviews that provide more compressive summaries of the

existing model interpretation techniques (22, 27, 28).
2 Example models used to
illustrate explanation methods
for interpretability

In this paper, we demonstrate all model interpretation

approaches with example models we created to identify cancerous

breast masses using regularized linear regression (GLM),

multivariate adaptive regression splines (MARS), k-Nearest

Neighbors, Decision trees, extreme gradient boosting (XGB), and

neural networks (NNET). We used the Breast Cancer Wisconsin

Diagnostic Data Set which is publicly available from the University

of California Irvine (UCI) ML Repository to train the models (29).

There are 698 instances in the dataset with 9 categorical features

(predictors). The features represented the characteristics of cell

nuclei from breast masses sampled using fine-needle aspiration

(FNA) (30). Possible values of each feature are 1 to 10, with 1
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representing the closest to benign and 10 representing the closest to

malignant. The outcome is a binary variable, which can either be

benign or malignant. For simplicity, the dataset we used is relatively

low dimensional, containing only 9 features, compared to most

oncology research utilizing complex data with much more variables.

Nevertheless, the interpretation approaches we discussed can be

applied to models trained with high-dimensional data to provide

rich insights beyond classification or regression outputs.

Researchers have applied these methods to derive individualized,

patient-centered information supporting clinical decision-making

(31, 32) and to uncover disease risk/protective factors from their

prognostic or diagnostic models trained with complex, high-

dimensional datasets (33, 34).

We randomly split the dataset into a training set with 70% of the

data for model development and a testing set with 30% of the data

for model validation. For consistency and ease of reproducibility, we

created our models with default configurations of the CARET

(Classification And REgression Training) package without further

hyperparameter optimization. We performed all modeling and

analyses using the R statistical programming environment

(version 4.2.1) (35) using CARET (version 6.0-93) (36), DALEX

(version 2.4.2) (37), and lime (version 0.5.3) (38) packages.

Reproducible code is available in the online supplement for

all analyses.
3 Machine learning model
interpretation approaches

Over the past decades since ML has been available, several

approaches addressing interpretability issues of the ML-based

models have been proposed and implemented (22). Some

algorithms are interpretable-by-nature such as regularized logistic

regression, nearest neighbors, and decision tree algorithms (26, 39,

40). We refer to these models as interpretable and refer to the

interpretation methods as being model-specific. However, it can be
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practically impossible to comprehensively explain model outputs

for models which rely on complete nonlinear data transformations,

such as support vector machine and artificial neural networks,

without applying model-agnostic approaches.

Moreover , mode l - spec ific approaches invo lve an

understanding of the mechanism of the algorithm, whereas

Linear Models, Decision Trees, etc. produce different

explanations as results are highly impacted by feature selection

and training hyperparameters. Interpretability in model-specific

approaches is also undermined by feature complexity. Complex

features (e.g. , PCA-derived features), sparsity, lack of

independence, monotonicity, and linearity do not guarantee

interpretability. Finally, in some scenarios, particularly in larger

datasets, simplicity may require sacrificing performance.

Model-agnostic approaches are a set of model interpretation

methods that are applicable to ML models developed using any

algorithms, including interpretable models. These methods can

provide visualizations of model decision-making processes for

human interpretation to answer questions, such as what the most

important feature is for any model. The model-agnostic approaches

can be further grouped into two categories, global and local

interpretations. Global interpretations target uncovering average

model decision-making processes at a dataset or cohort level, while

local interpretations provide interpretations of model behaviors for

individual predictions. Model agnostic approaches allow for

flexibility in model choice, which means that there are more

options to improve certain issues that may occur to a model in

production that would necessitate the adoption of another

algorithmic approach; a critical component to Safe and Effective

ML Systems (13) and the FDA’s Good Machine Learning Practices

GMLP (41).

