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Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer death

worldwide. Immunotherapy with immune checkpoint inhibitors (ICI) has

significantly improved outcomes in some patients, however 80-85% of

patients receiving immunotherapy develop primary resistance, manifesting as a

lack of response to therapy. Of those that do have an initial response, disease

progression may occur due to acquired resistance. The make-up of the tumour

microenvironment (TME) and the interaction between tumour infiltrating

immune cells and cancer cells can have a large impact on the response to

immunotherapy. Robust assessment of the TME with accurate and reproducible

methods is vital to understanding mechanisms of immunotherapy resistance. In

this paper we will review the evidence of several methodologies to assess the

TME, including multiplex immunohistochemistry, imaging mass cytometry, flow

cytometry, mass cytometry and RNA sequencing.

KEYWORDS

cytometry, immunohistochemistry, RNAseq analysis, non-smal cell lung cancer, tumour
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Introduction

Non-small cell lung cancer (NSCLC) accounts for over 80% of all lung cancer (1),

which is the leading cause of cancer death worldwide (2). Median survival for those with

advanced stage NSCLC is 12 months with conventional treatment of chemotherapy and

radiotherapy (3). The advent of immune checkpoint inhibitor (ICI) therapy
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(immunotherapy) has significantly improved outcomes in some

patients, however a durable response is seen in less than 30% of

patients (4). Additionally, some patients that do have an initial

response to immunotherapy can go on to develop resistance (5, 6).

Response to ICI therapy is related to several tumour, host and

environmental factors (7). This includes intrinsic tumour properties

such as cytokine release (7) and genetic composition (7) (including

tumour mutational burden); and extrinsic factors such as the gut

microbiome (8–13) and the presence of infection (7). These factors

promote and suppress cancer immunity and sit in an equilibrium

that is defined as the cancer-immune set point. This threshold needs

to be surpassed for an individual with cancer to respond to ICI

therapy (7).

Many studies, conducted in several different solid organ

cancers, have shown that the make-up of the tumour

microenvironment (TME) and the interaction between immune

and cancer cells appears to have a large impact on response to ICIs

and the ability to overcome the cancer immune setpoint.

Assessment of histologic samples prior to initiation of therapy

have demonstrated several immune phenotypes that predict

response to immunotherapy. These profiles are immune-inflamed,

immune-excluded and immune-desert phenotypes (14). The

immune-inflamed phenotype is characterised by a TME where

immune cells (especially CD4+ and CD8+ T cells) and cancer

cells are in close proximity within the tumour parenchyma. These

tumours are also associated with elevated levels of pro-

inflammatory cytokines that promote T cell activation and

expansion. The immune-excluded phenotype demonstrates

abundant immune cells; however, these cells are found in the

stroma and do not penetrate the tumour parenchyma. The

immune-desert phenotype shows a paucity of T cells in both the

stroma and parenchyma of the tumour (15, 16). In colorectal cancer

the presence of specific T cell populations within the tumour

microenvironment has been shown to correlate with survival (17)

which has in turn led to the development of an immune score to aid

with the staging of colorectal cancer (18, 19). Similar findings have

been seen in lung cancer, where the density of tumour infiltrating
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lymphocytes in resectable adenocarcinoma has been associated with

improved survival (20). Additionally, in lung cancer and melanoma,

the presence of tumour infiltrating lymphocytes and increased gene

expression for CD4 and CD8 was found to correlate with improved

survival in those patients treated with immunotherapy (21).

Resistance to immunotherapy appears to be influenced by

similar intrinsic and extrinsic factors. Tumour intrinsic factors

include the tumour mutational burden, heterogeneity of tumour

neoantigens, and expression of oncogene and tumour suppressor

genes (14). Extrinsic factors influencing resistance are similarly

strongly linked to the TME (14, 22) and the complex interactions

between cancer cells and the immune system (23).

