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Emerging bone marrow failure
syndromes- new pieces to an
unsolved puzzle

Simone Feurstein*

Department of Internal Medicine, Section of Hematology, Oncology & Rheumatology, University
Hospital Heidelberg, Heidelberg, Germany
Inherited bone marrow failure (BMF) syndromes are genetically diverse — more

than 100 genes have been associated with those syndromes and the list is rapidly

expanding. Risk assessment and genetic counseling of patients with recently

discovered BMF syndromes is inherently difficult as disease mechanisms,

penetrance, genotype-phenotype associations, phenotypic heterogeneity, risk

of hematologic malignancies and clonal markers of disease progression are

unknown or unclear. This review aims to shed light on recently described BMF

syndromes with sparse concise data and with an emphasis on those associated

with germline variants in ADH5/ALDH2, DNAJC21, ERCC6L2 and MECOM. This

will provide important data that may help to individualize and improve care for

these patients.
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Introduction

Bone marrow failure (BMF) syndromes are defined by decreased production of one or

more hematopoietic lineages, which leads to diminished or absent hematopoietic

precursors in the bone marrow and subsequent cytopenia in the peripheral blood. BMF

can be distinguished into an acquired form and an inherited form. The acquired form,

which is likely caused by an autoimmune reaction (1), may be successfully treated with

immunosuppressant regimens. Inherited BMF syndromes include a broad spectrum of

heterogenous diseases such as Fanconi anemia, telomere biology disorders, Shwachman-

Diamond syndrome, Diamond-Blackfan anemia, congenital cytopenia, immunodeficiency

and others (2). In excess of 100 genes have been associated with inherited BMF to date (3–

8). The first inherited BMF syndrome, Fanconi anemia, was described in 1927 by the Swiss

pediatrician Guido Fanconi, who reported a family with three boys with physical birth

defects and a condition resembling pernicious anemia (9). The first causative gene, FANCC,

was successfully cloned in 1992 (10). A number of genes have emerged as new bona fide

genes associated with the development of BMF in the past ten years: In 2014, variants in

ERCC6L2 were shown to cause autosomal recessive BMF and predisposition to myeloid

malignancies (11). MECOM as causative gene for inherited BMF has been described in
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2015 (12), but its association with a predisposition to hematologic

malignancies was only reported three years later (13, 14).

Homozygous/compound heterozygous variants in DNAJC21 were

linked to a Shwachman-Diamond-like BMF with additional

telomeropathy-like features in 2016 (15). In 2020, a digenic

ADH5/ALD2H2 deficiency causing severe BMF, early-onset

myelodysplastic syndrome (MDS), short stature and intellectual

disabi l i ty was connected to the inabil i ty to detoxify

formaldehyde (16).

Particularly for the recently described syndromes, data on

disease mechanism, penetrance, overall risk of developing

hematologic malignancies, and molecular or cytogenetic factors

indicating a risk of worsening cytopenia, development of bone

marrow dysplasia or leukemogenesis is sparse. This is an important

and incomplete pillar for counseling patients and providing them

with the most complete and up-to-date information specific to their

underlying condition (17). Penetrance, risk of hematologic

malignancy and phenotypic heterogeneity may influence the

decision towards early (preventive) hematopoietic stem cell

transplantation (HSCT) versus ‘watch and wait’ and a more

specific follow-up program tailored to the early detection of

clonal evolution and disease progression. Amino acid hotspots,

genotype-phenotype correlations and disease mechanisms based on

reported variants are crucial to determine the strength and validity

of the underlying genetic diagnosis and the expected/predicted

phenotype and course of disease. This review is therefore based

on the recently described syndromes with germline variants in

ERCC6L2, MECOM, DNAJC21, and ADH5/ALDH2 that lack

concise reviews at this point in time.
ERCC6L2 acts as crucial non-
homologous end joining factor

In 2014, whole-exome sequencing (WES) of three children and

young adults (ages nine to nineteen years old) with BMF and

neurological abnormalities (microcephaly, developmental delay)

and a history of consanguinity revealed homozygous ERCC6L2

variants in two index patients (11). ERCC6L2 belongs to the Snf2-

like ERCC6 family, which also includes ERCC6 and ERCC6L.

Functional studies revealed that the molecular mechanism of

ERCC6L2 deficiency is an impaired nucleotide excision repair

mechanism and an increased amount of reactive oxygen species

via a defect in the mitochondrial function of ERCC6L2 (11). The

short ERCC6L2 isoform contains an N-terminal TUDOR and a C-

terminal DEAD/DEAH ATP-helicase domain. Zhang et al. (18)

later reported an alternative ERCC6L2 transcript translating a new

protein, Hebo (helicase mutated in BMF), which differs from the

ERCC6L2 protein by an 850-amino acid sequence and an additional

HEBO domain. Hebo is ubiquitously expressed and is recruited to

sites of DNA damage (18). A subsequent study by Tummala et al.

