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Objective: To develop a contrast learning-based generative (CLG) model for the

generation of high-quality synthetic computed tomography (sCT) from low-

quality cone-beam CT (CBCT). The CLG model improves the performance of

deformable image registration (DIR).

Methods: This study included 100 post-breast-conserving patients with the pCT

images, CBCT images, and the target contours, which the physicians delineated. The

CT images were generated from CBCT images via the proposed CLG model. We

used the Sct images as the fixed images instead of the CBCT images to achieve the

multi-modality image registration accurately. The deformation vector field is applied

to propagate the target contour from the pCT to CBCT to realize the automatic

target segmentation on CBCT images. We calculate the Dice similarity coefficient

(DSC), 95%Hausdorff distance (HD95), and average surface distance (ASD) between

the prediction and reference segmentation to evaluate the proposed method.

Results: The DSC, HD95, and ASD of the target contours with the proposed

method were 0.87 ± 0.04, 4.55 ± 2.18, and 1.41 ± 0.56, respectively. Compared

with the traditional method without the synthetic CT assisted (0.86 ± 0.05, 5.17 ±

2.60, and 1.55 ± 0.72), the proposed method was outperformed, especially in the

soft tissue target, such as the tumor bed region.

Conclusion: The CLG model proposed in this study can create the high-quality sCT

from low-quality CBCT and improve the performance of DIR between the CBCT and

the pCT. The target segmentation accuracy is better than using the traditional DIR.

KEYWORDS

synthetic image, deformable image registration (DIR), breast cancer, deep learning,
radiation therapy
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1 Introduction

In image-guided radiotherapy, Cone-beam computed tomography

(CT) (CBCT) has been incorporated into the contemporary linear

accelerators (1–3). However, CBCT has low image quality due to the

small number of x-ray projections and the long acquisition time, which

impedes the following deformable image registration (DIR) procedure

(4). In adaptive radiation treatment (ART), DIR between the planning

computed tomography (pCT) and daily CBCT is required (5, 6). The

deformable vector field (DVF) generated from the DIR might help with

patient setup, contour propagation, target definition, and online dosage

computation (7). The sum of squared differences and the mean absolute

difference is employed in many traditional DIR methods to assess the

fixed and moving image registration performance (8). On the other

hand, these measurements presume that the moving and fixed image

intensities are consistent. As a result of the image intensity discrepancy,

the sum of squared difference (SSD) and Mean absolute error (MAE)

cannot be directly used for pCT-CBCT DIR (9–16).

Many studies focused on the deep learning (DL) based DIR (17–21)

Kearney et al. developed an unsupervised learning technique to register

the CT to CBCT (22). For multimodal CT-CBCT image registration, Fu

et al. presented an unsupervised DL registration network that used

directional local structural similarity and original images as input. (23).

A DL registration model was proposed by Han et al. to predict Organ at

Risk (OAR) segmentations on the CBCT based on planned CT

segmentation (24). However, the severe artifacts of CBCT greatly limit

the deformable image registration accuracy of CBCT with planning CT.

Therefore, many scholars have proposed to convert CBCT into high-

quality synthetic CT before registration. Fu et al. propose synthesizing a

high-quality CT from CBCT to reduce image artifacts and perform

intensity correction before image registration (3). The Cycle-GAN was

used in the high-quality CT generation. Although Cycle-GAN can

improve the quality of CBCT images, it does not mean that it helps to

improve the accuracy of registration. one of the more fatal drawbacks of

Cycle-GAN is that the anatomical geometry may change after the image

quality improvement. These changes include the movement,

deformation, or disappearance of anatomical structures, which bring

huge errors to the subsequent deformable image registration. Therefore,

an urgent need is to investigate a synthetic CT generation model with

anatomical geometric consistency.

This study proposes a contrast learning-based generativity (CLG)

model for synthetic CT (sCT) generation to address the above issues. The

proposed method maintains the consistency of the anatomy after image

synthesis. As a result, the synthesis images are more trustworthy than the

cycleGAN. In addition, the high-quality synthetic CT improves the

deformable image registration performance of CBCT and breast pCT.
2 Materials and methods

2.1 Data acquisition and processing

The study retrospectively included 100 patients who underwent

radiotherapy after breast-conserving surgery. The patients were

treated using a standard treatment planning process with CT

images and at least one set of CBCT images acquired during

treatment. The CT images were acquired using the Siemens
Frontiers in Oncology 02
Medical System scanner with a voxel size of 0.977 × 0.977 × 5 mm3

and a data size of 512 ×512 × 80. The CBCT was acquired using the

Varian Edge (Varian Medical Systems, Palo Alto, CA) scanner with a

voxel size of 0.977 × 0.977 × 5 mm3. Due to the difference in scanning

range and voxel size between CT and CBCT, we first rigidly aligned

the CT and resampled the voxel size to match CBCT.