These observations demand that having robust, accurate and

reproducible methods to assess the TME and immune interactions

between NSCLC and the host immune system are vital to

understanding mechanisms of immunotherapy resistance. From a

practical standpoint, a majority of patients undergoing treatment

with immunotherapy will have advanced stage NSCLC which are

not amenable to surgical resection. As such, the majority of tissue

samples acquired from patients with metastatic disease will be small

volume and obtained through minimally invasive procedures such

as bronchoscopy with endobronchial ultrasound (EBUS). This

highlights the importance of validated methods to assess the TME

and immune response in small volume samples and peripheral

blood. Here we review key methods for assessing the tumour-

immunity interaction in small volume specimens, and discuss

potential limitations in their application in NSCLC (Table 1), as

well as exploring the existing evidence base in lung cancer and

other malignancies.
Immunohistochemistry-based
methods

In lung cancer, immunohistochemistry (IHC) is routinely used

in clinical practice to determine tumour type (24). It can also be

used to assess the TME. For example, IHC is used to assess the
TABLE 1 Summary of techniques used to assess TME.

Methods Number of
markers

Throughput Spatial
Information

Precise
quantification

Access to public data
sets

IHC based mIHC 4-9 Medium Yes Yes No

IMC ~40 Medium Yes Yes No

MIBI ~40 Medium Yes Yes No

Cytometry
based

Flow Cytometry ~20 Medium No Yes No

Mass Cytometry ~42 Medium No Yes No

Transcriptomics RNA sequencing (Bulk) ~hundreds High No Yes Yes

Spatial RNA sequencing ~hundreds Medium Yes No Yes

Single cell RNA
sequencing

~hundreds Medium No Yes Yes
IHC, immunohistochemistry; mIHC, multiplex immunohistochemistry; IMC, Imaging mass cytometry; MIBI, Multiplex ion beam imaging.
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expression of Programmed Death-Ligand 1 (PD-L1) (24) which is a

marker of response to immune checkpoint inhibitors (25, 26),

and to assess alteration in response to treatment (27). IHC

provides information regarding types of cell populations, their

characteristics, and the spatial relationship of different cell

populations and tissue structures.
Immunohistochemistry/
immunofluorescence

IHC uses a primary antibody to target proteins of interest.

Target proteins usually reflect the type and function of cell

populations. A secondary antibody conjugated to an enzyme such

as horseradish peroxidase is then applied before applying a

chromogen substrate of the enzyme that will develop a colour

upon enzymatic activity. This method enables amplification of the

signal for the detection of the target protein with light microscopy

(28). Additionally, IHC can be performed effectively on small tissue

samples such as those obtained via EBUS (29).

Immunofluorescence (IF) uses a similar principle to

chromagen-based IHC and can also be used to assess the TME.

Here, instead of an antibody bound to an enzyme, antibodies are

conjugated to fluorophores that can be detected by fluorescence

microscopy (30). IF can either be performed directly where the

primary antibody is attached to a fluorophore or indirectly where

the fluorophore is attached to a secondary antibody which

recognises the primary antibody of interest. Indirect IF allows for

signal amplification (30).

While routinely used in clinical practice, IHC only allows for the

assessment of a one or two proteins, and IF up to four, which limits

comprehensive TME analysis. Multiplex immunohistochemistry

(mIHC) has emerged as a tool for simultaneous detection of

multiple biomarkers. However, there are several challenges to doing

this accurately in a time-efficient manner. For example, performing

co-staining with standard chromogen-based IHC is possible, however

staining strategies are needed to overcome antibody cross-reactivity.

Furthermore, due to overlap of chromogenic spectra, only up to 3

antibodies can be assessed this way. High-dimension multiplex IHC

offers an alternative where antibodies and chromagen are stripped

after each cycle of staining (31). This method enables staining of up to

15 proteins but is labour-intensive and cycles of staining/antibody

stripping can cause tissue degradation (32). In addition, there is no

robust analytical method to quantify cell populations with this

approach (33). Similarly, while multiplex IF can assess up to 4

antibodies simultaneously, there are significant limitations. The

most important considerations are spectral overlap of fluorophores

and autofluorescence of the tissue (33).