postulated the underlying mechanism as primary transcription

deficiency rather than a DNA repair defect based on patients

being defective in the repair of transcription-associated DNA

damage leading to genomic instability (19). Liu et al. described

that ERCC6L2 clusters with core subunit non-homologous end
Frontiers in Oncology 02
joining (NHEJ) genes. ERCC6L2-deficient cells were depleted upon

treatment with g-irradiation, zeocin and etoposide inducing double-

strand breaks, lending itself to a similar, but less severe phenotype

than that observed in cells lacking the NHEJ ligase LIG4. They

could also demonstrate that Ercc6l2−/− mice were viable and

ERCC6L2 deficiency resulted in an approximately 50% reduction

in orientation-specific class switch recombination of antibody genes

(20). A CRISPR-Cas9 screen against genotoxic agents also identified

ERCC6L2 as a canonical NHEJ pathway factor (21). SFPQ, a

member of the SFPQ-NONO complex that has recently been

attributed a putative function in NHEJ, has been described as

novel interaction partner of ERCC6L2 (22). Somatic ERCC6L2

variants have been described in a variety of hematologic and solid

malignancies, most commonly in patients with uterine corpus

endometrial carcinoma. Upon treatment with radiotherapy, these

patients showed a strikingly longer disease-free and overall survival

than patients with wild-type ERCC6L2, indicating that ERCC6L2

loss may be clinically relevant (22). The most recent study described

an impaired clonogenic capacity and erythroid differentiation in

ERCC6L2-silenced HSPCs and a probable impact on mesenchymal

stromal cells and their differentiation potential (23).

Consanguinity has been described in at least 8 of the 24

families (33%) reported to date (Table 1). The disease is caused

by loss-of-function (LOF) variants and all but two variants, D272N

and S658N (NM_020207.7) (7, 19), are truncating variants

affecting both isoforms or just the long isoform with its HEBO

domain (Tables 1, S1 and Figure 1). Two variants, R644* and I475fs,

have been found in more than one family and are present in the

heterozygous state in gnomAD (https://gnomad.broadinstitute.org)

with significant allele frequencies in the European (Non-Finnish)

and Finnish subpopulation, respectively (Table 1 and Figure 1).

One copy number variant (CNV), a homozygous intragenic

deletion of exon 11, has been reported as the causative allele in a

patient with BMF (Figure 1) (24). The association with neurological

abnormalities such as microcephaly, congenital mirror movements

and developmental delay of various degrees was discovered in three

studies (18, 24, 25) and may be part of the phenotype or could be an

independent effect of the underlying consanguinity in these cases.

Of note, ataxia, microcephaly, and developmental delay have also

been described in diseases associated with variants in other NHEJ

factors such as ATM, MRE11, NBS1, NHEJ1, PRKDC, RAD50, and

XRCC4 (26).

There is no known genotype-phenotype association and the

phenotype ranges from mild cytopenia to severe BMF in childhood

and/or development of MDS/acute myeloid leukemia (AML)

(Table 1). The overall penetrance is high with an estimate of 94%

with two asymptomatic homozygotes still being very young

(Table 1). Cytopenia and/or overt BMF develop early at an

average age of 14 years and were reported in 24 out of 36 patients

(66%, range 2 to 47 years (n=24), Table 1) (7, 11, 18, 19, 23, 25, 27,

28). The development of hematologic malignancies (MDS/AML)

has been described in approximately 31% of ERCC6L2 germline-

mutated patients at an average age of 35 years (range 2–59 years

(n=12), Table 1) (7, 19, 24, 28–30). Importantly, only one in four

showed signs of cytopenia or BMF beforehand, which is in line with

reports that cytopenia can be subtle, intermittent and go unnoticed.
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TABLE 1 Overview of emerging bone marrow failure syndromes including genetic and phenotypic features.
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l)
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AML: age

7 years

(range 0

to 18,

n=9)

73% with gain of the

long arm of

chromosome 1, other

recurrent cytogenetic

alterations included

monosomy 7, trisomy 8

and 21p alterations

80%, MDS/

AML

75%,

after

MDS/

AML

diagnosis

33147438

33355142

34458631
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BMF: age

2 years

(range 0

to 15,

n=19)

AML:

ages 12

and 15

years

(n=2)

complex karyotype,

deletions of 17p13 and

20q and a derivative

chromosome 15 with

translocation t(1;15)

described in four

patients without

hematologic

malignancy

11%, AML^

21%,

mostly

due to

severe

BMF
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27346687

35464845

30755392
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28062395
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ADH5/ALDH2

(NM_000671.4)
619151

digenic, AR for

ADH5

LOF

(missense

and

truncating

SNVs), either

heterozygous

or

homozygous

for ALDH2*2

W322* described

in all but one

family; A278P

described in

seven out of 13

families

complete

cytopenia/BMF and/

or MDS/AML [100%]

short stature [100%]

intellectual disability

[100%]

microcephaly [67%]

abnormal skin

pigmentation [58%]

(retinal degeneration,

facial dysmorphia,

skeletal, and endocrine

abnormalities)

high penetrance,

severe BMF and

MDS/AML

often requiring

HSCT

individuals with homozygous ALDH2

indicative of more severe (neurologica

phenotype

DNAJC21

(NM_001012339.3)
617052

AR,

consanguinity

in 57%

LOF

(missense

and

truncating

SNVs and

CNVs)

K34E described

in seven

individuals from

four families;

R173* described

in two families

complete

cytopenia/BMF and/

or AML [100%]

growth delay and/or

short stature [95%]

develomental delay,

intellectual disability

and/or neurological

abnormalities [68%]

skeletal abnormalities

[63%]

skin abnormalities

[63%]

microcephaly [42%]

facial dysmorphia

[37%]

dental abnormalities

[32%]

osteopenia/

osteoporosis [32%]

