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Prostate cancer is one of the most common malignant cancers of the male

genitourinary system and has high morbidity and mortality. Currently, treatment

modalities for localized prostate cancer focusmainly on radical prostatectomy or

radical radiation therapy. Some patients still experience disease recurrence or

progression after these treatments, while others are already at an advanced

stage or have metastases at the time of diagnosis. With the continuous

development and progress of medicine in recent years, immunotherapy has

become a revolutionary cancer treatment, and has achieved remarkable

accomplishments in the treatment of hematologic malignancies. A variety of

immunotherapies have also appeared in the field of advanced prostate cancer

treatment, including therapeutic vaccines and immune checkpoint therapies.

Despite the discrepancy between the results of some immunotherapy studies,

immunotherapy for prostate cancer has shown some initial success, especially in

combination immunotherapies. Currently, immunotherapy is mainly used in

advanced prostate cancer, especially in patients with metastatic castration-

resistant prostate cancer. However, with the development of more clinical

trials of immunotherapy, more evidence will be provided supporting the

rational application of immunotherapy in the future.

KEYWORDS
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1 Introduction

Prostate cancer is one of the most common cancers among men worldwide, with an

incidence of 1.4 million new cases per year. Approximately ten million men currently have

prostate cancer worldwide, of which about 700,000 have metastasis, causing about 400,000

deaths each year (1, 2).

Current guidelines recommend radical prostatectomy or radiation therapy for early-

stage localized prostate cancer (3–6). Some patients still experience disease recurrence or

progression after treatment (7). For hormone-sensitive prostate cancer that responds to

endocrine therapy, androgen-deprivation therapy (ADT) is typically maintained. Patients
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have a high response rate when they are initially treated with ADT,

but long-term ADT leads to drug resistance. Androgen receptor

(AR) amplification, AR mutation, AR splice variation, and the

emergence of compensatory pathways are possible resistance

mechanisms. Studies have shown that within 1–3 years of ADT,

most patients experience progression of the cancer to metastatic

castration-resistant prostate cancer (mCRPC), which defines

patients who are at an advanced stage of the disease (8). The 5-

year survival rate for patients with mCRPC is approximately 30%

(9). Compared with conventional examinations such as CT and

bone scan, the new PSMA-PET/CT and FDG-PET/CT have higher

sensitivity for metastases, especially in patients with lower PSA

levels (10–12). The advancement of imaging technology has further

increased the number of mCRPC patients. Currently, a variety of

drugs have been approved for the treatment of patients with

mCRPC, such as the new generation of AR signaling inhibitors,

chemotherapy drugs, bone-targeted therapy drugs, and poly-ADP-

ribose polymerase (PARP) inhibitors (13). However, mCRPC

remains an incurable fatal disease. In recent years, many new

drugs have been approved for the treatment of hormone-sensitive

prostate cancer (HSPC), and reports of cross-drug resistance in

mCRPC patients have attracted wide attention (14), prompting us

to explore a new, safer, and more effective cancer treatment.

Immunotherapy for malignancies has achieved exciting results

and a series of exploratory studies on immunotherapy for

prostate cancer have been conducted. Immunotherapy

enhances the immune system’s ability to recognize and kill cancer

cells by regulating the autoimmune system, improving the

antigen presentation ability, destroying the inhibitory tumor

microenvironment, and reducing the apoptosis of effector cells to

achieve the purpose of anti-tumor therapy (15–17). Prostate cancer

has unique tumor characteristics compared to other tumors. First, it

expresses multiple tumor-associated antigens: e.g., prostate-specific

antigen (PSA), prostate-specific membrane antigen (PSMA), and

prostate stem cell antigen (PSCA), which provide a reliable

therapeutic target for prostate cancer immunotherapy (18–20).

Second, the relatively “inert” tumor growth characteristics of

prostate cancer also provide an extended window for cancer

immunotherapy to establish an effective immune response.

However, prostate cancer is a “cold” tumor that lacks immune

cell infiltration (21). The low number of lymphocytes and the

predominance of immunosuppressive components in the tumor

microenvironment may limit the efficacy of immunotherapy

(22, 23).

We review current research advances, clinical applications, and

the risks and challenges related to prostate cancer immunotherapy.

