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Comprehensive analysis of
microbiota signature across
32 cancer types

Xia Yang, Huimin An, Yongtao He, Guoxiang Fu
and Zhinong Jiang*

Department of pathology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine,
Hangzhou, China
Microbial communities significantly inhabit the human body. Evidence shows the

interaction between the human microbiome and host cells plays a central role in

multiple physiological processes and organ microenvironments. However, the

majority of related studies focus on gut microbiota or specific tissues/organs,

and the component signature of intratumor microbiota across various cancer

types remains unclear. Here, we systematically analyzed the correlation between

intratumor microbial signature with survival outcomes, genomic features, and

immune profiles across 32 cancer types based on the public databases of

Bacteria in Cancer (BIC) and The Cancer Genome Atlas (TCGA). Results

showed the relative abundance of microbial taxa in tumors compared to

normal tissues was observed as particularly noticeable. Survival analysis found

that specific candidate microbial taxa were correlated with prognosis across

various cancers. Then, a microbial-based scoring system (MS), which was

composed of 64 candidate prognostic microbes, was established. Further

analyses showed significant differences in survival status, genomic function,

and immune profiles among the distinct MS subgroups. Taken together, this

study reveals the diversity and complexity of microbiomes in tumors. Classifying

cancer into different subtypes based on intratumor microbial signatures might

reasonably reflect genomic characteristics, immune features, and survival status.

KEYWORDS

microbiota signature, survival outcomes, genomic features, immune profiles, bacteria in
cancer, the Cancer Genome Atlas
Introduction

Various and complex microorganisms inhabit the human body, composing what is

called the human microbiota (1, 2). Evidence shows the interaction between the human

microbiome and host cells plays a central role in multiple physiological processes and

organ microenvironments (3, 4). For instance, the gut microbiota regulates host

metabolism and the immune system through putative-specific microbes, metabolites,

and toxins (5–7). Certain bacterial components of the human microbiota can drive
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tumorigenesis and development in various cancers. Numerous

evidence found that the bacterium Helicobacter pylori contributes

to atrophic gastritis, peptic ulcers, gastric cancers viaWnt/b-catenin

pathway, and chronic inflammatory response (8–10).

Fusobacterium nucleatum has been found highly abundant in

colorectal cancer (CRC) tumors and metastasis tissues than in

matched normal tissues, which was associated with poorer

prognosis for CRC patients (11–13).

Microbial dysbiosis contributes to tumor susceptibility through

complex mechanisms, including inducing tumorigenesis and

progression through inflammation, remodeling immune and

stromal cells in the tumor microenvironment, and interfering

with anticancer drug pharmacodynamics (14–17). An analysis of

16 rRNAs found in stool discovered that the structure and function

of gut microbiota in patients with lung cancer were unbalanced, and

the imbalance between firmicutes and Bacteroides contributed to

tumorigenesis and progression of lung cancer (18, 19). Moreover,

the diversity of gut microbiome has been found to positively

correlate with the efficacy of immunotherapy in various cancer

types (20, 21). Fusobacterium nucleatum is an oral anaerobe that

has been found to be prevalent in colorectal cancer and breast

cancer, which promoted tumor growth and metastatic progression

by attaching tumor-displayed Gal-GalNAc via Fap2 (13, 22, 23).

Although the majority of related studies focus on gut microbiota

(24–26), several studies have recently characterized the existence,

metabolic activity, and functional importance of intra-tumoral

microbiota in various cancers (23, 27–30). Exploring the alteration

in the microbial community derived from human tissues and organs

will help us better understand the occurrence, progression, and

therapeutic approaches for tumors. Bacteria in Cancer (BIC, http://

bic.jhlab.tw/ ) reveals a collection of curated, decontaminated tissue-

resident microbiota of 32 cancer types based on samples from the

TCGA program (31). The microbial signatures of tumor and normal
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samples from 32 cancer types can be estimated from BIC at different

taxonomic levels, which provides an excellent and powerful resource

for studying the abundance and alternation of microbial components

in various cancers.