(high) myopia,

astigmatism and other

visual field defects

[32%]

although

penetrance is

high,

spontaneous,

intermittent or

prolonged

improvement of

cytopenia has

been reported

unknown
*

https://doi.org/10.3389/fonc.2023.1128533
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Continued

age of

onset

acquired somatic vari-

ants/disease progres-

sion

risk of heme

malignancy,

type

HSCT PMID
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BMF: age

14 years

(range 2

to 47,

n=24)

MDS/

AML: age

35 years

(range 2

to 59,

n=12)

complex or monosomal

karyotype with loss of

chromosomes 5, 7 or

17 or isolated

monosomy 7, TP53

variants (often multi-

hit)

33%, MDS/

AML

28%,

either

due to

severe

BMF or

after the

onset of

MDS/

AML

29633571

24507776

30936069
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29146883
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36156210
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birth/in
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(range 0
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n=43)
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MDS/

MPN-U:

ages 37,

42 and 73

years

(n=3)

unclear, translocation

t(1;14)(q44;q32)

described in one patient

with MDS/MPN-U

5%, MDS/

MPN^

50%, due

to severe

BMF

35020829

30536840

32064714

29200407

29519864

29439187

36082647

29097497

29540340

26581901

29146883

22972950

26554871

29496554
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retinal (rod-cone)

dystrophy and other

retinal abnormalities

[32%]

pancreas lipomatosis/

exocrine pancreatic

dysfunction [26%]

ERCC6L2

(NM_020207.7)
615715

AR,

consanguinity

in 33%

LOF

(truncating

SNVs and

CNVs), two

missense

variants

(D272N and

S658N)

R644* and

F486fs (Finnish

founder)

described in

more than one

family

high (94%),

two

asymptomatic

homozygotes

cytopenia, BMF [66%]

MDS, AML

(particularly acute

erythroid leukemia)

[31%]

(neurological

abnormalities such as

microcephaly,

congenital mirror

movements and

intellectual disability)

may vary from

subtle

intermittent

cytopenia to

severe BMF

and/or early

onset MDS/

AML

unknown

MECOM

(NM_004991.4)
616738

AD, de novo in

16%

LOF

(missense

and

truncating

SNVs and

CNVs)

R938W, P948A

and variants

affecting the

splice sites

between exons 7

and 8 have been

described in

more than one

family

high (96%) for

any related

features (RUS/

other skeletal

abnormalities,

deafness,

cytopenias/

BMF)

cytopenia, BMF [80%]

RUS [54%]

brachy-, campto-, and

clinodactyly and/or

other finger

abnormalities [38%]

sensorineural hearing

impairment/

congenital deafness

[20%]

cardiac abnormalities

[18%]

prematurity, hydrops

fetalis or

polyhydramnios

high penetrance,

spontaneous,

intermittent or

prolonged

improvement of

cytopenias has

been reported

distinct genotype-phenotype associat

all but one variant associated with th

presentation of RUS and hematolo

disease cluster in the region spanning

fingers 8 and 9 (specific variants R96

H/L, I971T, and Q965E have solely

associated with RUS without any ot

features)
n

g

b
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TABLE 1 Continued

pe-phenotype association
age of

onset

acquired somatic vari-

ants/disease progres-

sion

risk of heme

malignancy,

type

HSCT PMID

35484980

35150448

ic stem cell transplantation; LOF, loss-of-function; MDS, myelodysplastic syndrome; MPN, myeloproliferative
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of disease
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penetrance phenotype heterogeneity genot

[13%]

micro- or

macrocephaly,

structural brain

abnormalities or

intellectual disability/

cognitive impairment

[11%]

patellar hypoplasia

[10%]

metatasus adductus,

hallux valgus and

other toe

abnormalities [9%]

clubfoot [7%]

renal abnormalities

[7%]

MDS or MDS/

MPN-U [5%]

(hip dysplasia, cleft

palate, early-onset

ischemic insults, facial

dysmorphia,

precocious puberty/

gynecomastia in

infancy, paralysis of

the larynx/

laryngomalacia)

AD, autosomal dominant, AML- acute myeloid leukemia; AR, autosomal recessive; BMF, bone marrow failure; CNV, copy number variant; HSCT, hematopoie
neoplasm; RUS, radioulnar synostosis; SNV, single-nucleotide variant; MPN-U, myeloproliferative neoplasm- unclassified.
Phenotypic features in parentheses and Italics are not clearly associated with the underlying BMF syndrome (yet).
^Only few patients reported.
y
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Close to all patients with MDS fell into high-risk groups with a

complex karyotype or isolated monosomy 7 and co-occurring

(often multi-hit) TP53 alterations (Table 1) (7, 19, 24, 28–30).

Several patients with acute erythroid leukemia have been reported,

either progressing from MDS or as isolated disease, leading to the

assumption that this AML subtype seems to be much more

prevalent in ERCC6L2 germline-mutated patients (Table 1) (28).

