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Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases

(TIMPs) play a vital role in the pathogenesis of multiple myeloma (MM),

especially for tumor invasion and osteolytic osteopathy. By breaking down

extracellular matrix (ECM) components and releasing the proteins composing

the ECM and growth factors, as well as their receptors, MMPs affect tissue

integrity and promote cancer cell invasion and metastasis. A vital

pathophysiological characteristic of MM is the progress of osteolytic lesions,

which are brought on by interactions between myeloma cells and the bone

marrow microenvironment. MMPs, certainly, are one of the fundamental causes

of myeloma bone disease due to their ability to degrade various types of

collagens. TIMPs, as important regulators of MMP hydrolysis or activation, also

participate in the occurrence and evolution of MM and the formation of bone

disease. This review focuses on the role of MMP-1, MMP-2, MMP-7, MMP-9,

MMP-13, MMP-14, and MMP-15 and the four types of TIMPs in the invasion of

myeloma cells, angiogenesis, osteolytic osteopathy, to offer some novel

perspectives on the clinical diagnostics and therapeutics of MM.

KEYWORDS
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1 Introduction

Abnormal plasma cell clones distinguish MM, the second most common hematologic

malignancy after non-Hodgkin’s lymphoma. The pre-disease stage is often asymptomatic

but exhibits genetic abnormalities, including hyperdiploidy and translocations involving

immunoglobulin heavy chains. This manifests as either monoclonal gammopathy of

undetermined significance (MGUS) or smoldering multiple myeloma (SMM) (1). As the

disease progresses, clonal proliferation of malignant plasma cells (PCs) in the bone marrow

(BM) leads to anemia, myelosuppression, and bone destruction, as well as harm to the
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kidneys and other organs due to hyperglobulinemia (2). The

initiation of extramedullary disease and bone destruction is based

on that MM cells stop responding to the BM’s growth and survival

signals and migrate into the peripheral blood (3). Malignant cell

migration and bone degeneration are both critically dependent on

MMPs. In 1962, researchers discovered the first MMP from the tail

of a tadpole, which can degrade collagen. In addition to the ability of

MMPs to remodel the ECM, MMPs have been shown in recent

years to play biological roles in cell signaling, immunological

function, and transcriptional regulation (4). They function as

regulators of tumor and host interactions because they can

change the activity of several cytokines and growth factors (5).

In recent decades, there have been a considerable number of

studies on the role of MMPs in malignant tumors, but the majority

of previous research mainly focused on the association of MMPs

and solid tumor invasion, metastasis and angiogenesis,

inflammatory response, and so on, whereas studies on the link

between hematological malignancies and MMPs only account for a

small part. Here, we mainly review the structures and functions of

MMPs and TIMPs, what is more important, the role of MMPs and

TIMPs in the progression of MM and the latest advances will

be emphasized.
2 The structure and function of MMPs
and TIMPs

The human MMP family consists of 23 members, each of which

exhibits a variety of domains and architectures (Supplementary

Figure 1). According to its structure, they are classified as archetypal

MMPs, gelatinases, matrilysins, convertase-activable MMPs,

membrane-type MMPs (MT-MMPs), and MMP-23B (4, 6).

MMPs are generally classified into collagenases, gelatinases,

stromelysin, matrilysin, membrane-type MMPs, and other MMPs

based on their substrates and functions (7–9). Collagenases (MMP-

1, MMP-8, MMP-13, and MMP-18) cleave interstitial collagens

(types I, II, and III), as well as type IV collagen and type XI collagen

(10–13). Additionally, they can degrade various other extracellular

matrix (ECM) molecules and non-ECMmolecules (12). Gelatinases

(MMP-2 and MMP-9) cleave gelatin because of their specific three

fibronectin repeats and also degrade ECM (6). Matrilysins (MMP-7

and MMP-26) are unique as they lack a hemopexin domain

common to other MMPs. They can cleave both collagen and

gelatin in vitro (4). Stromelysins (MMP-3, MMP-10, MMP-11)

and collagenases have similar molecular structural domains, but

stromelysins can’t cleave interstitial collagen (4). MT-MMPs

comprise a transmembrane domain or glycolphosphatidyl inositol

(GPI) anchored proteins (6). The pro-domain of MT-MMPs is

processed to activate the enzyme intracellularly. They are further

directed to the cell surface by virtue of its membrane anchoring

domain (14, 15). The six subtypes can be divided into two groups

according to their structures: MMP-14, MMP-15, MMP-16, and

MMP-24contain type I transmembrane proteins. On the other

hand, MMP-17 and MMP-25 have GPI-anchored proteins

(Supplementary Figure 1). There are seven MMPs (MMP-12, -19,
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-20, -21,-23 -27, -28) that are not classified in the above categories

because of their divergence in sequence and substrate

specificity (11).

