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Esophageal cancer is a common malignant tumor with a high degree of

malignancy. Understanding its pathogenesis and identifying early diagnostic

biomarkers can significantly improve the prognosis of esophageal cancer

patients. Exosomes are small double-membrane vesicles found in various body

fluids containing various components (DNA, RNA, and proteins) that mediate

intercellular signal communication. Non-coding RNAs are a class of gene

transcription products that encode polypeptide functions and are widely

detected in exosomes. There is growing evidence that exosomal non-coding

RNAs are involved in cancer growth, metastasis and angiogenesis, and can also

be used as diagnostic and prognostic markers. This article reviews the recent

progress in exosomal non-coding RNAs in esophageal cancer, including

research progress, diagnostic value, proliferation, migration, invasion, and drug

resistance, provide new ideas for the precise treatment of esophageal cancer.
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1 Introduction

Esophageal cancer (EC) is one of the malignant tumors with high incidence and a

serious threat to human health and life worldwide. Although significant progress has been

made in the diagnosis, treatment, and pathogenesis of esophageal cancer for more than half

a century, the five-year survival rate is still less than 20% (1). Moreover, its incidence and

mortality continue to increase each year. The EC pathogenesis has not been clarified. The

morbidity and mortality may be related to many factors. In recent years, many

epidemiological studies have shown that esophageal cancer occurrence results from

long-term interaction between genetic and environmental factors (2, 3). Because most

esophageal cancer patients are in the middle and advanced stages of the disease when they

are treated, the treatment methods are very limited (4). The primary treatment for

esophageal cancer is surgery (5, 6). Even after rigorous surgical treatment, EC patients’

leading causes of death are tumor recurrence and distant metastases. New noninvasive
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biomarkers and therapeutic targets must be identified to improve

esophageal cancer patients’ survival rate and quality of life.

Exosomes are a type of microvesicle with a size of 40~100 nm

that are widely distributed in bodily fluids such as blood, saliva, and

urine and are secreted into the circulatory system by cells. The

vesicle carries various biological information molecules, such as

mRNA, miRNA, and DNA fragments (7) which are often related to

carcinogenesis, invasion, and metastasis (8). In recent years,

detecting specific information molecules in exosomes for

diagnosing malignant cancers have become a research priority.

Non-coding RNAs (ncRNAs) used to be considered as a class of

gene transcription products that do not possess protein-coding

functions, but more and more studies have shown that some

ncRNAs can encode to produce functional polypeptides (9), and

such ncRNAs and polypeptides can be confirmed to often have high

conservation and homology by sequencing and mass spectrometry.

Among them, lncRNAs and circRNAs can participate in regulating

transcription and translation processes directly by performing

functions such as protein scaffolding, regulatory splicing, and

loop-roll translation, or indirectly regulating signaling pathways

by influencing other RNAs as miRNA sponges, thus participating in

regulating tumorigenesis and development (10–12). ncRNAs are

widely found in exosomes (13–15). In addition, miRNAs do not

circulate in the body in a free state; they generally bind to AGO2 or
Frontiers in Oncology 02
lipoproteins or are encapsulated by vesicles such as exosomes before

entering the circulation (as shown in Figure 1) (5). Compared to

miRNAs that bind to proteins and circulate in vivo, exosomal

miRNAs may have better structural stability, target specificity and

functional direction.

Many studies have found tumor-derived exosomes in the

circulating blood of esophageal cancer patients (16–18). These

exosomes include numerous tumor-related specific molecules,

such as mRNA, protein, lipid, and non-coding RNA., making

them a powerful signal transmission function (19). Due to the

necessity for numerous signal exchanges between the tumor and

surrounding supporting cells, the exosome secretion increases

significantly, participating in the regulation of tumor

microenvironment and metastasis, and might play a key role in it.

The analysis and detection of tumor exosomes can assist in early

diagnosis, efficacy evaluation and prognosis analysis of tumors (20).

For example, in esophageal squamous cell carcinoma, high miRNA-

21 expression in exosomes can reflect 100% of the tumor level.

Moreover, high miRNA-21 expression in exosomes often indicates

extensive invasion and recurrence (21).
2 Exosomes research progress

Studies of exosomes date back to 1946 when Chargaff and West

reported that plasma clotting time increased after ultracentrifugation

(22). The researchers attributed this phenomenon to subcellular

procoagulant factors, which are small lipid-rich vesicles with 20 to

50 nm in diameter; in 1967, Wolf called it “platelet dust” (23).

Endocytic vesicles were first identified in mature mammalian

reticular cells (immature erythrocytes) in 1983 by Stahl’s (24) and

Johnstone’s teams (25). In 1987, Johnstone et al. (26) defined vesicles

formed in multivesicular bodies by endocytosis and released by the

fusion of multivesicular bodies with plasmamembrane as “exosomes”.