In the following section, we provide overview of each of the

interpretation approaches along with an example showcasing the

approach and its limitations. A summary of interpretation

approaches covered in this paper is provided in Figure 1.
FIGURE 1

Summary of interpretation approaches covered. SHAP: Shapley additive explanation.
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3.1 Model-specific interpretation
approaches

3.1.1 Coefficient-based method
Model-specific approaches refer to model interpretation

methods that are available as an inherent part of certain ML

algorithms (26). One of the most widely known and accessible

approaches for model interpretation is assessing coefficients that are

available for many linear models. By investigating the coefficient of

each feature included in the prediction, we can know which features

were used by a model to make predictions and how each variable

contributes to the model output. As an example, the coefficients of

our GLM model for breast mass cancerous predictions are

presented in Table 1. The coefficients indicate that all features

were included in the model were positively associated with a

prediction of malignancy.

Models adopting the MARS algorithm can be interpreted using

a similar way. The MARS algorithm can be understood as an

extension of a linear or rigid logistic regression model, which

facilitates interactions between features whilst providing clear

interpretability and deeper insight into the relationships in data

(42, 43). Thus, the same coefficient method for interpreting a GLM

model can be applied to interpret a MARS model. Table 2 shows

selected terms and their coefficients generated by our MARS model.

We can use the information to calculate the probability of a breast

mass sample being malignant and, in so doing, simulate the model

behavior. The model identified interesting insights by revealing

complex Thickness – Cell Size, Cell Size – Bare Nuclei, and

Epithelial Size – Bare Nuclei interactions, indicating various

effects on model outputs depending on feature values. Clinical

implications of the feature interactions identified may not be

obvious in our example, but it becomes explicit and important if

our model predicts Hemoglobin A1c (HbA1c) using age groups and

Body Mass Index (BMI). Strengths of associations between BMI and

HbA1c varies among different age groups, suggesting that different

glycemic control strategies should be used for different age

populations (44).
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Coefficients provide intuitive model interpretations to reveal

model decision-making processes and enable easy implementation.

Nevertheless, the approach provides less insight into the feature’s

effect at the individual level. Fixed coefficients revealed by a model

may not reflect the variances in features’ effects on model outputs

among individuals. Further, due to the use of regularization

methods, there is a possibility that GLM and MARS models drop

features that are clinically considered to be important and

associated with outcomes the models predict (45).

3.1.2 Rule-based decision tree method
Another widely recognized algorithm category is tree-based

algorithms, which also allow intuitive interpretation whilst

facilitating feature interactions (40). As their name suggests, these

algorithms create a model by constructing a decision tree composed

of a series of rules portioning data to determine model predictions.

Although researchers have developed various tree-based

algorithms, the method interpreting all models using these

algorithms is the same if a single tree is developed (26). One can

follow the rules of a tree-based model to reveal its decision-making

process. We provided the decision tree and rule table used by our

DT model as an example in Figure 2. The tree is relatively small in

our case, while one can get a huge tree containing hundreds of

branches for a complex predicting task using a high-dimensional

dataset. According to the rules, our DT model makes predictions

using only Bare Nuclei and Cell Size variables. Our model classifies

a breast mass as malignant only when the Bare Nuclei and Cell Size

scores of the mass are greater than or equal to 2.

Although the interpretation allows an easy understanding of the

behavior of a tree-based model, the method is limited to models

based on a single tree. The method becomes less useful for the

interpretation of models using many powerful tree-based

algorithms, such as the random forest algorithm, due to the

creation of multiple trees for making predictions. Although we

can draw all the trees and go through each tree to understand how

the models behave, it is impossible to know what key features are

used by these models to drive decisions and how the features

influence the decisions by using this approach.