In our study, a DL network generated sCT images from CBCT

images. And then, pCT was aligned with CBCT and sCT images,

respectively, using the DIR method. Next, the contours on pCT were

propagated on CBCT (sCT) images. Physicians first manually

outlined pCT and CBCT data contours (target area contours

including tumor bed area clinical target volume (CTV) 1, CTV 2,

Heart). The final contours propagated on the sCT images have a more

similar anatomy to the original CBCT, especially in soft tissues with

significant effects. The model was trained, validated, and tested using

52/7/41 patients, corresponding to 4160/560/3280 slices.
2.2 Synthetic CT generation

The image transformation problem is an untangling problem: the

separated content must be preserved between the different image

modalities. The appearance must be modified (25, 26). In most cases,

the adversarial loss produces the goal appearance, whereas circular

consistency loss is used to retain the content (27–29). However, cyclic

consistency loss assumes a bijection between two domains, which is

usually too restrictive.

In this study, to maintain consistency in content effectively, we

used the CLGmodel to generate the sCT images (30). The CLGmodel

network architecture is schematically shown in Figure 1.

The CLG model uses only one-way learning mapping. The ICBCT
was the input image, and the IsCT was the output image. Split the

generator G into the decoder Gdec and the encoder Genc to get the output

image. We employed a Resnet-based generator in particular (31). We

refer to the encoder as the generator’s first half, and the decoder

corresponds to the back half of the generator. The whole image

should have an identical structure. Therefore, we should use the

learning target of multi-layer image blocks. The feature layers were

encoded by an encoder Genc, where different layers with different spatial

locations represent different image blocks. To generate a sequence of

features, we select the L layer feature map fzlrightgL = fHl(G
l
enc(x))gL

and feed it through the two-layerMulti-layer perceptron (MLP) network

H1. The number of channels per layer was C1. The output y was encoded

into the fẑ lgL = fHl(G
l
enc (ŷ ))gL in the same way.

After getting the features via the MLP network, we introduce

contrast learning. The features of the output image become the query

samples, the input’s corresponding location features become the

positive samples, and the other input’s features become the negative

samples. The purpose of contrast learning was to make the query

sample and the positive sample signal correlate with the negative

sample to form a contrast.

The queries, positive samples, and N negative samples are fixed to

map to the Kth dimensional vector v, v+∈ RK and v−∈ RN×K,

respectively. The n-th negative value is denoted by v−n ∈ RK. Our

objective aims to link the output and the input image. The query

indicates the output image. The corresponding and non-

corresponding inputs are positive and negative, respectively. We
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normalize the vector to the unit sphere to prevent spatial collapse or

expansion. The classification problem was built up in an (N+1)-way

configuration, with the distance between the query and the other

instances scaled by the temperature of 0.07 (32, 33). The chance of

choosing a positive example among negative instances was

determined using the cross-entropy loss.

‘(v, v+, v−) = − log  
exp   (v · v

+

t )

exp   (v · v
+

t ) +oN
n=1exp   (v ·

v−n
t )

" #
(1)

Finally, we obtain the loss of multi-layer patch contrast learning:

LPatchNCE(G,H,X) = Ex∼Xo
L

l=1
o
Sl

s=1
‘(ẑ s1, z

s
1, z

S=s
1 )L (2)

LGAN(G, D, X, Y)

= Ey∼Y log  D(y) + Ex∼X log  (1

− D(G(x)))                                                   (3)

Similarly, an identity contrast loss can be obtained similarly to fix

the output image. Where z s 1 and z S\s l from the input’s first layer

feature map from the output’s first layer feature map. The adversarial

loss encourages the output to resemble the image in the target domain

in terms of appearance (26).

In summary, the total loss function of the Cut network is shown

in equation (4) below.

 Loss  = LGAN(G,D, X, Y) + lXLPatchNCE (G,H, X)

+ lYLPatchNCE (G, H, Y) (4)

where during training, we set lX = lY = 1.