Most of these studies have been conducted in patients with

advanced prostate cancer represented by mCRPC, so this will

help us to understand some of the latest progress in the field of

immunotherapy for advanced prostate cancer.
2 Therapeutic vaccine

There are various types of vaccines for prostate cancer

treatment currently available, including cellular vaccines, viral
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vaccines, DNA vaccines, and other classifications, and in this

section, we will present several representative vaccines.

Sipuleucel-T: first introduced in April 2010 and was the first

therapeutic cancer vaccine approved by the Food and Drug

Administration (FDA), primarily for use in asymptomatic or

minimally symptomatic patients with mCRPC (24). The vaccine

utilizes leukocyte isolation technology to isolate monocytes from

the peripheral blood of the patient, which are cocultured in vitro

with a recombinant fusion protein (PA2024) of prostatic acid

phosphatase (PAP) and colony-stimulating factor (GM-CSF).

granulocyte-macrophage. PA2024 stimulates the maturation of

monocytes into dendritic cells that specifically present PAP.

Dendritic cells activate PAP-specific cytotoxic T cells in patients

after transfusion, enhancing their ability to recognize and kill

prostate tumor cells. The results of the IMPACT phase III clinical

trial (NCT00065442) demonstrated a survival benefit of Sipuleucel-

T (25), compared to the placebo group, it prolonged the median

overall survival (OS) of mCRPC patients by 4.1 months (median

OS: 25.8 vs 21.7 months) and reduced the risk of death by 22%,

hazard ratio (HR): 0.78, 95% CI: 0.61–0.98. This is consistent with

another study showing an OS benefit of 4.5 months with Sipuleucel-

T (26). However, there was no improvement in the time to disease

progression. The study observed a more significant benefit in

patients with low tumor load, suggesting a more significant OS

benefit with early use of Sipuleucel-T in mCRPC patients. Similarly,

an inverse association between PSA level and OS benefit was also

seen in PROCEED study (27). Sipuleucel-T also exhibits a

satisfactory safety profile, with studies reporting common adverse

events (AEs) such as chills, fever, headache, muscle pain, and flu-

like symptoms, which were associated with cytokine release after

infusion. 65.2% of AEs were G1-G2, and most symptoms lasted no

more than 2 days. Only 0.9% of the patients did not complete the

infusion because of infusion-related adverse reactions (21). Several

studies have recently been conducted to explore combination

therapy regimens of Sipuleucel-T to analyze the most significant

therapeutic benefit of Sipuleucel-T (28). It is still uncertain whether

combination therapy can provide more benefit to specific groups,

and we will introduce it in the subsequent combination therapy

section of the article.

PROSTVAC: PROSTVAC is composed of a heterologous

prime-boost regimen using two different live poxviral-based

vectors: PROSTVAC-V, a recombinant vaccinia virus, and

PROSTVAC-F, a recombinant fowlpox virus. The two vectors

contain transgenes for human PSA and three costimulatory

molecules (TRICOM: b7.1, LFA-3, ICAM-1). In phase II clinical

trials (29), PROSTVAC prolonged median OS by 8.5 months and

reduced the risk of death by 44% compared with placebo control,

and corrected data expanded the survival benefit (median OS: 26.2

vs 16.3 months) and the survival advantage (HR=0.50) (30).

Regarding safety, most AEs reported by PROSTVAC were local

injection reactions, with fewer systemic AEs. The phase III

PROSPECT trial compared patients treated with PROSTVAC

+GMC-CSF, PROSTVAC alone, and placebo to further examine

the effects of treatment (31). Contrary to the positive results of the

phase II clinical trial, neither of the treatment groups effectively

improved OS in the interim analysis, and the alive without events
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(AWE) rate was similar in both groups at six months. Events

including radiographic progression, pain progression, initiation of

chemotherapy for prostate cancer, or death, forced early

termination of the trial. Regarding the differences in efficacy

shown in the PROSPECT trial, an imbalanced allocation of

prognostic-related factors in the phase II trial, may have

amplified the benefits of OS in the treatment group; also, the

smaller number of patients and possible observer bias may have

affected the results. Additionally, including patients with multiple

prior life-prolonging treatments in the PROSPECT trial may have

influenced the positive outcome. Although the results of the phase 3

trial did not meet expectations, the PROSTVAC combination

therapy study is still ongoing, and a study (NCT02933255) is

exploring the safety and efficacy of PROSTVAC in combination

with Nivolumab, and these combination therapies will provide

more evidence on the appropriate use of PROSTVAC in the

future (32, 33).