3.1.3 Interpretation method for K-nearest
neighbor models

A special class of ML models that allow interpretation without

additional approaches are models using the kNN algorithm. A kNN

model makes a prediction for a particular instance based on the

neighbors of the instance (46). When predicting, a kNN model first

identifies k instances most similar to the instance we are predicting

from the training sample. Then, for a classification outcome, the model

takes the most common class of the nearest neighbors identified. For

continuous outcomes, the model averages the outcomes of the

neighbors. Therefore, we can investigate the neighbors to understand

the decision-making process of the model. For instance, we randomly

selected amass sample A from our validation sample and calculated the

distance between features of A and all other masses in the training

sample using the Euclidean distance method. As our KNNmodel used

7 nearest neighbors to determine predictions, the top seven instances

with the smallest distances to A were the neighbors used by the model
TABLE 1 Coefficients for the generalized linear model (GLM) with
regularization.

Features Coefficient

(Intercept) -7.42

Normal Mitoses 0.70

Bland Chromatin 0.43

Adhesion 0.24

Cell Shape 0.23

Bare Nuclei 0.23

Cell Size 0.19

Epithelial Size 0.18

Normal Nucleoli 0.15

Thickness 0.06
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(Table 3). As four out of the seven neighbors were benign, our kNN

model predicted that A was not a cancerous mass. The Euclidean

distance between the seven neighbors and the instance Awere 4.5 ± 0.7,

while the distance between all training data and the instance A were

10.2 ± 2.7.

Through observing the features of the nearest neighbors

selected for predictions, we can uncover on what basis our

models make predictions. This approach is like case-based
Frontiers in Oncology 05
rationale which we often adopt to make decisions in our daily life

by looking at the cases/conditions similar to our current encounters

from our past experiences. It also offers opportunities for examining

whether the cohort of the current case was represented in the

creation of the kNN model. However, the interpretation method

delivers no information about whether a feature is weighted over

other features. Further, the approach does not uncover whether a

feature is positively or negatively associated with the outcome.
TABLE 2 Features and coefficients determined by the model using the multivariate adaptive regression splines (MARS) algorithm.

No. Feature Coefficient

1 (Intercept) 1.09

2 h(Cell_Size-2) -0.32

3 h(2-Cell_Size) -0.75

4 h(Cell_Size-3) 0.33

5 h(Bare_Nuclei-2) -0.37

6 h(Bare_Nuclei-3) 0.42

7 h(Thickness-5)×h(Cell_Size-2) 0.01

8 h(5-Thickness)×h(Cell_Size-2) 0.02

9 h(Cell_Size-3)×h(2-Bare_Nuclei) 0.99

10 h(3-Cell_Size)×h(2-Bare_Nuclei) -0.17

11 h(Cell_Size-2)×h(2-Bare_Nuclei) -0.83

12 h(2-Epithelial_Size)×h(Bare_Nuclei-2) 0.21
h(Variable –Constant) are hinge functions representing knots the multivariate adaptive regression splines model identified to better fit the data. The results of the functions are the maximum of 0
and the difference between the variable and constant values. For instance, suppose Cell_Size is 3, then h(Cell_Size-2)=Max(0, 3-2)=1.
FIGURE 2

Decision tree (DT) and rule table.
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Beyond the interpretations of simple algorithms, researchers have

spent substantial efforts to develop model-specific interpretation

approaches for models using complex models that are generally

considered as not interpretable-by-nature, such as random forest

(47), support vector machine (48), and neural networks (49, 50).

Although these model-specific interpretation methods allow an easy

understanding of model behaviors, the primary limitation is the

limited flexibility of these methods. Use of these interpretation does

not allow easy comparison among models using different algorithms

Therefore, additional tools are needed to understand model decision-

making processes when we pursue a higher-performing model with a

more sophisticated algorithm.
3.2 Model-agnostic approaches

Model-agnostic interpretation approaches, contrary to model-

specific methods, offer greater flexibility and can be applied to ML

models using any algorithms. With flexibility, researchers can select

any algorithms they believe are the best solution for solving the

questions at hand and examine their models with consistent

approaches for better model comparisons. These approaches use

post hoc interpretation methods decomposing trained ML models

(22). The general idea of the approach is to reveal model behaviors

by observing the changes in model predictions when manipulating

the input data instead of breaking down the models for an

understanding of model structures. In the following section, we

provided a gentle introduction to a few widely used approaches

covering both global and local model-agnostic interpretation

methods. Enthusiastic readers can find introductions to other

model-agonistic methods in Molnar ’s book addressing

interpretability issues of ML (26).
3.2.1 Global interpretation
The global interpretation methods focus on providing an overall