Several methods such as tyramide signal amplification

(OPAL™ mIHC), DNA barcode technology (CODEX ™,

InSituPlex ™), image cyclic staining technology (MACSima ™),

imaging mass cytometry (IMC) and Multiplex Ion Beam Imaging

(MIBI) have been developed to provide more thorough assessment

of the TME (33–38). DNA barcoded technologies and image cyclic
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staining technologies both have a paucity of published data (36). As

a result, this paper will focus on OPAL™ mIHC, IMC, and MIBI.

MIBI and IMC can be classified under mass cytometry-based

imaging techniques as both use metal isotopes bound to

antibodies. OPAL mIHC allows for simultaneous assessment of 4-

9 antibodies (33, 39), while next generation IHC methods such as

IMC and MIBI can assess up to 40 antibodies simultaneously. These

techniques allow for assessment of both immune cell populations,

their function and spatial arrangement in the TME (37, 38).
OPAL multiplex immunohistochemistry
(OPAL mIHC)

OPAL mIHC uses a tyramide signal amplification (TSA)

system. This method uses a primary antibody to target the

protein of interest and a secondary antibody that is conjugated to

horse radish peroxidase. A tyramide-conjugated fluorophore is

catalysed by horseradish peroxidase and will covalently bind to

tyrosine residue in secondary antibody and tissue with the protein

of interest. The primary and secondary antibodies can then be

stripped, and the process repeated several times for different

proteins of interest (33). OPAL mIHC allows for simultaneous

assessment of up to 9 proteins in formalin-fixed and paraffin-

embedded (FFPE) tissue samples (39).

Once stained slides are scanned, digital images are analysed

using various software packages to obtain both spatial and

quantitative information of the TME. Several software packages

are available for analysis including commercial software such as

HALO (Indica Labs, Albuquerque, New Mexico, USA) (40) and

INFORM (Akoya Bioscience, Menlo Park, California, USA) (33),

and open-source software such as QuPATH (41). Whole slide

analysis is possible with mIHC. Analysis involves cell

segmentation and annotation, cell phenotyping and spatial

analysis. Development of machine learning models has allowed

for the automation of some image analysis (42). Machine learning

methods have also been developed to quantify immune cells in

TME (43).

Clinical studies utilising OPAL mIHC in
lung cancer

OPAL mIHC has been used to define the TME in several

malignancies including lung cancer (44–48). Almost all studies

assessed surgical resection samples (44–48), highlighting the need

for studies validating the utility of this technique in small volume

samples to evaluate the TME. Schalper et al. demonstrated that

cytotoxic T-cell infiltration was associated with survival in NSCLC

(47). mIHC has also shown that the spatial distribution of various T

cell subclasses can impact survival in NSCLC (44, 49). It has also

shown that neoadjuvant chemotherapy can increase PD-L1

expression and CD4+ T-cells in the TME (46). Other studies have

shown that mIHC can be used to assess functional cellular

molecules such as PD-L1, indoleamine 2,3-dioxygenase 1 (IDO-1)

and B7-H4 and their significance in NSCLC (48).
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Mass cytometry-based imaging

Like mIHC, mass cytometry-based imaging techniques have

also been used to define the TME. These techniques utilise target

antibodies attached to metal isotopes to assess multiple target

proteins simultaneously. Two such techniques are MIBI and IMC.

MIBI uses secondary mass spectrometry to image primary

antibodies that are coupled with rare metal isotopes. Firstly, FFPE

sections are stained with rare earth metals conjugated primary

antibodies. These are then loaded on to the MIBIscope and

rasterized with a xenon duoplasmatron primary ion beam. This

results in the release of secondary ions which are subsequently

analysed with a magnetic sector mass spectrometer with time-of-

flight (TOF) analysis. Multiple isotopes can be assessed

simultaneously with most devices analysing up to 40 isotopes at a

time. The resultant data provides a two-dimensional map of the

distribution of each isotope and its corresponding antibody and its

related epitope (37). Analysis of MIBI images can then be

performed via computational pipelines that allow for automation

of most steps (42, 50).