Acute erythroid leukemia, defined by excess of maturation-arrested

primitive erythroblasts, is a rare subtype of AML, occurring in about

3% of all AML patients (31). It is characterized by a significantly

higher frequency of TP53 variants (36%), especially bi-allelic/multi-

hit TP53 alterations with relatively lower somatic mutational

burden compared to other AML subtypes (31, 32). While acute

erythroid leukemia by itself does not seem to carry an additional

prognostic impact as independent risk factor (33), its frequent

association with complex karyotypes and multi-hit TP53

alterations does confer to a dismal outcome in at least the subset

of cases with these abnormalities (34). Cytogenetic abnormalities in

the twelve ERCC6L2 patients with AML and MDS presented often

as a complex or monosomal karyotype with loss of chromosomes 5,

7 or 17 or isolated monosomy 7. In addition, multi-hit TP53

alterations were reported in seven out of twelve patients with

MDS/AML. An assessment of the allelic state of these TP53

alterations was not performed (Table 1) (7, 19, 24, 28–30). The

prognosis of MDS/AML in patients with ERCC6L2 germline

variants is poor, especially when progression to acute erythroid

leukemia is noted, with no known survivors of this AML subtype so

far (28). HSCT was performed in at least ten individuals (28%),

either because of severe, transfusion-dependent BMF or after MDS/

AML development (Table 1). Given the high frequency of

monosomy 7, complex/monosomal karyotypes and TP53 variants,

which may be associated with disease progression and development

of MDS/AML, HSCT should be considered early, especially when

these aberrations are discovered in the context of clonal evolution

and bone marrow dysplasia.
Frontiers in Oncology 06
MECOM deficiency serves
as an example of a
genotype-phenotype association

Heterozygous variants in HOXA11 are known to cause

radioulnar synostosis (RUS) (a congenital proximal fusion of the

radius and ulna) with amegakaryocytic thrombocytopenia

(RUSAT) (35). However, families with RUSAT without HOXA11

variants were reported (36), suggesting that additional candidate

genes/loci exist. Consequently, Niihori et al. (12) performed WES

on three individuals with RUSAT without an identified variant in

HOXA11 and detected heterozygous missense variants in MECOM

in all three patients. This was the first time RUSAT has been linked

to variants in MECOM.

The MDS1-EVI1 complex locus (MECOM) gives rise to several

transcripts through alternative splicing of the N-terminus that

encode at least three different isoforms: full length EVI1-145 kDa,

EVI1-D324, which lacks zinc fingers 6 and 7, and MDS1-EVI1.

MDS1-EVI1 comprises an N-terminal so-called PRDF1-RIZ

homology domain, two C2H2 zinc finger DNA binding domains,

one at the N-terminus including seven zinc fingers, and the other at

the C-terminus including three zinc fingers, a proline-rich repressor

domain and a small aspartate/glutamate-rich acidic region located

in the C-terminal region (Figure 2) (37). MECOM acts as crucial

transcription factor in hematopoiesis, playing an important role in

the formation and self-renewal of long-term hematopoietic stem

and progenitor cells (HSPCs) (38) as well as myeloid differentiation

through interaction with transcription factors including GATA1

(39), SPI1 (40), RUNX1 (41) and others (42). The inversion or
FIGURE 1

Schematic of the ERCC6L2 transcript (NM_020207.7) and its protein
domains with the location of all reported germline variants. Circles
represent females and squares represent males. Symbols on the
same horizontal level are individuals from the same family. Letters
within the symbols indicate individuals with compound
heterozygous genotype, while symbols without letters indicate
homozygosity for the variant. The color fill depicts different
phenotypes, no color fill designates healthy individuals carrying
homozygous/compound heterozygous causative variants. The
dotted line shows the location of the sole described copy number
variant. AML, acute myeloid leukemia; BMF, bone marrow failure;
HEBO, helicase mutated in bone marrow failure; MDS,
myelodysplastic syndrome.
FIGURE 2

Schematic of the MECOM transcript (NM_004991.4) and its protein
domains with the location of all reported germline variants.
Checkered domains with the numbers 1 to 10 stand for zinc fingers
1 to 10. Circles represent females, squares represent males and
diamonds represent unknown gender. Symbols on the same
horizontal level are individuals from the same family. The color fill
depicts different phenotypes, no color fill indicates healthy
individuals carrying a causative variant. A dot in the middle of the
symbol designates the presence of RUS in these individuals. The
dotted lines show the location of the described copy number
variants, the arrow denotes that the copy number variant extends in
this direction. AD, acidic domain; BMF, bone marrow failure; MDS,
myelodysplastic syndrome; MPN, myeloproliferative neoplasm; PR,
PRDF1-RIZ domain; RD, repression domain; RUS, radioulnar
synostosis.
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translocation of chromosome 3 drives inv(3)/t(3;3) AML via

structural rearrangement of an enhancer that upregulates

transcription of EVI1. It is associated with poor overall survival in

AML patients and HSCT is usually mandated whenever possible

(43). Furthermore, overexpression of EVI1 has been reported in 6 to

11% of AML patients without 3q aberrations (44).