DCVAC/PCa is an active immunotherapy based on the

activation of antitumor immunity by autologous dendritic cells.

Dendritic cells are isolated frommononuclear cells in the peripheral

blood of the patient by leukapheresis and brought into contact with

dead human prostate adenocarcinoma cell lines, thus enhancing

their antitumor activity. A single-arm phase I/II clinical trial in

mCRPC patients confirmed that DCVAC/PCa combined with

chemotherapy had a good safety profile. No serious adverse

events (SAEs) related to DCVAC/PCa were reported in the study,

and the median OS was 19 months, which was significantly

improved compared with the predicted value of Halabi and

MSKCC nomograms (34). Another study demonstrated that

DCVAC/PCa produced durable immune responses and

significantly prolonged PSA doubling time (PSADT) in prostate

cancer patients with low tumor burden (35). The study also

reported that the common AEs of DCVAC/PCa were local

injection site reactions, fatigue, influenza like-illness, and mild

infections, all of which were G1-G2. However, the VIABLE trial

(NCT02111577) reported different results (36), with no significant

OS benefit in the DCVAC/PCa combination chemotherapy group

compared to the placebo group. No difference was observed in

either of the primary efficacy endpoints. The VIABLE trial further

provided good safety evidence for DCVAC/PCa, with most

treatment-related AEs (TRAEs) associated with chemotherapy

rather than DCVAC/PCa. The 119 patients who did not develop

DCVAC/PCa were included in the efficacy analysis of the VIABLE

trial. However, the shorter OS in this group of patients weakened

the DCVAC/PCa treatment effect. Study found a dose-dependent

treatment effect, with a subgroup of patients receiving more than

ten doses of vaccine showing a propensity to benefit OS. Studies

evaluating the efficacy of DCVAC/PCa in prostate cancer are still

lacking, and more studies are needed to confirm its potential

therapeutic value.

pTVG-HP[MVI-816] is a DNA vaccine that encodes the human

PAP cDNA. pTVG-HP[MVI-816] has been previously studied for

its favorable safety profile in patients with early PSA recurrent

prostate cancer, and enhanced vaccine-induced PAP-specific Th1

cell responses have been observed (37). There are no reports on the

efficacy and safety of the pTVG-HP[MVI-816] vaccine alone in
Frontiers in Oncology 03
large trials in patients with mCRPC. In the phase II clinical trial of

non-metastatic hormone-sensitive prostate cancer (nmHSPC) with

biochemical recurrence (38), there was no significant difference in

2-year metastasis-free survival (MFS) in the pTVG-HP[MVI-816]

group (41.8% vs 42.3% P=0.97). Regarding secondary endpoints, no

significant differences were observed between the two groups in

median MFS and median PSADT; partial immune responses were

observed early in treatment but then disappeared. Difficulty in

maintaining long-term immune responses may be the main

obstacle limiting the antitumor efficacy of pTVG-HP. There is no

substantial evidence to support that a single regimen of MVI-816

may make a meaningful difference for patients, and we are counting

on whether a combination regimen can enhance its efficacy. A

recently published study comparing the effectiveness of MVI-816 in

combination with pembrolizumab in patients with mCRPC

reported a preliminary exploration of the optimal dosing regimen

for combination therapy. The results showed that the combination

therapy was superior to PD-1 or PD-L1 monotherapy in PSA

declines, tumor volume decreases, and 6-months DCR, while the

combination therapy had a good safety profile. G2 or higher TRAEs

occurred in 42% of the patients, and common TRAEs were thyroid

dysfunction, adrenal insufficiency, colitis, and hepatitis (39).

Another DNA vaccine, pTVG-AR [MVI-118], which contains

cDNA encoding the ARligand-binding domain (AR-LBD), has

been evaluated in a completed multicenter phase Ι trial

(NCT02411786) and showed a favorable safety profile and

durable immune responsiveness (40).