The four TIMPs show differences in their glycosylation degree,

however, mammalian TIMPs show fundamental structural

similarities, which fold to constitute a wedge-shaped appearance

made up of two major domains (15, 16). Each domain mediates a

separate function, with the first having an N-terminal domain of

around 125 amino acids and the second having a C-terminal

domain of about 65 amino acids (17, 18). The N-terminal

domain can form a structure that interacts with the catalytic site

of the metalloproteinase, which is essential to inhibit the activity of

the metalloproteinase (19). Instead of inhibiting metalloproteinases,

the TIMPs’ C-terminal domain primarily mediates their

interactions with other proteins (16). The fundamental structure

of TIMPs determines their classical function, which is to inhibit

MMPs and other related enzymes, such as the disintegrin and

metalloproteinases (ADAMs) and ADAMs with thrombospondin

motifs (ADAMTSs) (20). Some evidence has shown that ADAM-9

and ADAMTS-9 are aberrantly expressed in malignant plasma cells.

The expression of ADAM23 is associated with poor prognosis.

Moreover, the cleavage products of ADAM10 and ADAM17, the

C-X3-C motif chemokine ligand 1 (CX3CL1)/fractalkine, play a

role in inflammation and angiogenesis within the tumor

microenvironment. CX3CL1 exhibits elevated levels in the bone

marrow of MM patients and represents a novel participant in the

MM microenvironment involved in MM-induced angiogenesis

(21–23).
3 The role of MMPs in MM

It is well known that ECM is a critical component for maintaining

tissue and organ structure and function, playing an essential role in

the survival of organisms. Meanwhile, changes in ECM composition

and structure can lead to the development of many diseases,

especially in the context of tumor initiation and progression, where

ECM alterations are involved in many critical steps of tumor

metastasis (24). MMPs are expressed in a variety of tissues in the

normal human body and are widely recognized for their proteolytic

function, but subsequently, other functions of MMPs have gradually

been discovered and their role in MM has also been studied. In

addition to their expression in normal tissues, MMPs are

pathologically expressed in the MM BM microenvironment and are

involved in the initiation and progression of MM through multiple

pathways; these MMPs include MMP-1, MMP-2, MMP-7, MMP-9,

MMP-13, MMP-14 and MMP-15 (Supplementary Figure 2).
3.1 MMP-1 in MM

MMP-1 is one of the prototypical MMPs and is expressed in a

wide variety of tissues in the human body, including the liver,

kidney, intestine, stomach, placenta, bladder, and pancreas, in

pathological conditions, it increases the bioavailability of insulin-
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like growth factor-1 (IGF-1), promotes cell proliferation and

migration, epithelial regeneration, and inflammation, and has a

proteolytic activity that degrades physical barriers and promotes

cancer progression (25). Previous research suggested that MMP-1

stimulates protease-activated receptor (PAR) 1 by cleaving the same

Arg-Ser link that thrombins cleave, which encourages breast cancer

cell proliferation and invasion (26).

The primary structural protein of bone is collagen I, and the

onset of bone resorption depends on the degradation of this protein.

Type I collagen is known to be degraded by MMP-1 at neutral pH

levels. Results from an earlier study showed that MM patients have

intrinsically high levels of MMP1, and co-culturing them with

RPMI8226 cells makes this phenomenon more obvious (27).