Later reports broadened the phenotype caused by germline

MECOM variants, including BMF without RUS (7, 13, 45–50),

predisposition to myeloid malignancies (14, 51), abnormalities of

other organ systems (7, 13, 14, 45–47, 49–55), and RUS without any

other phenotypic features (56). Causative variants include LOF

variants that are scattered across the entire gene and missense

variants that are solely located in zinc fingers 8 and 9 (Figure 2 and

Tables 1, S1). Confirmed de novo variants have been reported in

16% of patients (7, 48–51). The variants R938W and P948A

(NM_004991.4) as well as variants affecting the splice sites

between exons 7 and 8 have been described in more than one

family (Figure 2 and Table 1). Interestingly, there seems to be a

rather distinct genotype-phenotype association — all but one

variant associated with the co-presentation of RUS and

hematologic disease cluster in the region spanning zinc fingers 8

and 9, which includes mostly missense, but also canonical and non-

canonical splice variants (Figure 2 and Table 1). Specific missense

variants in zinc fingers 8 and 9 (namely R969C/H/L, I971T, and

Q965E) have been described in 21 individuals from 6 families with

RUS and finger malformations without hematological

abnormalities (56). Little is known about this association of RUS

with missense variants in zinc fingers 8 and 9. It was shown that the

Evi1 expression pattern is temporally and spatially restricted in

mouse embryos with a transient expression in the emerging limb

buds (57). Junbo mice with an Evi1 variant affecting zinc finger 9

had extra digits on their forelimbs, suggesting that the C-terminal

zinc finger domain may be relevant in digit development (58). Both

the MECOM missense variants H939R and R969C have displayed

attenuated suppression of TGFB1 (12, 56), which has been

previously shown to play a role in digit formation during mouse

development (59). LOF variants inMECOM seem to cause BMF but

not RUS. CNVs have been described in four patients and were all

confirmed or presumed de novo (Figure 2) (46, 48–50). One 751kb

3q26 microdeletion encompassing the entireMECOM gene and the

pseudogene EGFEM1P was reported in one patient with BMF

without other phenotypic features (48). Intragenic deletions of

exons 1 + 2 (49), exon 2 (50) and exons 12-17 (46), affecting zinc

finger and acidic domains, were reported in three patients with

BMF at birth and a range of congenital skeletal and/or heart

abnormalities. The intragenic deletion of exons 1 and 2 extended

to other genes and also included the telomere biology gene TERC, so

that specific phenotypic features cannot be attributed to either gene

in this case (49). Overall penetrance of any related features (RUS/

other skeletal abnormalities, deafness, cytopenia/BMF) is high at an

estimated 96% (Table 1). Cytopenia/BMF was present in 80% of

patients with an average age of onset at birth/in infancy (n=43) (7,

12–14, 45–55, 60). Although cytopenia can be severe and present at

birth, even leading to intrauterine death, and may require early

HSCT, three cases (5%) with spontaneous resolution or

improvement of cytopenia/BMF have been reported (13, 45, 51).
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RUS was the most frequent non-hematopoietic feature in 54% of

patients (7, 12–14, 51–55, 60), followed by brachy-, campto-, and

clinodactyly and/or other finger abnormalities in 38% of patients (7,

12, 13, 45, 46, 51–53). Other frequent abnormalities included

sensorineural hearing impairment/congenital deafness in 20%

(12–14, 51), cardiac abnormalities such as atrial/ventricular septal

defects, tetralogy of Fallot, aortic coarctation, pulmonary stenoses/

atresias, pulmonary venous return anomaly, patent ductus

arteriosus and myocardial atrophy in 18% (7, 13, 47, 49–51, 54)

and prematurity, hydrops fetalis or polyhydramnios in 13% of

patients (12, 47, 50, 53–55). Less frequent phenotypic features are

micro- or macrocephaly, structural brain abnormalities or

developmental delay/cognitive impairment in 11% (12, 13, 46, 51,

52), patellar hypoplasia (13, 14), metatarsus adductus, hallux valgus

and other toe abnormalities (13, 14) in 9% and clubfoot (7, 51, 52)

and renal abnormalities (7, 13, 55) in 7% of patients each (Table 1).

Other features such as hip dysplasia (13, 52, 53), cleft palate (12, 13,

49), early-onset ischemic insults (13, 14, 51), facial dysmorphia (7,

49, 51), precocious puberty/gynecomastia in infancy (13), and

paralysis of the larynx/laryngomalacia (45, 49) have been

described in only two to three individuals and consequently the

association with germline MECOM variants may not be entirely

clear or proven in these cases. Three patients (5%) were reported to

develop hematologic malignancies, specifically MDS with refractory

cytopenia with multilineage dysplasia at 37 years (51), MDS with

excess blasts-2 at 73 years with interstitial deletion of the long arm

of chromosome 9 (14) and MDS/myeloproliferative disease-

unclassifiable at 42 years with a translocation t(1;14)(q44;q32)

(Table 1) (14). All patients reportedly had a history of

thrombocytopenia or BMF with earlier onset (14, 51). HSCT has

been performed in 27 out of 55 patients (50%) because of

severe BMF.
DNAJC21 deficiency- a new
Shwachman-Diamond syndrome-like
disorder with telomeropathy aspects

DNAJC21 is ubiquitously expressed and encodes a protein with

531 amino acids, containing a highly conserved N-terminal DnaJ

molecular chaperone homology domain, a central coiled coil region

as well as two zinc fingers (Figure 3). The first studies in yeast

showed that it functions together with the cytoplasmic zinc finger

protein Znf622 to stimulate the ATPase activity of the Hsp70

chaperone protein Hspa8, thereby initiating the removal/recycling

process of Arx1, a ribosome maturation factor (61, 62). In 2016,

Tummala et al. screened a cohort of 28 unrelated individuals with

BMF and syndromal features by WES and identified 3 individuals

with homozygous variants in DNAJC21. By targeted re-sequencing

of DNAJC21 in patients with similar phenotype, a fourth patient

with a homozygous DNAJC21 variant was found (15). Functional

studies on patient-derived lymphoblastoid cell lines implicated

involvement of DNAJC21 in rRNA biogenesis and 60S ribosome

maturation — thereby resembling the function of SBDS — leading

to decreased interaction with HSPA8, ZNF622 and PA2G4 and
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increased cell death in patients with DNAJC21 deficiency (15). So

far, 19 patients from 14 different families have been described in the

literature (7, 15, 63–67), in 8 families (57%) a history of

consanguinity was reported (Table 1). There is no confirmed case

of a de novo variant in DNAJC21 reported to date.