In summary, durable immune responses specific to tumor

antigens have been observed in studies of multiple prostate cancer

therapeutic vaccines. However, there is still a lack of consistent

clinical evidence confirming the therapeutic efficacy of vaccines,

except for Sipuleucel-T, for which several recent large trials have

provided conflicting results. Vaccine combination therapy appears

to have gained more attention in recent years, which may provide

new approaches for subsequent treatment and provide a rationale

guiding and supporting the exploration and use of prostate cancer

vaccine therapy.
3 Immune checkpoint therapy

There are antagonistic mechanisms of promotion and

suppression of the immune system in the development of tumors:

Conversely, when some activating signals stimulate cytotoxic cells

with tumor-killing capacity, they will promote functional

phenotype transformation and accelerate cell proliferation, which

can enhance their ability to kill cancer cells. Conversely, when

cytotoxic cells are stimulated by inhibiting signals from the

surrounding environment, they will cause their dysfunction and

inhibit their proliferation, thus weakening their ability to kill tumor

cells. Cells exhibit negative regulatory function via a receptor or

ligand called an immune checkpoint, and anti-tumor therapy

targeting the regulating of immune checkpoints is called Immune

Checkpoint Therapy (ICT) (41, 42). Food And Drug

Administration (FDA) has approved ICT for the treatment of

solid malignancies in multiple organs (43–45). The main
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therapeutic targets of ICT in prostate cancer are the cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4), programmed cell death

protein 1 (PD-1) and its ligand (PD-L1) (46, 47).

Ipilimumab is a humanized monoclonal antibody that blocks

CTLA-4 and enhances the immune effect of T cells. It was approved

in 2011 for the treatment of melanoma (48). Some early clinical

trials that confirmed the anti-tumor activity of Ipilimumab in solid

tumors included patients with prostate cancer. However, the results

of a phase III trial in patients with asymptomatic or minimally

symptomatic mCRPC without visceral metastases who had not

previously been treated with chemotherapy (49), did not show a

benefit in OS following treatment with ipilimumab compared to

placebo. In a separate phase III study (50), the ipilimumab group

did not show any significant OS benefit compared with placebo in a

population of minimally symptomatic mCRPC patients who had

received prior docetaxel chemotherapy and were chemotherapy-

sensitive, despite the presence of long-term responders. However,

we found that a small group of patients in this study achieved a

significant and sustained clinical response with ipilimumab. A

follow-up study found that a subgroup of patients with mCRPC

with immune characteristics such as higher intratumor infiltrating

CD8+ T cells, high IFN-g response gene signals, and more robust

antigen-specific T cell responses was more likely to achieve control

of progression with ipilimumab monotherapy and more extended

survival benefits, despite the relatively low tumor mutational load in

this subset of patients (51). This finding indicates that a more

careful selection of appropriate patients is required for

ipilimumab treatment.

PD-1 is expressed in activated T cells and binds to PD-L1 and

PD-L2 to mediate inhibition of the activity of variable tumor

effector cells (52). In patients with metastatic melanoma, objective

response rates (ORR) ranging from 20% to 45% were observed after

CTLA-4 or PD-1 (53), with response rates up to 60% observed when

CTLA-4 was combined with PD-1 blockade (54, 55). However,

similar to ipilimumab monotherapy, studies have found that

nivolumab and pembrolizumab alone do not achieve the expected

treatment outcomes in patients with advanced prostate cancer (56–

58). In the KEYNOTE-199 trial (58), the ORR (5% vs 3%) and

disease control rate (DCR) (13% vs 18%) in PD-L1-positive patients

were similar to the PD-L1-negative patient group; no differences in

OS were observed between the two groups, which may be

related to the more advanced stage of the disease in the positive

PD-L1 group. It is believed that the immunosuppressive tumor

microenvironment, tumor mutation burden and immune escape

mechanism of prostate cancer are the reasons that hinder the

efficacy of immune checkpoint inhibitors (59). At the same time,

the shorter duration of treatment in KEYNOTE-199 could diminish

the OS benefit. Previous studies have found that ipilimumab

treatment significantly increased the number of tumor-infiltrating

T cells in prostate cancer patients. However, it induced a

compensatory immunosuppressive pathway mediated by PD-1/

PD-L1 signaling, negatively affecting antitumor therapy (60).