However, the exact mechanism by which MMP-1 contributes to

bone deterioration is still unknown. Another study (28) established

that osteoblasts induced myeloma cells to release MMP-1,

urokinase plasminogen activator (uPA), and hepatocyte growth

factor (HGF); conversely, contact with myeloma cells caused

osteoblasts to produce MMP-1 in high amounts and the

stimulation of osteoblastic MMP-1 expression by myeloma cells

was driven by p38. Additionally, the contact between myeloma cells

and osteoblasts can significantly increase the ability of myeloma

cells to invade and migrate. This indicates that the interaction

between MMP-1 and p38/MAPK plays a crucial role in modulating

the interplay between myeloma cells and BMSCs. The p38/MAPK

pathway is a significant signaling cascade that participates in

various cellular activities, such as growth, proliferation,

differentiation, migration, and apoptosis (29, 30). In particular,

the activation of the p38/MAPK pathway in myeloma cells increases

their invasive and migratory abilities when they come into contact

with BMSCs. In summary, the relationship between MMP-1 and

p38/MAPK is critical for the investigation of the mechanisms of

MM progression.
3.2 MMP-2 and MMP-9 in MM

MMP-2 and MMP-9 also referred to as gelatinase-A and

gelatinase-B, are extensively expressed in almost all human

tissues. Moreover, their functional architecture includes a

fibronectin section within the catalytic domain (31). This extra

fibronectin domain can be bound to and processed by denatured

collagen or gelatine. These enzymes, according to research, not only

degrade various ECM molecules, such as Collagen types I, IV, V,

VII, X, IX, aggrecan, fibronectin, laminin, vitronectin, and elastin,

but also break down non-ECM molecules like pro-TNF-a, pro-IL-
b, pro-IL-8, TGF-b, and monocyte chemoattractant protein-3 (32).

Gelatinases are involved in the onset and progression of a variety of

human diseases, the most widely studied of these is diabetes mellitus

(33, 34). In addition, gelatinase has been reported to be one of the

key ECM-degrading enzymes involved in tumor invasion and

metastasis (35). Based on this, we will conduct a more

comprehensive analysis and discussion on the exact roles of

MMP-2 and MMP-9 in multiple myeloma, as well as their

potential clinical implications.
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There have been numerous studies on the expression of MMP-2

and MMP-9 in MM patients during the past two decades. Vacca

et al. (36) showed that active MM patients express significantly

higher levels of MMP-2 mRNA and protein compared to inactive

MM and MGUS patients by in situ hybridizations of BM PCs and

gelatin-zymography, while MMP-9 expression was similar in all

groups. Furthermore, immunoassays of plasma cell extracts showed

that levels of angiogenic basic fibroblast growth factor (FGF) - 2

were significantly higher in active MM patients than in inactive MM

patients and MGUS patients. These findings suggest that the

angiogenic and invasive potential of MM is partially dependent

on FGF-2 and MMP-2 production. In addition, Marquez-Curtis

et al. (37) established Long-term Marrow Cultures (LTMCs) system

from acute myelogenous leukemia (AML) patients and normal

donors BM cells. The LTMCs system contains multiple BM cells,

including bone marrow stromal cells (BMSCs) and progenitor cells,

and can maintain the growth and differentiation of various BM cells

in vitro for a long period. Supernatants from this system were

collected for enzyme spectrum analysis, and analysis of normal

LTMC culture results showed that proMMP-9 concentration

gradually decreased with the increase of culture time, reaching the

lowest level by the 4 ± 5th week, while proMMP-2 concentration

gradually increased with the increase of culture time. However,

compared with normal LTMCs, AML LTMCs displayed higher

levels of proMMP-9. Zdzisińska et al. (27) co-cultured RPMI8226

cells with BMSCs obtained from MM patients and healthy controls,

and found that MM patient-derived BMSCs produced significantly

higher levels of MMP-2 compared to BMSCs from healthy controls,

while RPMI8226 cells alone did not produce detectable levels of

MMP-2. Van et al. (38) established an MM mouse model to mimic

the growth and progression of human multiple myeloma by

transplanting 5T33MM cells into mice, and their study found that

5T33MM cells secreted MMP-9 in vivo. Specifically, upon injection

of 5T33MMvt cells into immature mice, MMP-9 secretion was

upregulated in MM cells isolated from the BM (5T33MMvt-vv)

during tumor development. However, when these cells were re-

cultivated in vitro, MMP-9 production declined and was eventually

eliminated, suggesting that the production of MMP-9 was

controlled by the BM microenvironment. Notably, in vitro,

interaction of 5T33MM cells with BM endothelial cells resulted in

upregulation of MMP-9 in the 5T33MM cells. These studies have

shown that although MMP-2 and MMP-9 share similar structures

and general functions, their expression in MM is vastly different. In

MM, MMP-2 is mainly produced by BMSCs, whereas MMP-9 is

primarily produced by malignant PCs, and its production is

regulated by the BM microenvironment (27, 38).