Causative variants include missense variants, particularly within

the N-terminal DnaJ-domain affecting the amino acids 5, 32 and 34

(Y5C, K34E, P32A, NM_001012339.3), with two of those located in

the universally conserved HPD motif (H33-P34-D35), which is

essential for stimulation of ATPase activity. The K34E variant is the

most common variant described in seven individuals from four

families (Figure 3 and Tables 1, S1) (64, 65), reversing the surface

charge of a key amino acid adjacent to the HPDmotif and also likely

disrupting the interaction with HSPA8 (68). The P32A variant

potentially alters the fold of the HPD motif, disrupting the

interaction with HSPA8 and stimulation of its ATPase activity

(68). Truncating variants encompassing nonsense, frameshift and

canonical splice site variants (Table S1) are predicted to undergo

nonsense mediated decay, leading to significant reduction of

DNAJC21 protein expression (7, 15, 65–67). While most patients

were homozygous for a causative DNAJC21 variant, two individuals

were found to be compound heterozygous (7, 66). Besides single-

nucleotide variants, one individual with a homozygous intragenic

deletion of exons 5 and 6 was reported as well (Figure 3 and

Table 1) (65).

While some features such as exocrine pancreatic dysfunction

are consistent with a (classic) Shwachman-Diamond phenotype (as

has been described in patients with bi-allelic inactivation of SBDS

and less likely of EFL1 or heterozygous variants in SRP45 (69)),

other features such as skin hypopigmentation, dental and retinal

abnormalities seem to resemble characteristics of telomeropathies

(64). There is no known genotype-phenotype association. The

penetrance of a hematologic phenotype in the sense of single- or

multiple lineage cytopenia/BMF seems to be complete (Table 1).

The average age of onset for BMF is two years (range 0 to 15 years,

n=19). Spontaneous, intermittent or prolonged improvement of

cytopenia was reported in at least four patients (64–66), while four
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patients (21%) needed a HSCT (Table 1). AML developed in two

patients (11%) at the age of twelve and fifteen years, respectively (15,

67). Somatic cytogenetic or molecular alterations were unknown or

not reported. However, one case of acute megakaryoblastic

leukemia was described (15). Other cytogenetic abnormalities,

including a complex karyotype (7), a derivative chromosome 15

with translocation t(1;15) (65), a deletion of 17p13 (64) and a

deletion of 20q (64) have been reported in patients with BMF

without hematologic malignancy and consequently their

significance in disease progression and development of MDS/

AML is unclear. Growth delay and/or short stature as the most

frequent non-hematopoietic feature has been described in all but

one patient (95%). Other frequent abnormalities included

developmental delay/intellectual disability and/or neurological

abnormalities (68%), skeletal abnormalities (particularly hip

dysplasia, thoracic deformities, genu valgum and metaphyseal

dysplasia) and skin abnormalities (mainly hypopigmentation and

palmoplantar cutis laxa) at 63% each, as well as microcephaly

(42%), facial dysmorphia (37%), dental abnormalities (32%), and

osteopenia/osteoporosis (32%). Pancreas lipomatosis was reported

in five cases (26%), with four out of the five patients suffering from

exocrine pancreatic dysfunction with preserved endocrine function.

Intriguingly, while (high) myopia, astigmatism and other visual

field defects were described in six patients (32%), rare features of

retinal (rod-cone) dystrophy and other retinal abnormalities were

also identified in six patients (32%), albeit one patient developed

symptoms after HSCT (65) and another patient carried a

homozygous variant in PCARE, known to cause an autosomal

recessive form of retinitis pigmentosa (Table 1) (65). This

suggests retinal abnormalities may be part of the developing

phenotype. Due to the low number of reported patients, specific

phenotypic features need to be defined and refined over time.

Sixteen Italian patients with Shwachman-Diamond syndrome

and bi-allelic SBDS variants were screened for additional variants in

DNAJC21, EFL1, and SRP45. One of the two germline-mutated

SBDS patients with compound heterozygous SBDS variants and an

additional heterozygous DNAJC21 variant was reported to suffer

from a more severe hematologic phenotype, in particular severe

neutropenia (70). Both DNAJC21 variants identified in this study

(70), E276K and V342M, are reasonably rare in 0,32% and 0,0016%

of the gnomAD population but ensemble in-silico predictions are

contradicting or in favor of no significant impact on the

protein structure.
Digenic ADH5/ALDH2 deficiency
causes BMF through defective
formaldehyde detoxification

Formaldehyde is a ubiquitous endogenous and environmental

metabolite, which has been classified as a group I human carcinogen

by the International Agency for Research on Cancer as it may cause

nasopharyngeal cancer, lung cancer and is associated with
FIGURE 3

Schematic of the DNAJC21 transcript (NM_001012339.3) and its
protein domains with the location of all reported germline variants.
Circles represent females and squares represent males. Symbols on
the same horizontal level are individuals from the same family.
Letters within the symbols indicate individuals with compound
heterozygous genotype, while symbols without letters indicate
homozygosity for the variant. The color fill depicts different
phenotypes. The dotted line shows the location of the sole
described copy number variant. AML, acute myeloid leukemia; BMF,
bone marrow failure; ZF, zinc finger.
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development of AML (71). Specifically, it was shown that

formaldehyde exposure induces chromosomal aneuploidy, in

particular aberrations of chromosomes 5, 7, and 8, which are

frequently seen in AML (72, 73). It was also reported to induce

hematopoietic toxicity to both mature and stem/progenitor cells in

the bone marrow of mice exposed to formaldehyde by affecting

myeloid progenitor growth and survival through oxidative damage

apoptosis and dysregulation of colony stimulating factor

receptors (74).