Based on this finding, the subsequent CheckMate650 Phase II

trial (NCT02985957) focused on improving treatment outcomes

for patients with prostate cancer when ipilimumab was

administered in combination with nivolumab (61). We will
Frontiers in Oncology 04
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combination therapy strategies. The European Association of

Urology (EAU) guidelines suggest that pembrolizumab may be a

valuable additional management strategy for mCRPC patients with

high microsatellite instability, and with continuous advances in

genome sequencing technology, it will be helpful to screen patients

who can benefit from immunosuppressive therapy (62, 63).

The difficulty of producing substantial clinical benefits with ICT

alone in unselected patients with prostate cancer has been widely

recognized. However, earlier studies have reported that a subgroup

of prostate cancer patients with defects in the DNAmismatch repair

gene and high microsatellite instability characteristics tended to

have higher response rates to single ICT (64, 65). The results of the

subgroup analysis also suggested that single immunological

checkpoint blockade had better efficacy in these patients.

However, this idea has been questioned in recent studies: it has

been shown that there is no positive correlation between CD8+ T

cell numbers and neoantigen load in breast and prostate cancers

and that the characteristics of high tumor mutational load is not

predictive of the efficacy of ICT in patients with breast and prostate

cancer. Therefore, the search for additional biomarkers as

predictors of immune checkpoint efficacy may be required in the

future (66, 67). This highlights the importance of tumor signature

screening for prostate cancer patients and individualized treatment

regimens for prostate cancer in terms of immunotherapy strategies.
4 Adoptive cell therapy

Adoptive cell therapy is a rapidly expanding field of medicine in

recent years that mediates antitumor, antiviral, or anti-

inflammatory effects by isolating, modifying, and expanding

autologous or allogeneic tumor-responsive lymphocytes and

reinfusing processed lymphocytes back into the patient (68, 69).

Of these, cell therapies involving chimeric antigen receptor T (CAR-

T) have demonstrated high response rates and durable disease

remission in the treatment of hematologic malignancies (70–72),

and several companies have received FDA approval for their CAR-T

products for the treatment of refractory and complex hematologic

diseases in the last 5 years (73).

CAR-T therapy genetically modifies T cells by in vitro

transfection technology to express engineered chimeric receptors

(74). Currently, CAR-T technology has developed to the fourth

generation, as the latest generation technology, the structure not

only has a co-stimulatory protein intracellular domain but also

promotes the release of cytokines such as IL-12, IL15, and IL18 after

receptor activation, which can enhance the killing efficiency of T

cells (75). When CAR-T cells are cultured and expanded in vitro

and transfused back to patients, the transmembrane region converts

the CAR recognition signal for extracellular targeted tumor antigens

into a signal for activation of T cells through the intracellular

domain. When CAR-T cells arrive inside the tumor, they cause

cytotoxic particles such as cytokines and perforins to be secreted by

cytotoxic T cells, leading to the destruction of tumor cells (76). This

technique is being applied to treat solid malignancies, including

prostate cancer (77, 78). This is a new T cell-mediated antitumor
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therapy in which cytotoxic T cells can be activated independently of

major histocompatibility complex (MHC), thus eliminating

dependence on the traditional T cell receptor-MHC pathway, can

be severely compromised in the “cold” tumor microenvironment of

prostate cancer (79).