3.2.1 MMP-2 and MMP-9 in myeloma
bone disease

The mechanism of bone destruction induced by myeloma is

that the increased activity of osteoclasts leads to excessive bone

resorption, but there is no corresponding increase in osteogenesis,

and thus bone formation is weakened (39). Gelatinases (MMP-2

and MMP-9) can combine with a variety of substrates such as

collagens type I and IV, procollagen type II, etc (40), among them,
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collagen type I constitutes the bone collagen and not only provides a

structural site for osteocalcin but also combines with non-

collagenous proteins such as osteocalcin to form a network

scaffold that provides essential conditions for bone mineralization

(41), thus gelatinase is very significant for the progression of

myeloma bone disease.

Sfiridaki et al. (42) confirmed that MMP-9 serum levels were

considerably lower in MM patients compared to healthy controls,

and according to the Durie Salmon stage, the average serum

concentration of MMP-9 in the stage II patients was significantly

higher than that in the stage I patients. Stage I MM patients are

characterized by a hemoglobin level over 100g/L, normal serum

calcium levels (≤3.0mmol/L or 12mg/dL), normal bone structure or

solitary plasmacytoma on X-ray, low M protein levels (IgG<50g/L,

IgA<30g/L, Bence Jones protein<4g/24h urine), and tumor cell

count less than 0.6×1012/m2 body surface area. Stage II patients

with the progressive disease have a tumor cell count of

approximately 0.6 to 1.2 × 1012/m2 body surface area and develop

osteolytic lesions (43). Moreover, Sfiridaki et al. (42) observed that

plasma cell infiltration was positively correlated with bone

resorption marker N-telopeptide (NTx) level and serum MMP-9.

Notably, the average serum concentration of MMP-9 in stage I

myeloma patients was lower than that in healthy controls, while it

was higher in stage II patients compared to those in stage I. This

difference may arise from the fact that MMP-9 in the serum of

healthy individuals is primarily derived from circulating leukocytes.

However, in stage I patients, the growth of normal blood cells is

inhibited due to the proliferation of malignant plasma cells, leading

to a decrease in MMP-9 levels. As the disease progresses, malignant

plasma cells continue to proliferate and independently produce

MMP-9. Consequently, stage II patients exhibit higher levels of

MMP-9 than stage I patients.

3.2.2 MMP-2 and MMP-9 in angiogenesis
and metastasis

Due to the growth disorder of tumor cells and the tendency of

distant invasion, the dynamic nature, and dysregulated growth of

the tumor, the steady state of ECM is destroyed at the biochemical,

biological, and structural levels (24). MMP is one of the major

matrix-degrading enzymes, which can impact the overall integrity

of the ECM by cleaving ECM and releasing cytokines, growth

factors, and their receptors that bind to the cell surface (44, 45).

MMP-2 and MMP-9 promote invasion by triggering the

degradation of gelatin and type IV, V, XI, and XVI collagens

which are vital for cellular invasion (25).

Angiogenesis is a crucial step in the development of cancer

because tumors need a sufficient blood supply to meet the high

demand for energy and nutrients for their multiplication (46). In

the BM microenvironment of MM patients, microvessel density

(MVD), endothelial activity, capillary permeability, as well as

perfusion are enhanced, and the increase in MVD is triggered by

oncogene-mediated expression and secretion of cytokines and

proangiogenic growth factors (47). Studies on circulating PCs in

MM have shown that higher BM-MVD correlates with the presence

of circulating PCs but not with the rate of PC infiltration in the BM,
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implying that angiogenesis may accelerate PC proliferation and

migration into the peripheral circulation (48).

Lamanuzzi et al. (49) found that the levels of BM and circulating

thrombopoietin (TPO) in MM patients at different stages of

progression were higher than those in MGUS/SMM patients, and

both endothelial cells (MGECs) fromMGUS patients and endothelial

cells (MMECs) from MM patients expressed TPO receptors.

Exposure to TPO in vitro increased the release of MMP-9 and

MMP-2 in MGECs, as well as the release of MMP-2 in MMECs.

Moreover, TPO was found to influence the balance between

angiogenic and anti-angiogenic factors in the BM of MM and

trigger angiogenesis. Additionally, several growth factors that

influence angiogenesis, such as transforming growth factor- b
(TGF-b) and vascular endothelial growth factor (VEGF) are

exposed after the ECM is degraded by MMP-2 and MMP-9 (50).