In the following decade, exosomes were not taken seriously by

researchers. In 1996, Raposo et al. (27) reported that exosomes

secreted from B lymphocytes, which carry MHC class II molecules,

costimulatory factors, and adhesion factors, could represent antigens.

Studies have shown that these B cell-derived exosomes can directly

stimulate the antitumor response of CD4+ cells. In 2007, Valadi et al.

(28) found that RNA can be exchanged between different cells

through exosomes and confirmed that tumor exosomes could

promote or inhibit the growth and metastasis of tumor cells. The

2013 Nobel Prize in Physiology or Medicine was awarded by United

States scientist James E. Rothman and Randy W.Schekman, Thomas

C. Three scientists from Südho were awarded for their discovery of the

regulatory mechanism of vesicular trafficking, the main transport

system in cells, which pushed exosomes to a new climax. However,

during the past decade, significant advancements have been achieved

in this field of study, particularly the discovery of exosomal miRNA

activity, which is crucial in cancer research. Therefore, exosomes can

be used as diagnostic markers and prognostic indicators for tumors

(29). Due to its characteristics can also be used as a carrier for drugs

and functional molecules, providing a novel clinical therapeutic

mode (30).
FIGURE 1

Synthesis, secretion and functional characteristics of exosomal
miRNA. First, miRNA genes are transcribed into primary miRNAs (pri-
miRNAs) in the nucleus, which range in length from hundreds to
thousands of bases and contain one to several hairpin stem-loop
structures with a 5’cap and a 3’polyA tail. The pri-miRNA is then
further processed by the nuclease Drosha and its cofactor Pasha to
form a precursor miRNA (pre-miRNA), consisting of 70 nucleotides,
which is then transported into the cytoplasm via the GTP-
dependent Exprotin-5 complex. Finally, the pre-miRNA is further
cleaved by Dicer enzyme to form double-stranded miRNA:miRNA,
then one miRNA chain is degraded, and the other mature miRNA
chain binds to the 3’UTR of the target mRNA, so that the target
mRNA is degraded or translation is inhibited, so as to achieve the
purpose of regulating protein expression. miRNAs do not circulate in
the body in a free state. They generally bind to AGO2 or
lipoproteins, or are encapsulated by vesicles such as exosomes
before entering the circulation.
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3 Diagnostic value of exosomal
ncRNA in EC

The “Asian esophageal cancer belt” extends from northern Iran

through the Central Asian republics to Mongolia and north-central

China. It is a special high-risk area for Esophageal squamous cell

carcinoma (ESCC), with China alone accounting for more than half of

the global cases (31). Because the early symptoms of EC are not

obvious, patients are often in the middle and late stages when they are

diagnosed, severely impacting their families and daily lives (32).

Therefore, early detection and prompt treatment of esophageal

cancer are of clinical importance (33). There is increasing evidence

that early diagnosis and accurate prediction of treatment effects can

significantly improve the ESCC patient’s prognosis (34). However, the

specificity and sensitivity of its diagnostic and prognostic biomarkers

remain unsatisfactory. Numerous studies have shown that cancer cell-

derived exosomes contain specific nucleic acids and proteins that reflect

the cancer cells’ origin (35). Therefore, exosomes are novel and

potential biomarkers in many cancer types (36). Compared to other

cancer biomarkers (such as circulating tumor cells (CTC) and

circulating tumor DNA (ctDNA), exosomes have the advantages of

sufficient quantity, strong stability, and strong accessibility (37, 38).

Almost all cancer cell types can secrete numerous exosomes, and

exosomes exist in almost all body fluids, such as blood, saliva, urine,

tissue fluid and cerebrospinal fluid, which broadens the selection range

of liquid biopsy sample sources (37, 39).
3.1 Exosomal miRNA in EC

Lin et al. (40) showed the presence of miRNA in EC patients’ saliva

and animal saliva exosomes. Furthermore, the chimeric RNA level in

saliva exosomes can be used for the first time as a noninvasive

biomarker for detecting early and late EC for postoperative

monitoring, therapeutic response, and tumor recurrence (41).

The study of Li et al. (37), by comparing small RNAs in salivary

exosomes from ESCC patients with RNA from healthy controls, a

cancer-rich dual sesncRNA profile (i.e., tRNA-GlyGCC-5 and

sRESE) was identified in salivary exosomes, which represents a

non-invasive, convenient, and reliable biomarker for human ESCC

diagnosis, prognosis, and especially prediction of preoperative

patients who may benefit from adjuvant therapy.