The objective of the current study was to investigate the microbiota

profile across 32 cancer types. First, we identified the relative abundance

of microbiota in tumor tissues compared to normal tissues at various

taxonomic levels. Next, we estimated the prognostic value of various

microbial compositions. Then, three microbiome-based clusters were

determined by NMF clustering analysis based on candidate prognostic

microbiota. A microbial-based scoring system (MS) was established by

applying the least absolute shrinkage and selection operator (LASSO)

regression algorithm, a machine learning-based approach that selected

features that were predictive of survival outcomes. Furthermore, the

correlation between MS and patients’ survival outcomes, genomic

features, and immune profiles was further investigated by combining

the BIC microbial profile with the genomic and clinical data from the

TCGA cohort.
Materials and methods

Data acquisition from BIC and TCGA

In this study, the microbiota profiles of samples from 10,362

cases (including 9,687 tumor tissues and 675 adjacent normal

tissues across 32 cancer types) at the phylum, class, order, family,

and genus levels were obtained from the BIC database (http://

bic.jhlab.tw/ ); the corresponding genomic and clinical data for

patients were obtained from the TCGA dataset (https://

portal.gdc.cancer.gov/repository ). Figure 1 displays an overview

of the study design, and the information on included tumor types is

summarized in Table S1.
FIGURE 1

Schematic overview of the study design and workflow.
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Microbiota abundance analysis of tumor
and normal tissues

First, we calculated the relative abundance of microbiota

between the tumor and normal groups at the phylum, class,

order, family, and genus taxonomic levels. Then, we applied

Partial least squares discrimination analysis (PLS-DA) to

visualize the microbiota profile landscapes between tumor and

normal samples by using the package “mixOmics”. Next, we

performed a statistical analysis of metagenomic profiles

(STAMP) to investigate the overall differences in microbiota

profiles between the tumor and normal groups. Moreover,

Linear discriminant analysis effect size (LEfSe) analysis was used

to identify specific enriched microbial biomarkers for each group.

Linear discriminant analysis (LDA) was further applied to

evaluate the microbial effects for different groups.
Analysis of global microbiota profiles
among 31 cancer types

We first identified the cross-tumor abundant microbiota taxa at

the phylum, class, order, family, and genus levels, respectively.

Then, we calculated the relative abundance of microbiota across

31 tumor types (except for GBM, which only had normal tissues in

the BIC program) at the phylum, class, order, family, and genus

taxonomic levels.
Non-negative matrix factorization
clustering analysis

Patients with survival data and follow time ≥ 30 days were

chosen for survival analyses. First, we investigated the prognostic

significance of microbiota by performing a univariate Cox

proportional hazards model. Then, NMF was applied to identify

distinct microbiome-based clusters based on the abundance of

candidate prognostic microbes. The optimal number of clusters

and their stability were determined by the consensus clustering

algorithm. The R package “NMF” was used to perform the

consensus clustering (32).
Generation of a novel
microbiome-based classification

To quantify the microbiome features of individual patients, we

explored a novel microbial-based scoring system (MS) to investigate

the microbiota features of the individual patients. Specifically,

candidate prognostic microbiomes were chosen from the Lasso

regression algorithm to construct the microbial scoring system. The

MS was calculated by the corresponding coefficients of selected

microbiota signatures:

MS = Si Coefficient (microbiota)* Abundance (microbiota)

Where i represents the selected microbial signatures.
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Gene set variation analysis and gene set
enrichment analysis

GSVA enrichment analysis was performed to investigate the

variation in biological processes between different MS subgroups by

u s ing “GSVA ” R packag e s ( 3 3 ) . The g ene s e t s o f

“c2.all.v2022.1.Hs.symbols” and “h.all.v2022.1.Hs.symbols” were

downloaded from the MSigDB database. Adjusted P value <0.05 was

considered statistically significant. GSEA was used to explore the

signaling enrichment between different MS subgroups by applying

the “Clusterprofile”Rpackage (34).TheFDRq<0.25andP<0.05were

considered statistically significant.
Estimation of TME cell infiltration

The ssGSEA algorithm was used to quantify the relative

abundance of 29 immune cell types in the TME (35, 36). The

relative abundance of each immune cell type in each sample was

represented by the enrichment scores that were calculated by the

ssGSEA analysis. The CIBERSORT algorithm was applied to

analyze the compositions of 22 types of tumor-infiltrating

immune cells among different MS subgroups (37).
Significantly mutated genes and tumor
mutation burden in different MS subgroups