TGF-b, belonging to the transforming growth factor superfamily,

plays different roles in a variety of biological processes and is

considered a multifunctional cytokine (51). TGF-b forms a

complex with latent-associated peptide (LAP), which renders TGF-

b biologically inactive and in a latent state. The biological activity of

TGF-b is only displayed when it is released from the complex.

Therefore, this complex serves as a critical protective mechanism

for cells, ensuring that TGF-b is only activated when needed (52).

MMP-2 andMT1-MMP can activate TGF-b by releasing it from LAP

(53, 54). Moreover, the TGF-b-LAP complex remains bound to the

ECM by interacting with TGF-b binding protein (LTBP). MMP-9

can cleave soluble LTBP as well as the ECM-bound LTBP to activate

TGF-b, but MMP-2 can only cleave soluble LTBP (55). MMP-2 and

MMP-9 are elevated in angiogenic lesions because they can also

activate VEGF, promoting vascular permeability and angiogenesis

(56). Moreover, in vitro studies have shown that MMP-9 can increase

the release of VEGF in normal pancreatic cells. Conversely, treatment

with MMP inhibitors or knockdown ofMMP-9 in cells was found to

reduce angiogenesis (56).

MMPs, on the other hand, may inhibit angiogenesis. MMP-2

and MMP-9, in particular, aid in the digestion of plasminogen and

the release of angiostatin, which increases tumor cell apoptosis, and

MMP-9 also breaks down collagen XVIII to produce endostatin,

which inhibits angiogenesis (25).
3.3 MMP-7 in MM

In its physiological state, MMP-7 is mainly expressed in the

human reproductive system, salivary glands, and prostate (57).

Previous research has demonstrated that MMP-7 promotes in

vivo osteolysis and is differently expressed in the tumor-bone

microenvironment in breast and prostate cancer (58, 59). In MM,

Barillé et al. (60) discovered that MMP-7 was able to stimulate

BMSCs to produce MMP-2, which can degrade collagen I to

promote bone absorption. Later, research by Thioloy et al. (58)

demonstrated that MMP-7 produced from osteoclasts greatly aided

tumor growth and tumor-induced osteolysis. All of their findings

point to the possibility that blocking MMP activity might be a

potential therapeutic approach for MM.
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Nevertheless, another study soon after reached a completely

different conclusion. In the study by Lwin et al. (61), a previously

unknown role for MMP-7 in the pathogenesis of myeloma was

discovered. The study found that MMP-7-deficient myeloma-

bearing mice had a significantly higher tumor load and osteolytic

bone disease compared to their wild-type counterparts, and clinical

evidence supported the in vivo murine myeloma studies as well,

which demonstrated a marked decrease in MMP-7 activity observed

in MM patients. According to previous findings, MMP-7 is

abundantly expressed by osteoclasts and able to cleave receptor

activator for nuclear factor-kB (RANKL) expressed by osteoblasts

can activate osteoclasts to a soluble active form (59). However, the

data from Lwin et al.’s investigation indicate that there was no

discernible change in RANKL levels between myeloma-bearing

mice lacking MMP-7 and the wild-type control. Interestingly,

they found an increase in myeloma cell viability by co-culturing

with 2T3 pre-osteoblasts, whereas overexpression of MMP-7 in pre-

osteoblasts suppressed this phenomenon (61). It follows that the

promotion of osteolytic bone disease by loss of host-derived MMP-

7 is not determined by a single mechanism.

The above study implies that rather than exerting a direct

antitumor effect, MMP-7 achieves either a tumor-promoting or

an inhibitory effect through a variety of complex mechanisms in the

specific tumor microenvironment. Furthermore, interactions

between MMP-7 and other signaling molecules or proteins might

differ across studies, contributing to contrasting conclusions.
3.4 MMP-13 in MM

MMP-13 is predominantly expressed in the lung, skin, prostate,

small intestine, breast, testis, and bladder in normal humans, but

more importantly, it is widely expressed in the mesenchymal stromal

cell (MSC) lineage, including chondrocytes, osteoblasts, and

osteocytes; however, osteoclasts do not appear to express MMP-13

(57, 62). To date, MMP-13 participates in the progress of MMmainly

through its proteolytic activity and catalytic activity (62, 63). Many of

the important functional roles of MMP-13 have been directly

connected to its capacity to breakdown interstitial collagen which is

a critical structural component of all connective tissues, including

bone, and other matrix-associated targets (64, 65). However, Fu et al.