picture depicting model behaviors at a dataset level. The approaches

can help to reveal the averaged effect of a feature on model

predictions for a given dataset. Of the global interpretation
Frontiers in Oncology 06
methods developed, feature importance (FI), partial dependence

plots (PDP), and accumulated local effects (ALE) were the most

widely used approaches in literature. We provide a description of

these methods and demonstrate their utilization with our breast

cancerous prediction model using the extreme gradient boosting

trees algorithm (XGBT model).

3.2.1.1 Feature importance

A frequent question for a given predictive model beyond model

performance is what features are important to the model for

accurate predictions, which can be addressed by the FI analysis

(51). The FI analysis estimates the importance of a feature by

calculating model performance changes (e.g., loss in area under the

receiver operating characteristic curve) when we randomly alter the

feature’s value (52). A feature is deemed important if the

performance loss is notable when permutating the feature’s value.

Taking our XGBT model as an example, the FI analysis shows that

cell shape, bare nuclei, normal mitoses, and epithelial size scores

were the most important features enabling the model to generate

accurate outputs (Figure 3).

The FI analysis is widely recognized as a useful approach

allowing provision of compressed insights into model behaviors

and is commonly utilized in medical ML literature (19, 53, 54).

However, we should note that the result of the analysis does not

reveal how features affect model decisions (52, 53). For instance, the

FI result delivered no information on whether our XGBT model

assigns a greater cancerous probability to a sample with a higher

value in bland chromatin. In addition, due to the use of random

permutation and intrinsic machine-selection of features,

correlations between features can be problematic and result in

unreliable feature importance estimates.

3.2.1.2 Partial dependence plot

In addition to important features, we may also be interested in

knowing how the values of important features affect model

predictions. A popular approach to address this question is to use

partial dependence plots (PDP) to visualize the relationship

between the outcome and a predicting feature of interest (22).
TABLE 3 Nearest neighbors of the example instance used by the k-Nearest Neighbor (KNN) model for prediction.

Thickness Cell
size

Cell
shape

Adhesion Epithelial
size

Bare
nuclei

Bland
Chromatin

Normal
Nucleoli

Normal
mitoses

Class d

Predicting
instance (A)

8 4 5 1 2 1 7 3 1 – –

Neighbor 1 9 5 5 2 2 2 5 1 1 malignant 3.5

Neighbor 2 8 4 6 3 3 1 4 3 1 benign 3.9

Neighbor 3 10 4 3 1 3 3 6 5 2 malignant 4.4

Neighbor 4 6 3 3 3 3 2 6 1 1 benign 4.5

Neighbor 5 8 3 3 1 2 2 3 2 1 benign 4.8

Neighbor 6 6 2 1 1 1 1 7 1 1 benign 5.4

Neighbor 7 10 4 5 4 3 5 7 3 1 malignant 5.5
fron
d: Euclidean distance to the predicting instance A.
- means Not Applicable.
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The idea of the method is to estimate the relationships by

marginalizing the feature of interest and calculating its marginal

distribution (55, 56). For instance, suppose we want to know the

relationship between the bare nuclei score of a breast mass sample

and the predictions generated by our XGBT model; we can fix the

value of the feature for all instances in the validation dataset and

calculate a mean predicted malignancy probability. Next, we

calculate the mean predicted probabilities for all possible values

of the bare nuclei score (1–10) to uncover the probability

distribution (marginal distribution). Through plotting out the

probability distribution, we observe a positive relationship

between the feature and the predicted malignancy probability

generated by the model (Figure 4).