Using the R package maftools (38), the overall mutation

landscape was summarized in patients with high and low MS

subgroups in the TCGA cohort. Then, TMB scores based on the

TGCA somatic mutation data were calculated to evaluate the

mutation status between different MS subgroups.
Statistical analysis

Student’s t-tests were applied to analyze normally distributed

variables and the Wilcoxon rank-sum test was performed to evaluate

non-normally distributed variables. One-way ANOVA and Kruskal-

Wallis tests were used to conduct difference comparisons ofmore than

two groups. Kaplan-Meier survival analysis and Cox proportional

hazardsmodelwerechosen to investigate theprognostic significanceof

microbiota and microbiota-based subtypes by applying the survival

andsurvminerpackages.All statistical Pvalueswere two sided,withp<

0.05 being statistically significant. All data processing was done in R

4.0.5 software.
Results

Differential microbiota signatures in tumor
and normal tissues

Overall, we collected and integrated the microbiota profile

and clinical characteristics of 10,362 samples from 32 cancer
frontiersin.org
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types. A total of 47, 56, 127, 303, and 1,607 microbial taxa were

obtained for each sample at the phylum, class, order, family, and

genus levels, respectively. First, the average relative abundance of

differential microbiota between tumor and normal tissues was

calculated (Figures 2A–E), which shows the phylum, class, order,

family, and genus levels, respectively. Then, the PLS-DA

plot exhibited the microbiota profile landscapes between the

tumor and normal samples (Figure 2F). We next explored

the differential microbial compositions for each group.

Overal l , 8 , 10, 17, 25 , and 66 different ia l microbia l

components were found between tumor and normal tissues

at the phylum, class, order, family, and genus levels,

respectively (Figures 2G).

At the phylum level, Chordata, Firmicutes, Fusobacteria,

Bacteroidetes, and Planctomycetes were the main bacteria groups

in tumor samples, while Proteobacteria and Actinobacteria were the

main groups in normal tissues. At the class level, the microbial

composition of Actinobacteria, Alphaproteobacteria, and

Betaproteobacteria were significantly abundant in normal tissues,

whereas Fusobacteriia, Clostridia, Bacilli, and Bacteroidia were

increased in tumor samples. Other differential microbial

composition signatures between tumor and normal tissues are

shown in Figure 2G and Table S2. The top 30 differential

microbial taxa between tumor and normal tissues are shown

in Figure 2H.
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LEfSe analysis helps to identify tumor- and
normal-enriched microbiota

The LDA score of specificmicrobial taxa in the tumor and normal

groups showed the compositional abundances of p_Bacteroidetes,

c_Bacteroidetes , o_Nostocal les , f_Prevote l laceae , and

g_Ruminococcuss were higher in tumor tissues, while the

compositional abundances of p_Actinobacteria, c_Actinobacteria,

o_Actinomycetales, f_Moraxellaceae, and g_Acinetobacter were

enriched in normal tissues (Figure 3A and Table S3). Cladogram

further showed the distinct tumor- and normal-enriched microbiota

(Figure 3B). Next, we analyzed the cross-tissue abundant microbiome

in 32 cancer types at the phylum, class, order, family, and genus levels,

respectively. The average relative abundance of microbiota among 31

cancer types (except for GBM, which only had normal tissues in the

BIC program) was further explored, which shown in Figures 3C–G.

Moreover, the top 10 most differential microbial taxa across 31 cancer

types were shown in Figures 3H–L at the phylum, class, order, family,

and genus levels, respectively.

Exploring prognostic microbiota and
different clusters mediated by microbiota

We first investigated specific candidate microbial taxa that

correlated with survival outcomes by integrating the microbial
A B

D E F
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H

C

FIGURE 2

(A–E) The differential composition of microbiota in tumor and paired normal tissues at the phylum, class, order, family, and genus levels,
respectively. (F) PLS-DA plot of microbe signature in tumors and adjacent normal tissues. (G) STAMP plot of the differential microbiota composition
signatures between tumors and adjacent normal tissues. (H) The top 30 differential microbial taxa in tumor and paired normal tissues. * P < 0.05, **
P < 0.01, *** P < 0.001 and **** P < 0.0001.
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abundance profile from BIC and survival information from TCGA.

The results showed that a total of 182 microbiota were significantly

associated with overall survival (OS) (Table S4) and 112

microbiomes were significantly associated with disease-specific

survival (DSS) (Table S7). Then, Consensus Clustering analysis of

the NMF algorithm was applied to classify patients with

qualitatively different clusters based on the abundance of 182

prognostic microbiota (Figure 4A). Three distinct microbiome-

based clusters were eventually identified, including 4,592 cases in

cluster 1, 1,223 cases in cluster 2, and 3,460 cases in cluster 3. A

tSNE plot further showed the performance of microbiome-based

clusters to distinguish tumor samples in the TCGA cohort

(Figure 4B). A Kaplan-Meier plot revealed a particularly

prominent survival advantage in cluster 2, whereas the worst

prognosis was found in cluster 3 (Figures 4C, D). The proportion

of distinct clusters in 31 tumor types are shown in Figure 4J.
Construction of microbial signature and
microbiome-based scoring system