(63) demonstrate that MMP-13 expression is induced by IL-6-

mediated interactions between MM and BMSC and acts as a

potent osteoclastogenic factor that can encourage the production of

multinucleated, bone-resorbing osteoclasts. Different from the

previous mechanism, MMP-13 exerts its pro-osteoclastogenic

effects without a requirement for proteolytic activity by acting as a

secretagogue inducing DC-STAMP, which is an important fusogenic

factor whose absence impairs osteoclasts formation and function

(63). Myeloma-bone interaction is a vicious loop that enhances the

bioavailability of cytokines and growth hormones, which promote

tumor growth and increase therapeutic resistance. Surprisingly,

soluble factor analysis from MMP-13-null mice revealed decreased

bioavailability of various osteoclastogenic factors of MSCs including

CXCL7 which is capable to promote the recruitment and formation

of osteoclast precursors. Therefore, CXCL7 can be regarded as a new
Frontiers in Oncology 05
MMP-13 substrate and osteoclast production regulator. Moreover,

this effect is determined by MMP-13 catalytic activity rather than

proteolytic activity since the selective inhibitor of MMP-13 could

obviously prolong overall survival in MM-bearing mice (62, 66).
3.5 MT-MMPs in MM

MT-MMPs are expressed almost in various tissues of the human

urinary, reproductive, circulatory, and digestive systems in

physiological status (57). MT-MMPs are a special subtype that can

undergo pericellular proteolysis, which is considered an essential

phase in the restructuring of paracancerous tissues (67). Among MT-

MMPs, it has been reported that MT-MMP1 and MT-MMP2, also

known as MMP14 and MMP-15, are mainly involved in MM

progression (68–70). According to some research, MT1-MMP

inhibits macrophage invasion by hydrolyzing ECM elements and

cell surface chemicals and by triggering signal transduction pathways

that affect motility and energy consumption (71). Several ECM

proteins, including gelatin, fibronectin, laminin, and fibrillary

collagens, are degraded by MT1-MMP and MT2-MMP, which can

activate the pro-MMP2 on the cell surface as well (67, 72, 73).

MT1-MMP(MMP-14), the first membrane-type MMP

discovered, was identified in 1994 as an activator of pro-MMP-2

(74). In MM, MMP-T1 has been confirmed to be expressed by

malignant PCs and be conducive to CXCL12 promoting the invasion

of myeloma cells via matrigel-reconstituted basal membranes and

type I collagen gels (68). Several years later, Shimizu-Hirota et al. (71)

identified in addition to acting as an ECM-degrading enzyme, MT-

MMP1 also unexpectedly regulates inflammatory responses. They

found that MT1-MMP–/–macrophages produce excessive chemokine

and cytokine responses to in vitro and in vivo immune stimuli. These

researches prove that the role of MT-MMP1 in CXCL-12 promoting

MM cells to invade the basement membrane may be related to

macrophage immune response.

MT2-MMP (MMP-15), which shares 73.9% of its overall

similarity with MT1-MMP, was initially identified from the human

lung cDNA library (67, 75). It has been demonstrated that the human

fibrosarcoma cell HT1080 expresses MT2-MMP. Moreover, it was

shown that the migration and invasion of cancer cells were decreased

following siRNA induction, which inhibited the endogenous

expression of MT2-MMP (67). In comparison to B cell lines and

other normal peripheral blood or BM-derived cells, the expression of

MT2-MMP is markedly higher in MM cells, according to a recent

study (70). When MT2-MMP was inhibited in U266 cells utilizing

siRNA technology, it turned out to be the case that MT2-MMP

siRNA considerably reduced its adhesion, invasion, migration, and

proliferation capabilities (70). Taken together, the studies discussed

above suggest that MT2-MMP may serve as a viable biomarker for

both diagnosing and treating MM.
4 The role of TIMPs in MM

TIMPs have been found to regulate processes such as cell

function, angiogenesis, apoptosis, cell differentiation, growth, and
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migration through both metalloproteinase-dependent and

metalloproteinase-independent mechanisms (18).
4.1 TIMP-1 in MM

TIMP1 was first discovered and defined in 1972, which

constitutively expresses in many mammalian tissues (16, 76).