The learning rate was set to 2*10-4, and the Adam optimizer was

used. The number of iterations was set to 200 epochs, and the learning

rate of the first 50 epochs remained unchanged, while the learning

rate of the rest 150 epochs decayed to 0. The model was trained and

tested on an NVIDIA 1080 GPU with 8 GB of memory with a batch

size of one. The model was based on the PyTorch framework.
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2.3 Deformable image registration

We used the DiffeoDemons (34) algorithm for the deformation

registration algorithm. The Demons-based differential homogeneous

registration algorithm solves transformations in the logarithmic

domain. The basic concept behind the approach is to represent the

current transformation as an index of the smooth velocity field V. We

use the homogeneous differential demon to quickly compute

j ∘ exp (v)=exp (V) ∘ exp (v) and then update v. The exponential

mapping in the Lie algebra (vectorspace of the velocity field) is

denoted by the symbol exp. The following equation yields the

functional energy:

E(j) = SSD (Im, If ,j) + l ‖∇j ‖2

  = Im ∘j − I2f + l ‖∇j ‖2
(5)

where l > 0. It’s worth noticing that the transformation of y’s

Jacobian matrix is ∇j . The DiffeoDemons model guarantees a

smooth displacement field at all times. Im stands for moving image

and Ihrmf stands for the fixed image.

Figure 2 shows the image registration process with two different

methods. To compare the performance of the method with and without

the incorporation of the sCT, we obtained the deformable vector field

(DVF) of IpCT - mICBCT and IpCT - IsCT by DiffeoDemons deformation

registration. The DVFs are used to warp the moving image and the

corresponding target labels to obtain the warped CBCT images

ImwCBCT, the warped sCT images IwsCT and the warped target labels.
3 Results and discussion

Figure 3 compared the target segmentation performance between

the fixed image using the CBCT image and sCT image. The red, blue,

and green contours represent the target area on the IwCBCT image and

IwsCT image. After using sCT images for fixed image alignment, the

target contours are better than the original CBCT images for fixed
FIGURE 1

The CLG model network architecture.
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image alignment. The proposed method can alleviate the motion and

scatter artifacts in the patient’s breast CBCT images, improving the

performance of the DIR. In the original CBCT, the image contrast of

the soft tissues (tumor bed, CTV) was poor and impeded the accurate

DIR. Figure 4 shows the soft tissue comparison of CBCT, sCT, and

pCT images at the same window width and position, with the red

contours indicating the tumor bed area. The sCT improves the image

quality and spatial uniformity while keeping the imaging anatomy

unchanged, resembling the tissue information distribution of pCT

images. The proposed CLG model can greatly improve the tissue

contrast of CBCT images. Thus, the soft tissue segmentation

performance can be achieved more accurately.

The first row in Figure 5 shows the pCT, CBCT, warped CBCT,

and warped sCT images displayed in the same window for a single

patient, and the second row shows the difference between CBCT,

warped CBCT and warped sCT images and pCT images. Since

thepatient had significant weight loss, tumor shrinkage, and the

influence of respiratory factors during the fractionated treatment,

the difference between the pCT and the CBCT is obvious, especially in

the lungs. In contrast, the difference between wCBCT-pCT and

wsCT-pCT images is significantly reduced, which indicates that the

artifact in the CBCT was reduced. The black contour lines represent

CTV1, CTV2, and heart target areas in the different maps. The
Frontiers in Oncology 04
comparison reveals that the difference between westand pCT

images in the target area region is smaller than between wCBCT

and pCT images. Furthermore, in the soft tissue region, such as the

tumor bed, the image intensity difference between the registration

synthetic computed tomography and pCT is smaller, which indicates

that the sCT generated by the CLG model proposed in this paper can

improve the image contrast of the soft tissue. Therefore, the sCT’s

image quality is comparable to that of the pCT and benefits the

performance of the DIR.

The results of the Dice similarity coefficient (DSC), 95 percent

Hausdorff distance (HD95), and average surface distance (ASD) on

the various techniques are shown in Table 1 and Figure 6. Compared

with the traditional method using the CBCT image as the fixed image,

the proposed method clearly shows that incorporating the sCT image

in the DIR achieved a better result in DSC, HD95, and ASD. For

example, the DSC value of pCT to sCT in the CTV1 (tumor bed) is

0.81 ± 0.06, while the DSC value of pCT to CBCT is only 0.79 ± 0.08.

Breast cancer radiation therapy is based on the pCT for treatment

planning. However, the target area and anatomy will change with the

treatment process. In addition, positional errors and patient

respiration can result in underdose to the target area and increased

dose to normal organs. ART uses daily CBCT images to analyze

changes in the target area and anatomy. Correction of anatomical
FIGURE 3

Comparison of object segmentation performance of fixed image using CBCT image and sCT image.
FIGURE 2

The image registration process with two different methods.
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changes is achieved by the DIR method. The DIR between the CBCT

and pCT image is a multimodal DIR problem. The multimodal DIR is

challenging because establishing effective similarity measures between

regions or features of multimodal images is difficult due to the

nonlinear variation of grayscale features. To this end, this study

achieves accurate DIR of pCT and fractional CBCT of breast cancer

and accurate propagation of the corresponding target region contours

by converting the multimodal DIR problem into a unimodal problem.