Furthermore, samples from 51 patients with ESCC and 41 patients

with benign illnesses were collected (i.e., the control group). Exosomal

miR-21 levels were significantly increased in ESCC groups compared to

controls (42). Exosome miR-21 may be a useful biomarker for

detecting ESCC progression or efficacy of ESCC.
3.2 Exosomal IncRNA in EC

Yan et al. (43) found that serum exosomal lncRNA can be used as

a biomarker for diagnosing and prognosis of EC. Furthermore, the

lncRNA of four UCA1, ESCCAL-1, PEG10 and POU3F3 was most

significantly up-regulated in EC exosomes. Similarly, increased
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expression levels are also observed in patients with advanced

disease stages. Using ROC analysis, some lncRNAs showed high

diagnostic values, e.g. AUCs for UCA1 and POU3F3 were 0.733 and

0.717, respectively. Based on these findings, the exosomal lncRNA

combination provides a more sensitive diagnosis of ESCC,

particularly for early disease. In Huang et al. (44), lncRNA PCAT1

was present in ESCC cell-derived exosomes and upregulated in the

serum of ESCC patients. Further studies have shown that PCAT1 is

an oncogene in ESCC and promotes ESCC progression by binding to

miR-326. PCAT1 can be used as a therapeutic target and a potential

non-invasive biomarker for ESCC patients.
4 Influence of exosomal ncRNA on
migration, and invasion of EC

In the field of tumor research, there have been considerable

literature reports that exosomes can participate in many tumors’

progression, including promoting tumor proliferation, metastasis,

and invasion (45, 46), inhibiting tumor cell apoptosis (47), regulating

cell cycle (48, 49) and autophagy (50). The tumor-derived exosomal

lncRNA ZFAS1 promotes proliferation. It inhibits apoptosis by up-

regulating STAT3 and down-regulating miR-124, thus benefiting

ESCC cells’ tumorigenesis (8). Tumor-derived exosomal miR-19b-3p

can target Chromosome 10 promote EC cell invasion and inhibit

apoptosis (51). Matsumoto et al. demonstrated that tumor-derived

exosomes (52)could promote tumor progression and malignant

transformation by altering gene expression and tumor cell phenotype

(48). For example, Tumor-derived exosomal lncRNA PCAT1 (prostate

cancer-associated transcript 1) promote ESCC cell proliferation via the

sponge tumor suppressor miR-326 (44).

Cancer-associated fibroblasts (CAFs) are one of the most

important components of the tumor microenvironment and play an

essential role in tumor occurrence and development (53). Similarly,

CAFs have been shown to contribute to tumor development and

progression (52, 54). Zhao et al. found that CAF-derived exosomes

could improve the ESCC cells’ growth and migration through the

Hedgehog signaling pathway (55). Furthermore, CAFs use the

exosomal miR-451 as a signaling molecule, providing a favorable

niche for tumor cell migration and cancer progression (56).

Tumor-associated macrophages (TAM) are infiltrating

macrophages in tumor tissues. The researchers found that

exosomes secreted by ESCC cells can induce macrophage

polarization to the M2 type through its content miR-301a-3p.

Moreover, the TAMs proangiogenic switch is triggered by

exosomes miR-301a-3p secreted by ESCC cells through PTEN/

PI3K/AKT signaling pathway (57). These studies highlight the

important role of exosomes in the growth and migration of EC.
5 Exosomal ncRNA promote drug
resistance in ESCC

Chemoradiotherapy is one of the most common treatments for

advanced esophageal cancer, and chemotherapy resistance
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signifies chemotherapy failure. Therefore, the mechanism of

human chemoradiotherapy resistance and how to reverse

chemoradiotherapy resistance are pressing issues that must be

resolved in tumor treatment. In tumors, most exosomes are

tumor development promoters (58–60). Exosomes can serve as

tumor signaling vectors. One of the adverse clinical impacts of

exosomes as a source of tumors is their capacity to transfer

resistance horizontally (61–63). Drug-resistant tumor cells can

transfer drug resistance to sensitive cells through exosomes (18,

64), thus generating new anti-tumor cell reservoirs. Exosomes from

drug-resistant tumor cells may confer resistance phenotype to

sensitive cells through intercellular signaling.

Kang et al. found that exosomes from gefitinib-resistant cells

containing the long non-coding RNA lncRNA PART1 promoted

gefitinib resistance in ESCC via the miR-129/blc-2 axis (65).

Exosomes containing miR-21 from cisplatin-resistant cells promote

the development of cisplatin resistance in ESCC by targeting

programmed cell death 4 (PDCD4) (66).Additionally, exosomal

miR-193 delivery to ESCC cells increases cisplatin resistance by

activating the janus kinase (JAK)-STAT signaling pathway (67).