Nowadays TIMP1 has been found in a lot of tissues, including

the heart, brain, colon, arteries, liver, kidneys, lungs, bladder,

breasts, skin, lymph nodes, ovaries, uterus, prostate, and testes

(57). Proinflammatory cytokines such as tumor necrosis factor-

alpha (TNF-a) and interleukin-1beta(IL-1b) can increase the

production of TIMP1 mRNA (77). TIMP1 has a certain

correlation with cell migration. For example, TIMP1 regulates the

MMP-mediated degradation of vascular endothelial cadherin (VE-

cadherin) at intercellular junctions and thereby inhibits

microvascular endothelial cell migration (78). In addition, TIMP1

seemed to mediate bronchiole epithelial cell migration after injury

by inhibiting the MMP7-dependent cleavage of syndecan-1, a

heparan sulfate glycoprotein, whose shedding is associated with

increased cell migration (79, 80). TIMP-1 inhibits many types of

MMPs, including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, and

MMP-9, it is worth mentioning that it exhibits a high binding

affinity to both pro-MMP-9 and active MMP-9 and has been seen as

the most effective inhibitor of MMP-7 in four TIMP families (57,

81). Of note, significantly elevated TIMPI levels were consistently

found in both mice and patients with MM bone disease, while

MMP-7 levels decreased (61). In addition, it has been observed that

human MSCs are capable of secreting TIMP-1, which aids in

reducing the levels of MMP-9 produced by MM cells and

consequently prevents their migration (82). Furthermore,

interactions between TIMP-1 and the hemopexin domain of pro-

MMP-9 lead to the formation of a compound that hinders MMP-9

activation, which in turn inhibits the production of MMP-9 (83).

These phenomena also indicate that TIMP1 has the potential to be a

novel therapeutic target for MM and osteolytic bone disease.
4.2 TIMP-2 in MM

The cloning and sequencing of TIMP-2 were initially reported in

1990, wherein the cDNA library of A2058 human melanoma cells

was utilized for this purpose (84). More importantly, in 1991, it was

demonstrated that TIMP-2 functions as a potent inhibitor of

collagenase activity by forming a stable complex with a 1:1 molar

ratio between TIMP-2 and the enzyme (85). The lymph nodes, brain,

heart, arteries, colon, kidneys, liver, breasts, ovaries, prostate, and

testes are among the tissues that express TIMP-2 (57). Previous

studies (57, 86) have shown that TIMP-2 also regulates MT1-MMP,

MMP-2, and MMP-9 activity. Furthermore, a recent study has

confirmed a correlation between lower expression of TIMP-2 and/

or higher expression of MMP-9 in colon cancer tissues and poorer

overall survival. Additionally, both in vitro and in vivo experiments

have shown that TIMP-2 efficiently prevents the invasion and

migration of HCT 116 cells through the regulation of MMP-9 (87).
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In non-small cell lung cancer(NSCLC), TIMP-2, as a protective

factor, is up-regulated and related to the prognosis (88). A recent

study has confirmed that miR-483-5p exerts a tumorigenic effect in

MM by targeting TIMP-2, leading to its attenuation in MM cells,

which in turn promotes cell proliferation and inhibits apoptosis,

thereby facilitating MM progression (89).
4.3 TIMP-3 in MM

TIMP-3 was cloned in chickens and humans in 1992 and 1994,

respectively (90–92). TIMP-3 expression has been detected in various

tissues, including the brain, heart, colon, kidneys, lungs, liver, breasts,

ovaries, prostate, and testes (57). Mechanistically, TIMP-3 has been

shown to function as a potent activator of apoptotic pathways by

inhibiting the release of death receptors like Fas from the cell surface,

which is mediated by its N-terminal domain, thereby promoting the

cleavage and activation of downstream apoptotic signaling molecules

(93). Given that TIMP-3 is not secreted like the other three TIMP

families but rather exists in the matrix, it is not unexpected that

TIMP3 can affect ECM-cell signaling mediated focal adhesion kinase

(FAK) and fibronectin (FN) (94). TIMP-3 is associated with a variety

of cancers, including kidney cancer and brain cancer, and the

methylation-related silencing of the TIMP-3 gene indicates its

inhibitory effect on cancer progression (95). Besides that, its N-

terminal domain can interact with the active sites of MMP-2 and

MMP-9 to exert its MMP inhibitory effect (57). It is well known that

Interleukin-6 (IL-6) is the main growth factor of human myeloma

cells, which acts through its receptor IL-6R. In vivo, IL-6R is

expressed on the surface of myeloma cells and released into the

serum to become a soluble form (sIL-6R). Clinical research has

suggested that the level of serum IL-6R correlates with the poor

prognosis of patients. Importantly, TIMP-3 and BB-94, a

metalloproteinase inhibitor based on hydroxamic acid, can prevent

the release of sIL-6R. In other words, TIMP-3 mediated inhibition of

sIL-6R release may be one of the methods for treatment in MM (96).
4.4 TIMP-4 in MM