Although PDPs provide useful and intuitive model behavior

interpretation, there are disadvantages of the approach that are

important to highlight. First, the method assumes no interaction

between features, which is not likely to be the truth for a real-world

clinical dataset (26, 57). The approach can estimate feature effects based

on unrealistic data. It is not apparent with our breast mass cancerous

example. However, if our model was to predict house prices using

room numbers and surface space, the approach could generate

unrealistic data, such as ten rooms within a 100 square feet house. In

such cases, the approach is not useful and can generate misleading

results. Another limitation of PDPs was the use of a mean predicted

probability and disregarding the distribution of the predicted

probabilities when estimating the probabilities of the interested

feature fixed with a certain value. The PDP results become less

meaningful or even misleading if the distribution is scattered (26).

3.2.1.3 Accumulated local effect

Another popular global model interpretation method is ALE,

which addresses the same question as PDP does, while ALE provides

more reliable model behavior information when correlations between

features exist (57). The primary difference between the approaches is

that ALE performs marginalization locally within instances with a
Frontiers in Oncology 07
similar value of the feature we are examining to avoid the use of

unrealistic data for estimating model behaviors. Further, ALE uses

differences in predicted probabilities generated for instances with

similar values for the feature of interest as an alternative of mean to

avoid the issue of a scattered distribution (57).

We again examined the effect of the bare nuclei score on the

outputs of our XGBT model but using ALE. The ALE graph

indicated the predicted probabilities notably increased when the

bare nuclei score was ten, while the probabilities reduced when the

feature was scored two (Figure 5). All other possible values of the

feature resulted in similar predictions. The result is remarkably

different from the PDP result. As correlations were likely to exist

among the features in the breast mass dataset, we argued that the

ALE provides more reliable information regarding the impact of

specific features on model behavior.

The approach is not without limitations. The results of ALE are

more complex compared to PDP and less interpretable, especially

when strong and complex correlations between features exist (58).

The ALE can still generate unstable interpretations of feature effects

due to the arbitrary selection of numbers of intervals where local

feature effects are estimated (11). Further, as ALE estimates feature

effects per interval, the interpretation is interval specific and may

not be applicable to other intervals (26). Nevertheless, the approach

provides visual, unbiased interpretation of feature effects on model

predictions and is recommended for interpreting models trained

with clinical data that often involve correlated features (26).

3.2.2 Local interpretation
Thus far, we have introduced several methods to uncover

general model behaviors at the dataset level. As the primary

utilizations of ML models are to provide individualized

predictions, we may be interested in how a model makes

predictions for individuals based on their data. Local

interpretation methods were developed to uncover how much the
FIGURE 4

Relationship between bare nuclei score and predicted cancerous
probability generated by our extreme gradient boosting tree (XGBT)
model using partial dependence analysis.
FIGURE 3

Feature importance (FI) analysis for the extreme gradient boosting
tree model. AUC, Area under the receiver-operating characteristics.
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value of each feature of an individual contributes to the ML model

output for the individual to provide additional insights enabling

individualized care (22, 27). In this section, we cover commonly

used local interpretation approaches following the same structure

we used in the previous section for global interpretations. To

demonstrate the methods, we randomly selected an instance from

the validation sample and examined the prediction generated by our

NNET model for this instance. We provide the characteristics of the

mass sample selected in Table 4.
3.2.2.1 Break down plot

One of the most straightforward approaches to examine the

feature contributions to individual predictions is using a Break

Down (BP) plot. The approach decomposes a model prediction into
Frontiers in Oncology 08
contributions and it then estimates the attribution of the

contributions from each feature (22, 58). The intuition of the

interpretation is to estimate the mean predictions for each feature

when we consecutively fix an exploratory feature and permutate all

other features (59). For instance, to examine the attribution for the

sample we selected, we first computed the mean prediction by fixing

the bare nuclei score to 1 and permutating all other features. As

shown in Figure 6A, we got a mean prediction lower than the

prediction for an intercept model by 0.02, indicating that having a

bare nuclei score of 1 lowers the cancerous probability for the

selected sample. For the next feature, we fix both the bare nuclei and

cell shape score to calculate the mean prediction change. The

process continued until all feature values were fixed.