The Lasso regression algorithm based on the 182 prognostic

microbiota was performed to find candidate microbial signatures

(Figures 4E–G). A total of 64 selected microbial taxa were identified

from the Lasso regression algorithm (Table S5). Then, a novel

microbiome-based scoring system was constructed to quantify the

microbial profiles of individual patients, which we termed as
Frontiers in Oncology 05
microbial score (MS). Consistent with the NMF clustering

analysis, two distinct MS subgroups were found and we named

these two subgroups MS-low and -high. Further survival analysis

indicated significant prognostic differences between the low- and

high-MS subgroups (Figures 4H, I). The performance of 64 selected

microbial signatures to classify different MS groups was further

analyzed by using PLS-LA (Figure 4K). To better illustrate the

association between the established MS with prognosis, an alluvial

diagram was applied to visualize the attribute changes of individual

patients (Figure 5A). LEfSe analysis was further performed to

identify specific enriched microbial biomarkers for high- and low-

MS groups (Figures 5B, C, and Table S6).
TME cell infiltration characteristics in
distinct MS subgroups

The CIBERSORT algorithmwas used to show the differences in the

compositions of tumor microenvironment (TME) immune cell types

between distinct MS subgroups. As shown in Figure 5D, remarkable

differences in immune cell infiltration were observed between the high

and low-MS groups, which suggested that intratumor microbiota plays

an inevitable role in tumor microenvironment immune profiles.

Furthermore, the GSVA algorithm showed significant differences in

KEGG pathways, cancer hallmarks, and immune profiles among the

distinct MS subgroups (Figures 5E–G). The GSEA algorithm showed

nucleotide excision repair, cell cycle, DNA replication, homologous
A B D

E

F

G

IH J K L

C

FIGURE 3

(A) The LDA score of specific microbial taxa in the tumor and normal group. (B) Cladogram showing tumor- and normal-enriched microbial taxa.
(C–G) Venn diagram of the cross-tumor abundant microbiota taxa at the phylum, class, order, family, and genus levels, respectively. (H–L) The top
10 most differential microbial taxa across 31 cancer types at the phylum, class, order, family, and genus levels, respectively.
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recombination, cytosolic DNA sensing pathway, pyrimidine

metabolism, proteasome, spliceosome, and P53 signaling pathway

were significantly enriched in the MS-high subgroup (Figures 6A–I).
Landscape of genomic variation and
expression of different MS subgroups

We further analyzed the distribution differences of somatic

mutation and TMB between low- and high-MS subgroups in the

TCGA cohort. The top 20 genes of mutation frequency of the low-

and high-MS subtypes are shown in Figure 7A, B, respectively. The

top differential mutated genes between the low- and high-MS

subtypes are shown Figure 7C. Moreover, a remarkable diversity

of tumor mutation burden (TMB) was found between the distinct

subgroups (Figure 7D). The abovementioned results indicated the

potentially complex interaction between genomic variation and

microbial components in cancers, which might be novel

regulators for tumorigenesis and progression.
Frontiers in Oncology 06
Discussion

Increasing evidence suggests microbiome plays an important role

in carcinogenesis and progression of various cancer types (24, 39, 40).

However, the pan-cancer microbial heterogeneity and their functions

are least understood. Here, we conducted a comprehensive analysis of

the intratumor microbiota across 32 cancer types, which could provide

a better understanding of microbiota dysbiosis and establish a new

foundation for studying host-microbiota interactions in tumorigenesis

and malignancy in cancer.

We first characterized the global microbial composition at the

phylum, class, order, family, and genus levels of tumor and adjacent

normal tissues across32cancer types.Consistentwithprevious studies,

the relative abundance of Firmicutes and Fusobacteria significantly

enriched tumor tissues,whereas that of Proteobacteria,Actinobacteria,

Alphaproteobacteria, and Betaproteobacteria were remarkably

predominant in adjacent normal tissues (41–47). The LEfSe analysis

further supported that microbial taxa, including p_Firmicutes/

c_Clostridia, p_Bacteroidetes/c_Bacteroidetes, and p_Fusobacteria/
A B

D E

F G

IH

J

K

C

FIGURE 4

(A) Three distinct clusters were established based on the abundance of prognostic microbial taxa. (B) tSNE plot showed the performance of
microbiome-based clusters to distinguish tumor samples. (C, D) Kaplan-Meier plots of OS and DFS among different clusters in the TCGA cohort.
(E, F) 64 prognostic microbial taxa were further selected by the Lasso regression algorithm. (G) Receiver-operating characteristic curves of the
microbial signature predicted performance to predict OS. (H, I) Survival analyses for OS (D) and DFS (E) among different MS groups in the TCGA
cohort. (J) The distribution of different clusters across 31 cancer types in the TCGA cohort. (K) PLS-DA plot of microbial signature in high and low-
MS groups.
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c_Fusobacteria/o_Fusobacteriales, were tumor-enriched microbes,

while p_Actinobacteria/c_Actinobacteria, p_Spirochaetes/

c_Spirochaetes, and p_Proteobacteria/c_Alphaproteobacteria were

normal-enriched microbes, suggesting that distinct microbial

component in tumor and normal samples, and specific microbes

might play an essential role in tumorigenesis and development

of cancer.