ADH5, located in the cytoplasm, is the most widely expressed

alcohol dehydrogenase and the main formaldehyde-detoxifying

enzyme (75). It contains a catalytic and zinc-binding domain of

the alcohol dehydrogenase (Figure 4). ALDH2, a mitochondrial

enzyme oxidizing acetaldehyde to acetate, is important in ethanol

metabolism, and deficiency of this enzyme is very common in

humans, leading to facial flushing, nausea, headaches, cardiac

palpitations, and overall discomfort in response to drinking

alcohol (76). The ALDH2*2 allele, defined by the c.1510G>A

(NM_000690.4) variant (rs671), encoding an E504K amino acid

substitution, reduces enzyme activity to less than 50% in

heterozygotes and less than 4% in homozygotes in a dominant-

negative manner (76). It is common in the East Asian population

with an allele frequency of about 25% in the gnomAD (https://

gnomad.broadinstitute.org/) population. ALDH2, active mainly in

detoxifying acetaldehyde, also takes part in formaldehyde

detoxification (75).

Dingler et al. described the first seven children/young adults

with homozygous or compound heterozygous ADH5 variants and

the heterozygous ALDH2*2 allele associated with BMF and

predisposit ion to MDS/AML that is solely driven by

formaldehyde accumulation (16). A subsequent study by Oka

et al. reported seven individuals from five different families with

BMF and development of MDS/AML at young age (77). Of those,

four individuals were heterozygous and three homozygous for the

ALDH2*2 allele. The three homozygotes were reported to harbor
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more severe phenotypes including neurological deterioration and

early death (77). Because of its association with short stature and

intellectual disability, it was subsequently also called AMeD

syndrome (for Anemia, Mental retardation and Dwarfism) (10).

One male patient with a history of anemia since the age of 8 years

who developed MDS at 18 years old was diagnosed with ADH5/

ALDH2 deficiency and sensorineural hearing loss based on

concurrent compound heterozygous variants in ADGRV1 (78).

Of the 15 individuals from 13 families described so far, 8 were

compound heterozygous and seven homozygous for variants in

ADH5. Consanguinity or occurrence of de novo variants was not

reported (Table 1). Causative variants include LOF variants

c.564+1G>A (NM_000671.4), resulting in retention of intron 5

(L188fs), and the recurrent variant W322*, that has been described

in all but one individual (Table S1). Missense variants were located

within the zinc-binding domain of ADH5, namely the G311D

variant and the recurrent A278P variant found in seven patients

(Tables 1, S1 and Figure 4) (16, 77, 78). Penetrance is complete with

all patients diagnosed with either BMF or early-onset MDS/AML

and nine out of twelve patients (75%) undergoing HSCT (Table 1).

Based on the published data, MDS/AML was diagnosed in 12 out of

15 patients (80%) at an average age of 7 years (range 0 to 18 years

(n=9), Table 1, Figure 4). In eight out of eleven patients (73%) with

reported cytogenetic information, a gain of the long arm of

chromosome 1, frequently seen in Fanconi anemia (79, 80) was

described. Other recurrent cytogenetic alterations included

monosomy 7, trisomy 8 and 21p alterations (Table 1) (16, 77,

78). All patients with reported additional phenotypical data were

short of stature and displayed mild to moderate intellectual

disability. Microcephaly was described in 67% and abnormal skin

pigmentation was found in 58% of patients (Table 1). Although the

phenotype mimics Fanconi anemia, radial ray defects have not been

detected so far and chromosomal breakage tests are negative. Other

features such as retinal degeneration, facial dysmorphia, skeletal,

and endocrine abnormalities have only been described in single

individuals so that the clinical association remains unclear to date

(16, 77, 78).

Using a CRISPR-Cas9 functional screen, ADH5 was (together

with ESD and the FANC family genes) described as a top candidate

gene dramatically increasing cellular formaldehyde sensitivity when

disrupted (81). Concordantly, Adh5-/- Aldh2-/- double-deficient

mice recapitulated some of the hematopoietic phenotypes seen in

these patients such as reduced proliferation of HSPCs and loss of

differentiation (16, 77). Another group reported that Adh5-/-

deficient mice with wildtype Aldh2 are born and develop

normally, while double-deficient mice showed significantly lower

body weight, which mimics the short stature seen in humans (82).