Break down plots provide clear visualizations for us to evaluate

feature contributions to individual predictions made by ML models.

However, the disadvantage of the approach is that the order in

which we examine features can significantly alters the result. The

approach can provide misleading interpretations if feature

interactions exist and the order is not carefully determined (58).

When interactions between features exist, the interaction version of

BD plot should be considered and may provide better information

to address the ordering issue (Figure 6B). However, the BD plots for

interactions can be computationally expensive and hard to

understand for large feature numbers (58).

3.2.2.2 Local surrogate

Another approach to decompose individual predictions is to

create an interpretable model (such as a linear or decision tree

model) as a surrogate of our model and approximate model

behavior by investigating the surrogate model (12, 22). We direct

interested readers to the original paper for a detailed description of

creating surrogate models (8). Figure 7 shows the result of using a

linear surrogate model to reveal why our NNET model assigns the

malignant class to the breast mass sample we selected. Since it is a

linear surrogate model, we can visualize feature effects using the
A B

FIGURE 6

Break down (BD) plots showing how the contributions attributed to individual features for the instance we selected. (A) break down plot assuming
no interactions among features; (B) break down plot with feature interactions considered.
FIGURE 5

Accumulated local effect (ALE) analysis.
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coefficients determined by the surrogate model for the sample. For

instance, the surrogate model estimated that the bland chromatin

score of this sample increased the predicted likelihood of being a

malignant tumor by 0.26. This approach focuses on decomposing

individual predictions, and thus the surrogate model can be used to

investigate feature effects for the mass sample we used to create the

model. For other samples, we will need to create other surrogate

models using their own data for interpretation.

In addition to the tabular data we have shown, the approach is

also useful in interpreting models using text and image data,

allowing easy interpretation for models using any data types and

algorithms (22, 26). Nevertheless, the approach has several unsolved

issues in surrogate model creation processes, such as the methods

adopted to select training data and determine the weights of each

training data point. The results generated by surrogate models

created may vary for the same individual prediction due to the

use of different data perturbation, feature selection and weighting

methods (11, 22, 26).

3.2.2.3 SHapely additive exPlanations

The SHapely additive exPlanations (SHAP) approach is another

tool that provides local interpretation to drive additional insights

into feature effects on individual predictions of black-box ML

models. The approach used Shapley values from cooperative

game theory addressing how to fairly distribute contributions to

players cooperatively finishing a game. In the scenario of ML,

features are players, and contributions are the differences in

model predictions between the instance of interest and other

instances with similar characteristics. Thus, SHAP values are

useful in approximating feature contributions to individual

predictions of a black-box model. The intuition of the approach is

detailed in the original publications (9). In short, the approach used
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a permutation process similar to the break down plots, while the

SHAP approach takes mean probability differences across many or

all possible orderings as outputs to avoid the ordering issue (58).

Using the SHAP approach, we examined the feature effects on the

NNET model prediction for our breast mass example and revealed

that the bland chromatin score and thickness score for the sample is

the most sal ient posi t ive and negat ive contr ibutors ,

respectively (Figure 8).

The approach has gained popularity in the past few years and is

suggested for deriving additional insights into feature effects in

health literature using ML (32, 60). The major limitations of the

approach include computational expense for a large model with

many features, the requirement of the training dataset to enable the

permutation process, and the inclusion of unrealistic data during

the premutation process (58).
3.2.2.4 Ceteris-Paribus plot

The last local interpretation approach we covered is Ceteris-

Paribus (CP) plots, also named individual conditional expectations

(ICE), that address “what-if” questions to provide insights into

individual model predictions (61, 62). The approach evaluates the

effect of a feature on model predictions by calculating prediction

changes when replacing the value of the feature with values of all

other features fixed (58). For instance, if we want to examine the

dependence between cell shape scores and the NNET model output

for the breast mass we selected, we can have the model make

predictions on a set of samples with each having a possible score for

cell shape and other features with the same value of the selected

breast mass sample. Then, we can visualize the predictions to

investigate how changes in cell shape scores influence model

outputs (Figure 9).
FIGURE 7

Feature effects on neural network (NNET) model prediction for the
breast mass sample randomly selected using a local surrogate
model approach.
FIGURE 8