Furthermore, ESCC-derived exosomal lncRNA POU3F3 transforms

fibroblasts (NF) into CAFs, and these CAFs can secreted IL-6 then

enhances cisplatin resistance in ESCC cells (68). A recent study found

that the hypoxic tumor cell-derived exosomal miR-340-5p confers

radioresistance in ESCC by targeting KLF10/UVRAG (69). The miR-

340-5p level in plasma exosomes is closely related to radiotherapy

response and prognosis. MiR-340-5p may be a therapeutic target for

overcoming radioresistance in ESCC. Luo et al. demonstrated that

tumor-derived exosomal miR-339-5p enhanced the radiosensitivity

of ESCC cells by targeting Cdc25A (70). These studies suggest that

exosomes are vital in regulating resistance to EC therapy. It is believed

that with further research, the role and mechanism of exosomes in

esophageal cancer resistance will be gradually revealed and finally

applied to clinical practice.
6 Targeted delivery of modified
exosomes and their prospects

Exosomes are widely distributed and can shuttle freely in the body,

known as the “Trojan Horse”. Exosomes have a role in various

physiological and metabolic processes in the body, as they facilitate

the flow of information between cells (71–73) (Figure 2). Meanwhile,

exosomes also have the characteristics of non-immunity and easy

penetration of cell membranes and can be specifically recognized by

receptor cells (74). Therefore, exosomes have unique natural

advantages as drug delivery vehicles (75). Research on drug delivery

by exosomes has become a hot spot in recent years. Some small-

molecule chemical and gene drugs have been successfully loaded into

exosomes, showing great potential in treating various cancers (76, 77).

Researchers at Oxford University have used exosomes as

carriers to load therapeutic siRNA for treating Alzheimer’s

disease. By modifying exosomes to have specific cell targeting,

they not only successfully passed the blood-brain barrier but also

accurately delivered therapeutic siRNA to target cells, reducing the
Frontiers in Oncology 04
mRNA and protein expression levels of corresponding genes in

target cells, thus achieving the purpose of disease treatment (78, 79).

Exosomes are vital as drug carriers in enhancing anti-cancer

response and targeted drug delivery (77, 80, 81). Exosomes can

transport small molecules, such as nucleic acids, to target cells, and

there are increasing studies using exosomes as vectors to deliver

therapeutic nucleic acids for cancer treatment (82, 83). As a natural

RNA vector, exosomes have high circulating stability and inherent

homing ability, which has the advantage of simultaneous loading of

multiple therapeutic nucleic acids compared with conventional

antitumor delivery systems (84). Shtam et al. reported using

exosomes to deliver latent therapeutic siRNAs against cancer cells to

target cells. The successful delivery of siRNA to recipient cells was

observed using confocal microscopy and flow cytometry. The

significant reduction of oncogene protein levels and the mass death

of cancer cells further proved that siRNA could be effectively delivered

to target cells (85).In addition, Adriamycin-and paclitaxel-loaded

exosomes have been used in cancer therapy with low

immunogenicity and toxicity (86, 87). The utility of paclitaxel-loaded

exosomes has improved efficacy in treating multidrug-resistant cancer

cells (80). Cumulatively the above studies indicate that exosomes are an

effective tool for carrying and delivering anticancer drugs.
7 Discussion

In this article, we attempt to summarize the exosomal ncRNAs’

role in the diagnosis, growth, metastasis, drug resistance and

targeted delivery of EC. Additionally, we discussed using

exosomal ncRNA as biomarkers and therapeutic tools for the

diagnosis, prognosis and prediction of EC.

Although exosomal ncRNA has considerable application

potential, challenges prevent its practicality. First, clinical samples

require more accurate and standardized purification methods.

Secondly, there are multiple bioactivators in exosomes and their

main functional components still need further study. Currently,

there is no standardized method for isolating and identifying

exosome from biological body fluids. The methods used in the
A

B

C

FIGURE 2

Exosomes and their cargoes, extracted from human plasma or
saliva, are widely involved in the pathophysiology of ESCC: (A) Early
diagnosis; (B) prognosis; (C) Therapeutic response evaluation.
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reported study lack repeatability and inconvenience, which limits

their widespread use. Moreover, an ideal exosome enrichment

strategy with high purity and efficiency cannot be obtained. Due

to the lack of large-scale exosomes for clinical research, exosome-

based engineering applications are limited to cellular or animal

experiments. Finally, a systematic and in-depth study on the

exocrine mechanism involved in tumor occurrence and

development is lacking, Implementing exosomal ncRNA based

diagnosis and treatment strategies still faces significant difficulties,

but these tactics must be translated into practical application soon

to assist EC patients.
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