TIMP-4 was cloned from a human heart cDNA library by using

the expressed sequence tag sequencing approach in 1996 (97). It has

been discovered in several organs and tissues, including the brain,

heart, kidneys, breasts, uterus, pancreas, colon, ovaries, testes,

prostate, and adipose tissue (57). TIMP-4 is the main MMP

inhibitor in human platelets, and it affects platelet recruitment

and aggregation (98). In addition, TIMP-4 has also been known

to regulate the activity of MMP-2 by acting as the negative regulator

of MT1-MMP (99). As mentioned above, MT1-MMP and MMP-2

are closely related to MM and osteolytic osteopathy.
5 Inhibitors of MMP

Due to its important role in the progression of various diseases,

including multiple myeloma, MMP has become a crucial target for
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disease diagnosis and treatment. Over the years, numerous

naturally derived or artificially designed MMP inhibitors have

been gradually developed.

In terms of material design, MMP inhibitors have undergone

three generations of development, from the first generation of

hydroxamate-based peptidomimetics, to the second generation of

non-hydroxamate compounds, and finally to the third generation of

nanomaterials (100). In recent years, there is increasing evidence

that nanomaterials may play a role in regulating MMP activity.

However, most research has only focused on changes in MMP

activity induced by nanomaterials, while the understanding of the

underlying mechanisms remains limited. Based on current studies,

the main reasons for changes in MMP activity are gene mutations,

protein expression alterations, and direct activity inhibition (100).

Hashimoto et al. (101) found that Gold Nanoparticles (AuNPs) can

inhibit the activity of MMPs, and this inhibitory effect depends on

the size and surface charge of the AuNPs. Smaller AuNPs are able to

effectively inhibit MMP-2 and -9. AuNPs with negative charges

chelate the active site Zn2+ of MMPs, thereby inhibiting MMP-2

and -9. However, the regulatory effects of nanomaterials may vary

in different cell lines. Due to the tunability of nanoparticle

properties, fine-tuning the characteristics of enables them to

safely and effectively enter biological systems, providing an

opportunity for further optimization of their biological functions.

In terms of drug screening and design, with the development of

computer simulation-assisted design and complex biochemical

techniques such as antibody and protein engineering, the design

of MMP inhibitors has gradually shifted from broad-spectrum

inhibitory activity to targeting specific MMP inhibitory activity.

Although some early synthesized drugs showed significant effects in

vitro, their oral bioavailability was poor, and they were

accompanied by many side effects. Some later synthesized

selective inhibitors, although performed well in preclinical stages,

showed poor efficacy in clinical trials, which may be related to

specific tumor microenvironments (100).
6 Conclusion

MM remains one of the most lethal cancers despite recent

advancements in treatment. Patients with MM also experience

systemic skeletal lesions that significantly diminish their quality of

life. MMPs and TIMPs have been implicated in MM metastasis,

angiogenesis, and extensive bone destruction, but the exact

molecular mechanisms remain unknown. Although tissue

inhibitors of metalloproteinases (TIMPs) have great theoretical

potential as a novel class of metalloproteinase inhibitors and can

be developed into new drugs, in reality, they have not received

sufficient attention and application due to the possibility that

TIMPs may inhibit the activity of matrix metalloproteinases

(MMPs) while also carrying risks of directly inhibiting or

indirectly promoting the activity of MMPs. Additionally, the

complex tumor microenvironment regulation by numerous
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enzymes and cytokines, along with the diverse functions of

various MMPs and TIMPs in different tumor types, present a

major challenge in developing specific MMP inhibitors.

Therefore, in order to better understand the specific roles of

MMPs and TIMPs in MM and to improve their therapeutic

efficacy, further basic research is needed. Furthermore,

investigating their mechanisms of action can provide more

evidence for their potential as biomarkers and predictors of

disease progression.
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90. Urıá JA, Ferrando AA, Velasco G, Freije JM, López-Otıń C. Structure and
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