Insights into feature effects on model predictions from the Shapley
additive explanation (SHAP) analysis.
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The CP plots provide a counterfactual interpretation to quantify

feature effects and offer clear visualization to investigate the

relationships between model responses and features (62).

However, the approach is limited to displaying information for

one feature at a time. When the feature number is large, using the

approach to decompose model predictions becomes overwhelming

because many plots need to be drawn and interpreted. In addition,

the approach also assumes no interactions among features (58).

Therefore, unrealistic data could be included by the approach to

provide misleading information when feature interactions exist.
4 Discussion

The black-box model consideration remains one of the biggest

challenges to clinical implementation of ML-based tools to inform

clinical decisions for oncology care (60, 63–65). As a fast-emerging

field, researchers have developed many interpretation approaches

deconstructing model predictions from varying aspects to provide

additional insights into model predictions. In this manuscript, we

provide introductions to various model interpretation techniques,

including model-specific, model-agnostic global, and model-

agnostic local interpretations, with accompanying examples

showing the information these approaches offer along with their

respective advantage and disadvantages. Each interpretation

provides different insights regarding model behaviors and the

effects of the input features. We suggest using these techniques to

provide additional insights beyond simple model outputs will help

future ML studies in the oncology field translate to the clinic

through improved interpretability.

Oncology patients are vulnerable and require carefully planned

treatments. Oncologists are often more reluctant to take suggestions
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without explanations on how the suggestions were generated,

resulting in low adoption of the ML-based decision support tools

in the field (66, 67). Use of the model interpretations enables

information concerning model decision-making processes beyond

model outputs. Providing oncologists with this information

accompanying model suggestions may be the key to increasing

their adoption and enabling the full potential capability of ML

models to enhance oncology care (32). Although future research is

needed to reveal the impacts of such information on patient care

and outcomes, we encourage the use of model interpretation

approaches in research and implementation work to examine

model decisions, explore their impacts on model development

and care practices, and drive novel insights from data into

future research.

Various model interpretation techniques are available, and each

has its own advantages, disadvantage, and use cases. For instance,

model-specific interpretations provide intuitive interpretations by

revealing actual model structure, while the utilization of the

approaches is limited to models using specific ML algorithms (22,

26). On the other hand, model-agnostic approaches can be applied

to any ML models, including ensemble models using multiple ML

algorithms, to facilitate the decomposition of varying ML models in

the same way to enable comparison between models (26). However,

appropriate selection of the approaches to use can be challenging

and depends on the characteristics of the datasets used for model

training and validation. Use of inappropriate approaches, such as

applying PDP to a dataset containing intercorrelated features, can

generate misleading information that is not easy to distinguish and

may result in unintentional harm (68). Unfortunately, there is no

guideline or standard guiding the use of these approaches, however,

increasing the awareness of these techniques in the oncology

community is an important initial step to establishing the

interdisciplinary collaboration involving clinical experts, data

sc ientists , and ML engineers that wil l lead to more

robust interpretation.

Model interpretations, including both model-specific and

-agnostic approaches, offer additional benefits beyond uncovering

model behaviors by allowing us opportunities to detect biased data

and quality issues in our data for model improvement (63). For

instance, the interpretations can detect a feature value leading to a

certain model decision that is contradictory to clinical knowledge,

indicating potential data issues. In a previous analysis using SHAP

to explore decision-making processes of models by our team, we

showed that alcohol use could protect patients using immune

checkpoint inhibitors from short-term readmission [manuscript

in press]. This could be a manifestation of reporting bias and data

granularity issues instead of related to alcohol consumption. People

can be self-selecting in reporting their drinking status and do not

always disclose alcohol use, especially heavy use. There could be

different levels of use among alcohol users. Light alcohol use may

have benefits, while heavy use is obviously harmful. In our case, we

used a binary feature to represent alcohol use status that might not

be enough to reveal the true effects of alcohol consumption and

reduce the discrimination of our models.