Formaldehyde also triggers a cellular redox imbalance that can

lead to reactive oxygen species accumulation and cytotoxicity, which

may cause BMF development even in the presence of functional DNA

repair mechanisms by overwhelming the DNA-repair capacity in

HSPCs (83). Using patient-derived lymphoblasts, fibroblasts, induced

pluripotent stem cells (iPSCs), and CRISPR/Cas9-engineered cell

lines, Mu et al. were able to demonstrate that patient-derived iPSCs

were sensitive to exogenous treatment with formaldehyde, which
FIGURE 4

Schematic of the ADH5 transcript (NM_000671.4) and its protein
domains with the location of all reported germline variants. Circles
represent females and squares represent males. Symbols on the
same horizontal level are individuals from the same family. Letters
within the symbols indicate individuals with compound
heterozygous genotype, while symbols without letters indicate
homozygosity for the variant. The color fill depicts different
phenotypes. ADH, alcohol dehydrogenase; AML, acute myeloid
leukemia; BMF, bone marrow failure; MDS, myelodysplastic
syndrome.
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induced drastically defective cell expansion when stimulated into

hematopoietic differentiation and increased levels of DNA damage.

This phenotype was attenuated upon expression of ADH5 and less so

by addition of an ALDH2 activator (84). Therapies aiming to lower

endogenous formaldehyde could be a promising treatment strategy

for ADH5/ALDH2 deficiency. C1, a new small molecule acting as

agonist of ALDH2, was well tolerated and able to partially reverse the

HSPC expansion/differentiation defect in iPSCs in vitro (84). The

combination of a formaldehyde scavenger such as metformin and

glutathione precursors (for instance N-acetyl-L-cysteine) (83) may

also benefit patients with Fanconi anemia.

In whose transcriptional reprogramming during differentiation

of HSPCs may lead to acute accumulation of endogenous DNA

damage, most likely arising from formaldehyde, an obligate by-

product during transcriptional regulation (85). Further studies are

needed to determine if aldehydes are the major cause of pathology

in Fanconi anemia patients, who have functional ALDH2 and

ADH5 to mediate aldehyde metabolism.
Discussion

There may be a confounding bias for all described syndromes

by the short period of clinical observations since these syndromes

have been discovered. The likelihood of developing hematologic

malignancies and the penetrance of these diseases may be estimated

as too low since many patients are still children or young adults and

others already underwent HSCT to treat severe early-onset BMF.

Suspicion of an inherited BMF syndrome should arise when

patients are diagnosed with BMF in infancy/early-childhood (7)

and/or MDS at young age (below 40 years old) (29, 30). A positive

family history and other organ manifestations also point towards an

inherited rather than acquired BMF syndrome (2, 7, 17). Germline

BMF panel-based next-generation sequencing (NGS) is a

reasonable first-tier option (86). WES or whole-genome

sequencing (WGS) should be considered when suspicion of an

inherited BMF syndrome is high and initial panel-based results are

negative. WES covers all coding genes, however, if genes have not

been described as candidate genes at the time of the analysis, the

genetic variant causing the phenotype may be missed. Regular re-

analysis of WES, as was done in one patient with BMF and bi-allelic

DNAJC21 variants (66) should be included (87). Even if this initially

may only increase the number of variants of unknown significance

(88), these could be upgraded over time when new information such

as observation in multiple probands, segregation with disease, or

functional impact of the variant becomes available. Intragenic and

whole-gene CNVs were described in DNAJC21 (65), ERCC6L2 (24),

and MECOM (46, 48–50), so that high-density microarrays or

bioinformatic analysis of panel-based NGS/WES data have to be

incorporated (89). Non-canonical, deeply intronic or exonic

synonymous splice variants may require additional RNA

sequencing to unravel the effects on splicing and prove

pathogenicity of these unusual but not infrequent variants (89–91).
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Crucially, unrecognized inherited BMF syndromes may lead to

use of related donors carrying the same variants (29), as well as

excessive death upon HSCT, which can be reduced using tailored

conditioning regimens (92). Adapted non-myeloablative

conditioning protocols have been used successfully as

conditioning regimens in telomere biology disorders and Fanconi

anemia (93, 94). A small case series of six patients with germline

MECOM variants reported that reduced-intensity conditioning was

an effective treatment and reduced toxicity-related morbidities (95).

However, comprehensive HSCT data from patients with germline

ERCC6L2, MECOM, DNAJC21, and ADH5/ALDH2 variants are

lacking to date, including donor choice, conditioning regimens and

non-relapse morbidity and mortality.

A clear genotype-phenotype correlation has so far only been

established forMECOM variants, where the co-presentation of RUS

and hematologic disease appears to be caused by variants spanning

zinc fingers 8 and 9. Although there is indication that homozygosity

for the ALDH2*2 allele may lead to a more severe (neurological)

phenotype in patients with ADH5/ALDH2 deficiency (77), the

number of individuals is too low to draw comprehensive

conclusions at this time. The discovery of additional mechanisms

of disease and amino acid hotspots may help predict the individual,

variant-based risk of hematologic malignancies, severe BMF and

other phenotypic features.

Some data suggest clonal genetic markers of disease progression

such as (multi-hit) TP53 variants in patients with ERCC6L2

germline variants may be indicative of disease progression (24,

28–30) and given the poor prognosis of MDS/acute erythroid

leukemia in these patients, early HSCT should be performed.

Similar data have been reported for TP53 variants in other

inherited BMF syndromes (96, 97), although a clear link to

disease progression in patients with somatic TP53 variants in the

absence of other high-risk molecular or cytogenetic markers is

unclear (98). Early pre-emptive HSCT comes also with the potential

of HSCT-related mortality and morbidity so that more valid early

markers of disease progression are needed (99).

In summary, this review provides new insights into four distinct

and recently described BMF syndromes and will thereby improve

the clinical management for these patients. New data will over time

further refine these syndromes and add more pieces to the yet

unsolved puzzle of inherited BMF syndromes.
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