Like MIBI, IMC utilises rare earth metal labelled antibodies to

stain FFPE specimens. Areas of interest within these specimens are

then ablated by a laser, and the resulting tissue plumes are assessed

by time-of-flight cytometry to determine isotope abundance (38,

51). IMC can analyse a similar number of antibodies as MIBI (52),

however repeat analysis is not possible on the same section of tissue

due to complete ablation (53). Mass cytometry-based imaging has

considerable advantages over mIHC. Autofluorescence and spectral

overlap are not a concern with mass-cytometry imaging and

staining of the section in one single step ensures tissue integrity

compared to mIHC where cyclic staining can lead to tissue

degradation (37).

Clinical studies utilising MIBI and IMC in
lung cancer

Keren et al. have described a robust workflow for antibody

labelling, image acquisition and analysis pathways for assessing cell

populations, functional capacity, and the spatial relation of cells to

each other in triple negative breast cancer, which is applicable to

other tissue types (50, 54).

The TME in breast cancer has been assessed extensively with

MIBI. Studies have demonstrated the importance of programmed

cell death protein-1 (PD-1), PD-L1, indoleamine 2,3-dioxygenase

(IDO) and lymphocyte activation gene 3 (LAG-3) in cellular

interactions, linking these immunoregulatory proteins to

recurrence and survival (55). Other studies have shown that

disruption of myoepithelial cells in ductal carcinoma in situ

(DCIS) can reduce the risk of progression to invasive breast

cancer (56). The workflow demonstrated in these studies appears

generalizable to other cancer types. With regards to lung cancer,

MIBI has not been used extensively to define the TME, however

Ptacek et al. demonstrated the feasibility of using MIBI to assess

TME in NSCLC (57). In this study MIBI was used to simultaneously

defined multiple cell types including, T cells, B cells and

macrophages in spatial relation to tumour cells. Additionally,
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McCaffrey et al. used MIBI to evaluate the immunoregulatory

microenvironment of Mycobacterium tuberculosis granulomata

(58) using a combination of lung biopsy samples and resection

samples (58).

While assessment of TME using the above methods is robust,

the applicability in patients with NSCLC on immunotherapy is still

unclear. Many patients with resistance to immunotherapy would

undergo percutaneous or bronchoscopic biopsy of the cancer in

question and further work to validate these multiplex techniques

and their validity in small biopsy samples is needed.
Cytometry based techniques

Cytometry techniques provide single cell analysis of tumour

tissue and can also be used to assess the TME (59, 60). Flow

cytometry (FACS) and mass cytometry (CyTOF) are two

commonly used methods of cytometry that we will review here.

Both methods utilise a single cell suspension, meaning information

about spatial relationships between cells is lost (38). The need to

create cell suspension may lead to cell type loss and limits analysis

to fresh tissue, meaning FFPE samples from historic data sets

cannot be assessed with this method (59).
Flow cytometry

Flow cytometry uses fluorophore-conjugated antibodies to

target molecules of interest. A suspension of cells bound to

antibodies is exposed to a laser, one cell at a time. This causes

fluorophore excitation which leads to emission of light at a

particular wavelength that can be detected by a sensor. Multiple

antibodies can be assessed simultaneously (up to 24 with some

devices that offer spectral unmixing) (60). Flow cytometry allows

for assessment of thousands of events per second (60). It can assess

large numbers of cells quickly and provide extensive data with

regards to cell populations and their function (60). The main

limitations of flow cytometry are the limited number antibodies

that can be assessed at one time and the overlap in emission spectra

of some fluorophores meaning that antibody combinations need to

be selected carefully (60).