Previous studies reported that certa in intratumor

microbiota of human tumors could also be a potential

biomarker for survival outcomes and chemotherapy/

immunotherapy (4, 23, 30, 46, 48, 49). Here, we identified

specific microbial components that were associated with

prognosis in patients from the TCGA cohort. Consistent with

other studies, the relative abundance of Actinobacteria,

Firmicutes, Fusobacteria, and Proteobacteria were found to

be assoc ia ted with prognos is in cancer . We further
Frontiers in Oncology 07
established a scoring system (MS) based on candidate

microbial signatures that was somehow predictive of survival

outcomes, molecular alternation, and immune profiles.

GSVA showed differential genomic function between the high- and

low-MS groups. The high-MS group was remarkedly enriched in cell

cycle and mismatch repair signaling pathways, while selenoamino acid

metabolism and primary bile acid biosynthesis signaling pathways

were found significantly enriched in the low-MS group. It is well

established that cell cycle and mismatch repair are involved in cancer

cell proliferation, sphere-forming capacity, metastasis, and

chemotherapeutic/immunotherapeutic sensitiveness (50–54). The

interaction between bile acid and microbiota was found to play an

essential role in gastrointestinal inflammation and carcinogenesis (55).

Considering that, specific microbiomes and their relative biological

functions may be involved in the development and malignancy

of tumors.
A B

D

E F G

C

FIGURE 5

(A) Alluvial diagram showing the changes in cancer types, clusters, and MS subtypes. (B, C) LEfSe analysis identifying differential microbiota profiles
between low- and high-MS groups. (D) Cibersort reveals the abundance of each TME infiltrating cell between the low- and high-MS groups.
(E) Differences in KEGG pathways (E) and cancer hallmarks (F) between the low- and high FS groups. (G) Associations between microbial signature
and the ssGSEA scores of tumor microenvironment cell infiltration. *** P < 0.001 and **** P < 0.0001.
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It has been well known that microbiota mediates the host immune

system by a complicit mechanism (56, 57). In accordance with previous

studies, we demonstrated that microbiota displayed an important role

in tumor immune profiles. Furthermore, our study showed that the

TMB encounters significant changes between the distinct MS groups.

Furthermore, significant genemutation diversity was observed between

the high- and low-MS groups, which indicated the intratumor
Frontiers in Oncology 08
microbial component might also exert an effect on the immune

profile and genomic heterogeneity of tumors.

Compared with recent studies onmicrobiota alternation in tumors,

our research performed a more comprehensive investigation of

microbial characteristics in 32 cancer types. However, several

limitations need to be clarified in this study. First, the study was

analyzed based on the TCGA dataset, so external verification should be
A

B

D

C

FIGURE 7

The waterfall plot of tumor somatic mutation of the low- (A) and high-MS subgroups (B). (C) The differential somatic mutation profile between the
low- and high-MS subgroups. (D) The TMB status between the low- and high-MS subgroups.
A B

D E F

G IH

C

FIGURE 6

GSEA reveals the key differential signaling pathway between the MS-low and MS-zero subgroups (A–I).
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performed based on clinical samples to eliminate the false correlation

drawing from bioinformatics data in the future. Second, the current

study is more of a observational research paper that focuses on the pan-

cancer level. The alteration in the microbial community in specific

cancer subtypes should be further investigated. Besides, the biological

functions and underlying mechanisms of selected microbiota in this

study are warranted for further experimental validation.
Conclusion

In this study, we conducted a comprehensive analysis of the

intratumor microbiota in 32 cancer types. Significant differences in

the microbial components were found between the tumor and

adjacent normal tissues. Several candidate microbial biomarkers

were further identified and correlated with tumor prognosis. The

potential functions of these microbes in tumors merit further study.

Furthermore, we established a microbial-based scoring system,

which was significantly related to genomic characteristics,

immune features, and survival status of patients in the TCGA

cohort. We expect that our research will facilitate a better

understanding of the intratumor microbiome and provide a new

perspective on the role of the microbiome in tumors.
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