Model-agnostic interpretations are capable of enabling

additional insights into data health assessment as they are fully
FIGURE 9

Conditional dependence between cell shape and the neural network
prediction for our random-selected breast mass sample. The graph
indicates that the cancerous probabilities increase if the sample’s
cell shape score increases. The blue dot represents the observed
score of cell shape for the sample we selected and the
corresponding model prediction.
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data-driven approaches. Data drifting, defined as variations in data

used for model development from the data used for model

validation and enabling the model after deployment, is a concept

that has been increasingly discussed in the ML literature (69, 70). A

key factor leading to data variations is time. The meaning,

measurement, or definition of a feature enabling the functioning

of a model can change over time and result in degradation in model

performance or even outright malfunction. For instance, the

definition of a disease can change in a short period of time with

new evidence discovered. This is particularly true as new markers

and therapeutics emerge in the healthcare industry, especially for

the oncology area (70). A model may become irrelevant whenever

data drifts and continue to provide outputs without any realization

of the change in inputs. Use of model-agnostic approaches allows us

to detect model dysfunctions by revealing a significant change in

model decision-making processes before and after data drift (71).

Despite many advantages, a few general limitations exist across

the interpretation approaches in addition to the disadvantages

discussed in the previous sections. Model interpretations are not

detached from model performance. Misleading information can be

a result of interpreting under- or over-fitted models (63, 68).

Therefore, we suggest prioritizing model generalizability and

applying the interpretation approaches to those high-performing

models for additional insights. For model-agnostic approaches, they

are incapable of depicting models’ underlying mechanisms of how

they process input data to generate decisions. An argument is that

the approaches only uncover certain aspects of models that are

human-intelligible and leave other parts still in a black box (63).

Further, most model-agnostic approaches provide no information

on their fidelity to the original models and do not quantify

uncertainty generated during the resampling and perturbation

(51, 63, 68).

Although there is growing awareness of the need, research in

interpretability ML is still in its infant stage and requires more

attention. Misuse of the interpretation approaches is likely and can

result in unpleasant consequences (68, 72). One future effort can be
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suitable to their models and data. Moreover, to our knowledge,

these approaches were used mainly in model development and in-

silo validation, and less attention was on the impacts of this

additional information on care practices and patient outcomes.

Increasing in awareness of model interpretability is an essential

first step to enabling interdisciplinary approaches for the

development and implementation of robust, interpretable ML

models (11). Future prospective studies may be feasible to enable

thorough suggestions concerning applications and utilizations of

the approaches.
5 Conclusions

Many ML applications have been developed to support

oncology care, but the adoption of the tools among oncologists is

low due to challenges in model performance and reproducibility

across settings. Introducing interpretability of models can inform

poor performance and data quality issues that in turn can be

helpful in model development and implementation. In this paper,

we provide an accessible introduction to the ideas, use cases,

advantages, and limitations of several commonly used model

interpretation approaches. We encourage the use of various

model-agnostic approaches in ML work supporting oncology care

to derive enriched insights from clinical data and report models

alongside additional model decision-making process information to

allow model utilization and adoption appraisal. Further

investigations on the impacts and communication of the

model interpretations are needed to enable better utilization of

the approaches.
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TABLE 4 Feature of the mass sample selected.

Feature Value

Thickness 8

Cell size 4

Cell shape 5

Adhesion 1

Epithelial size 2

Bare nuclei 1

Bland Chromatin 7

Normal Nucleoli 3

Normal mitoses 1

Class Malignant
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