Clinical studies utilising flow cytometry in
lung cancer

Studies in NSCLC have used flow cytometry to define

populations of monocytes (61), dendritic cells (62) and

lymphocytes (63) in peripheral blood. For example, HLA-DRlow

monocyte populations in peripheral blood correlate well with high

neutrophil/lymphocyte ratio (NLR) and have a negative association

with survival (61). Another study has shown that patients with

NSCLC have significantly lower levels of peripheral blood

plasmacytoid dendritic cells (pDC), this was again lower in

patients with metastatic disease than those with early-stage

NSCLC suggesting some prognostic value to pDCs (62). Defining

lymphocyte populations in blood has important implications as well,
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for example increased proportions of regulatory T cells in peripheral

blood was seen in patients with NSCLC who had progressive disease

despite radiotherapy (63). Similarly elevated levels of circulating

monocytic myeloid-derived suppressive-like cells observed with flow

cytometry have been shown to be associated with resistance to

immune checkpoint inhibitor therapy (64).

Flow cytometry has also been used to define the TME and its

immune cells in NSCLC (65). For example, Bonnal et al. used flow

cytometry in conjunction with single cell RNA sequencing to show

that eomesodermin homolog (EOMES)+ type 1 regulatory T-like

cells are associated with disease progression in NSCLC (66).

Additionally, flow cytometry and IHC have been used to define

tumour-associated macrophages in NSCLC (67) and that regulatory

T cells are seen in higher numbers in NSCLC and is associated with

reduced natural killer (NK) cells when compared to tumour-free

lung tissue (68). While flow cytometry does provide robust

assessment of cell populations and function, most studies in

humans have been performed on resection specimens as opposed

to biopsy specimens.
Mass cytometry (CyTOF)

Mass cytometry uses antibodies conjugated to heavy metal

isotopes to target the molecules of interest. Once the cell

suspension has been labelled with these antibodies, it is

introduced into a mass spectrometer where an argon plasma

creates an ionised cloud of atoms that is enriched for heavy

metals. The heavy metal ions are then separated by time-of-flight

mass spectrometer by their mass to charge ratio. This is then

detected as an electrical signal at the terminal gate, the ion count

reflecting the expression of the corresponding target molecule. Mass

cytometry allows for the simultaneous assessment of up to 40

antibodies (59). Mass cytometry has been validated against flow

cytometry for assessment of both peripheral blood mononuclear

cells (PBMC) and tumour tissue in human cancer studies (69). Mass

cytometry provided similar analysis to flow cytometry with respect

to cell populations, function, activation, and exhaustion. Fewer cell

numbers are also needed for analysis when compared to traditional

flow cytometry (69).

Clinical studies utilising mass cytometry in
lung cancer

Similar to flow cytometry, mass cytometry has been used to

define PBMC populations in studies of NSCLC (70). For example,

CD33 expression on PBMC monocytes has been shown to predict

response to anti-PD-1 immunotherapy in NSCLC (71). Mass

cytometry has been used for the assessment of the TME in

NSCLC where CyTOF was used in conjunction with multiplexed

IF to define the significance of PD-1, LAG-3 and T cell

immunoglobulin and mucin domain-containing protein 3 (TIM-

3) expression in tumour infiltrating lymphocytes (72). Mass

cytometry has also been used to correlate NLR, CD9 and HLA-

DR expression with the prevalence of tertiary lymphoid structures

in patients with NSCLC (73). In these studies, resected samples of

NSCLC were used for analysis with mass cytometry (72).
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Both flow cytometry and mass cytometry can play a key role in

defining immune cell populations and their function in both the TME

and peripheral blood. To our knowledge, nearly all studies that have

used cytometry to assess the TME have utilised resected tissue

samples. Weeden et al. used tissue samples obtained with EBUS for

CyTOF analysis. Robust data were obtained from the analysis of

EBUS samples from 12 patients with advanced-stage lung cancer with

CyTOF (74). However, as mentioned for the previous techniques

described above, further validation of these methods with small

biopsy samples would improve the applicability of defining TME in

patients that develop resistance to immunotherapy.
Transcriptomics and gene expression