Traditional image synthesis methods usually use cycleGAN.

cycleGAN is good at suppressing artifacts, but it does not mean

that the generated images are reliable. The anatomy changes before

and after the improvement of CBCT image quality. These changes

include shifting, distortion, or disappearance of the target area, which

brings huge errors to the subsequent automatic target area

localization. These changes include the movement, distortion, or

disappearance of the target area, which can lead to significant

errors in subsequent DIR. We proposed a multi-level contrast

learning-based approach for generating quantitative CBCT images
Frontiers in Oncology 05
with anatomical geometric consistency to improve the quality of

CBCT images. Based on the generative adversarial network, we

introduce a contrast-loss function to ensure the consistency of the

anatomical structure. The proposed loss function discards the cyclic

consistency loss function in cycleGAN and avoids the strong mapping

relationship brought by the cyclic consistency loss function. As a

result, it not only improves the computational speed but also better in

image generation details. The advantage of our method is that it

maintains consistent anatomical geometry before and after image

generation. As a result, the generated images are more trustworthy.

This study used the CLG model to generate high-quality sCT

from CBCT. A patch loss was proposed based on contrast learning to

calculate the similarity between patches, which enables learning the

CT value distribution of pCT without changing the anatomical

structure of CBCT images. The proposed CLG model can alleviate

the effects of low contrast, high noise, and artifact contamination in

soft tissues. We performed multimodal pCT-CBCT DIR and

unimodal pCT-sCT DIR by the DiffeoDemons algorithm. The
FIGURE 5

The pCT, CBCT, warped CBCT, and warped sCT images displayed in the same window for a single patient, and the second row shows the difference
between CBCT, warped CBCT, and warped sCT images and pCT images.
FIGURE 4

Comparison of soft tissue from CBCT, sCT, and pCT images with same window width and location, with tumor bed areas represented by the red
contour line.
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target segmentation results show that the unimodal pCT-sCT

registration is significantly better than multimodal pCT-CBCT

registration. In this paper, only the DiffeoDemons algorithm was

used to perform DIR; however, many other DIR algorithms can be

explored for potential performance improvements (35).

Although the proposed framework produces accurate results by

incorporating the sCT, further refinements may be made. Firstly, we

adopted the patch-based unsupervised convolutional, which is

computationally intensive. The training step may increase efficiency

by balancing network breadth, depth, and resolution. Second, more

training images may be needed to ensure the findings’ correctness.

We will expand the datasets with a wide range of anatomic variants

and from other CT scanners in the future to improve the network’s

resilience. This study used 8000 CT slices from 100 patients to

evaluate the model. The outcomes are deemed clinically

satisfactory. The prediction accuracy will increase, and the network

will avoid potential overfitting when the training dataset is expanded.
Frontiers in Oncology 06
4 Conclusion

This work proposed a CLGmodel to create high-quality sCT from

CBCT. Instead of the CBCT images with severe artifacts, the pCT

performs DIR with high-quality sCT images for the target contour

propagation. The results showed that incorporating the sCT Image

can improve the performance of DIR between pCT and CBCT,

especially in soft tissues. Furthermore, the proposed method is

quite general and can be applied to other organs, such as the

abdomen and prostate.
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FIGURE 6

The results of the Dice similarity coefficient (DSC), 95 percent Hausdorff distance (HD95), and average surface distance (ASD) on the various techniques.
TABLE 1 The results of the Dice similarity coefficient (DSC), 95 percent Hausdorff distance (HD95), and average surface distance (ASD) on the various techniques.

pCT-sCT

pCT-CBCT DSC HD95(mm) ASD(mm) DSC HD95(mm) ASD(mm)

CTV1 0.79 ± 0.08 5.45 ± 3.38 1.61 ± 0.82 0.81 ± 0.06 4.39 ± 2.43 1.38 ± 0.60

CTV2 0.91 ± 0.02 3.98 ± 1.82 1.09 ± 0.39 0.92 ± 0.02 3.47 ± 1.47 0.98 ± 0.33

Heart 0.89 ± 0.05 6.07 ± 2.59 1.94 ± 0.95 0.89 ± 0.04 5.80 ± 2.63 1.88 ± 0.76

Average 0.86 ± 0.05 5.17 ± 2.60 1.55 ± 0.72 0.87 ± 0.04 4.55 ± 2.18 1.41 ± 0.56
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