RNA sequencing is another powerful tool that has been used to

assess oncological disease at a molecular level (75, 76). Next

generation RNA sequencing (RNA-seq) techniques that allow for

high throughput sequencing has been available since 2005 (77), and

has shown to be able to quantify tumour infiltrating immune cells

using bioinformatic pipelines (78). The accuracy and

reproducibility of RNA-seq depends on the specific platform,

though in a broad sense RNA-seq allows for accurate, fast high

throughput sequencing at low cost (79). RNA sequencing in general

refers to bulk RNA sequencing, where tissue is sequenced without

sorting into single cells. In comparison, single cell RNA sequencing

(scRNAseq) which was developed in 2009, allows for assessment of

the transcriptome at a single cell resolution (80). More recently

spatial transcriptomic methods provide additional data regarding

the spatial orientation of various RNA signatures (81).
RNA sequencing (Bulk RNA sequencing)

RNA-seq techniques can vary depending on the platform that is

used; however, most platforms involve RNA extracted from cells of

interest, followed by RNA fragmentation. Improvements in library

preparation techniques has allowed for improved assessment of

degraded tissue, including FFPE blocks. Reverse transcription is

then performed on RNA fragments to obtain complementary DNA

(cDNA) which then undergoes PCR amplification to create

sequencing libraries. A DNA polymerase is then used to sequence

the libraries (82).

There are many pipelines available for computational analysis

once sequencing is completed. While the specific type of analysis

will depend on the purpose of the experiment, most analysis will

follow the following broad steps. Quality control is first performed

to determine the quality of sequencing and eliminates low quality

reads. This is followed by read alignment where clean RNA reads

are mapped to a human reference transcriptome. Once aligned, the

short reads are assembled into transcripts. The expression of the

transcript can then be quantified. This will routinely generate an

expression matrix that can then undergo further statistical

analysis (82).

Several bioinformatic analysis techniques have been developed

to determine TME composition and include deconvolution
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techniques (83), gene set enrichment analysis (84) and other

techniques that can quantify immune populations such as xCell

(85). Deconvolution methods such as CIBERSORT (83) estimate

cell populations based on overall signature (83) while gene set

enrichment analysis determines differences in defined gene sets and

can assess different gene signatures for immune cells (84). Whereas

xCell uses a gene signature to map to 64 corresponding stromal and

immune cells (85). These analysis techniques can be applied to large

data sets, including publicly available data sets such as The Cancer

Genome Atlas (TCGA) data base or datasets deposited on the Gene

Expression Omnibus (GEO).
Single-cell RNA sequencing

In addition to bulk RNA sequencing, single-cell RNA

sequencing can profile the transcriptome at a single cell

resolution (86). Analysis of different gene expression between

individual cells can potentially identify rare populations that

would not be detected with pooled analysis. This can be

particularly useful for determining heterogeneity in immune cell

populations in the TME (82).

Single-cell RNA sequencing first requires single cell isolation,

which can be done by different methods including, limiting dilution

(87, 88), micromanipulation (87, 88), flow activated cell sorting

(89), laser capture microdissection (90), and microfluidic

technology (91). Once single cell isolation has been performed,

cells are lysed, and RNA then undergoes reverse transcription to

cDNA. This is then followed by amplification and sequencing.

While there are pros and cons of each technique, this will not be

addressed here. Overall, when compared to bulk RNA sequencing

more cells are required due to the loss of cells at time of isolation,

lysis and mRNA capture (86, 92).

Analysis pipelines for single-cell RNA sequencing differs from

bulk RNA sequencing as there is increased noise as well as technical

and biological variability. Once quality control and normalisation

have been implemented, analysis can be performed at a cellular level

to cluster and classify cell types. Gene level analysis can then

determine differences in differentially expressed genes between

clusters to infer differences in function between cell clusters (86,

92). With both bulk RNA sequencing and single cell RNA

sequencing, spatial information that would be available with IHC

methods is absent. Spatial transcriptomics, which was first

described in 2016 can be used to overcome this limitation (81).
Spatial transcriptomics

Spatial transcriptomics uses positional barcodes to map cDNA

to particular areas of tissue, which will then demonstrate variations

in gene expression with respect to spatial orientation (81). To our

knowledge spatial transcriptomic methods have not been

performed on small biopsy samples.
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Clinical studies utilising transcriptomic methods
in lung cancer

RNA-seq has been used in many studies to define changes in the

TME in order to quantify tumour-infiltrating immune cells and

possibly predict the response to immunotherapy. For example,

Casarrubois et al. used RNA-seq to classify the TME in patients

with NSCLC undergoing neoadjuvant chemo-immunotherapy.

This study showed that patients with complete pathologic

response had a higher baseline immune infiltrate characterised by

higher levels of interferon gamma (IFNG), granzyme B (GZMB),

natural killer cell granule protein 7 (NKG7) and M1 macrophages

(93). Additionally several studies have validated the use of RNA-seq

using small volume samples including endobronchial ultrasound-

guided transbronchial needle aspirate (EBUS-TBNA) (94) and

cytology samples from bronchoscopic transbronchial brushing

specimens (95–97). For example, RNA-seq can be performed on

EBUS samples to determine PD-L1 expression. This has been

shown to correlate well with PD-L1 expression via IHC, which is

currently used to predict response to immunotherapy (98).

Similarly, RNA-seq has been used to assess predictors of

resistance to immunotherapy. Analysis of 624 patients with

squamous cell lung cancer from the TCGA and GEO data sets

identified an immune exhausted subclass of tumours, classified by

an upregulation of inhibitory checkpoints, M2 macrophages and

CD4+ regulatory T cells. These tumours were associated with poor

prognosis and deemed to be associated with resistance to

immunotherapy as predicted by tumour immune dysfunction and

exclusion algorithm (99). Another study assessed immune escape

mechanisms in 48 patients with NSCLC treated with ICI and

showed alterations in antigen processing and PD-L1 expression

played a key role in immune escape in this cohort of patients (100).

Single-cell RNA sequencing has also been used to assess TME in

NSCLC. For example, Bischoff et al. demonstrated two distinct

patterns of TME in patients with lung adenocarcinoma where an

Immune-activated TME characterised by pro-inflammatory

monocyte-derived macrophages, NK cells, pDCs and exhausted

CD8+ T cells was shown to have a poor prognosis (101).

Additionally, Zhang et al. used spatial transcriptomics to show

that TME in brain metastasis from NSCLC is characterised by

reduced antigen presenting, B/T cell function and increased

neutrophils and M2 macrophages (102).
Summary

Assessment of the TME will play a vital role in further

understanding the mechanisms of immune escape and resistance

to immunotherapy in patients with NSCLC. The techniques

discussed in this paper have the potential as both standalone

techniques or in combination to play a key role in this, as we

push towards a more personalised approach to lung cancer care. As

described, most of the techniques described have either been used in

other cancers, blood samples or resection samples. However, as
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most patients eligible for immunotherapy have advanced disease,

obtaining resection samples is not practical. Given this,

implementation, and validation of these techniques to assess TME

with small biopsy samples such as those obtained via bronchoscopy

will be important in expanding future understanding of the

tumour-immune interaction.

Immunostaining and cytometry-based methods will need to be

better validated for small volume samples to provide meaningful

insight into the TME, given the heterogeneity noted with TME.

RNA sequencing-based techniques currently have the largest body

of evidence, though further validation with spatial transcriptomic

techniques would further add value to this approach. Utilisation of

these techniques together will most likely have the most benefit.
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