Narayan et al. reported the results of the latest phase I clinical

trial of CAR-T therapy in patients with mCRPC (80): In terms of

safety, a cytokine release syndrome (CRS) was the most common

drug-related SAEs, predominantly G1-3, and most patients

exhibiting a CRS resolved spontaneously or with symptomatic

treatment, confirming its good safety profile. In terms of tumor

responsiveness, PSA levels decreased by at least 30% in 4 of the 13

patients; one patient had a >98% decrease in PSA levels

accompanied by significant proliferation of CAR-T cells in vivo,

and 38.5% of patients maintained stable disease status at three

months posttreatment assessed by imaging. The study showed a

median OS of 15.9 months and a median progression free survival

(PFS) of 4.4 months in patients receiving CAR-T therapy. Although

a general immune response was observed in the study, it does not

seem to translate into a survival benefit for mCRPC patients. The

study also observed that patients had a dose-dependent decrease in

peripheral blood CAR-T cell proliferation, inflammatory cytokine

expression, clinical CRS, and PSA, which could help guide the

appropriate dose selection for future CAR-T therapies in clinical

applications (81). This result is generally consistent with the results

of the earlier P-PSMA-101-001 trial (NCT04249947). Currently,

there is no consensus on whether to receive lymphatic clearance

prior to CAR-T therapy, and studies have shown that lymphatic

clearance enhances T cell proliferation and viability, thus improving

efficacy but also increasing hematologic and systemic toxicity. Thus,

more research is needed to select suitable patients to receive

lymphatic clearance to achieve maximum therapeutic benefit.

Although CAR-T therapy has shown good therapeutic potential

in the treatment of advanced prostate cancer, several barriers

remain to be addressed to enhance CAR-T therapy efficacy in

solid tumors: 1) physical interference of CAR-T cells by the

stroma surrounding solid tumors; 2) abnormal CAR-T function

due to the specific suppressive tumor microenvironment of prostate

cancer; and 3) CAR-T cell defects: reduced self-replication ability

(82, 83). Multiple studies of CAR-T therapies are ongoing

(NCT03873805; NCT02744287). A preclinical study has shown

that CAR-T combined with docetaxel has synergistic efficacy (84),

and this feasibility needs to be supported by evidence in future

clinical trials. With the improvement of the structure of CAR-T

cells, as well as the determination of therapeutic dose and treatment

cycle, CAR-T may become an alternative treatment for prostate

cancer patients.
5 Bispecific antibody therapies

Bispecific antibody therapies, especially bispecific T-cell

engagers (BiTE) (85), have shown significant therapeutic promise

in the treatment of refractory hematologic malignancies. Recently,

BiTE therapies have been explored to treat advanced malignant

solid tumors. The studies conducted to date have mainly included
Frontiers in Oncology 05
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(ScFv) technology to recognize specific tumor antigens. Antibodies

on one side of the BiTE bind specifically to tumor cell surface tumor

antigens, such as PSMA, generating activation signals delivered to

the T cell CD3 surface receptors via antibodies on the other side

(86). Direct engagement of co-stimulatory CD3 receptors bypasses

the need for traditional monosynaptic binding and enables MHC

non-dependent T cell activation. In recent preclinical studies (87),

AMG160 showed promising durable specific antitumor activity and

an acceptable nonclinical safety profile in a model of prostate cancer

tumor graft. There is a lack of solid evidence supporting the clinical

application of BiTE in large trials, with safety and efficacy results of

BiTE in patients with prostate cancer reported only in phase I

clinical trials (88). In terms of imaging, there is evidence that

AMG160 does not interfere with the signal intensity of 68Ga-

PSMA-11PET/CT compared to non-PSMA specific BiTE, which

has important implications for the post-treatment efficacy

assessment (89). BiTE is more readily available for widespread

use than CAR-T therapy because it is not a separately produced

cellular product. In terms of tumor penetration capacity, BiTE

therapy is superior to CAR-T, and in terms of safety, the incidence

of BiTE adverse events is lower and relatively controllable.

However, there are still many challenges for BiTE therapy, such

as loss of target antigen, formation of resistant antibodies, and up-

regulation of immune checkpoints (90, 91). The up-regulation of

immune checkpoint is a possible resistance mechanism of BiTE,

which provides theoretical support for the combination of BiTE

therapy and ICI (92). In addition to targeting PSMA, exploring

other alternative tumor antigens, such as PSCA, disintegrin and

metalloproteinase 17 (ADAM17M) and delta-like ligand 3 (DDL3),

may also be a future direction (93–95).
6 Combination therapy

Current evidence shows that treatment with single

immunotherapy regimens appear have not achieved the expected

therapeutic effects. With the increasing understanding of the

regulatory mechanisms of immunotherapy in various preclinical

studies, immunotherapy-based combination therapy strategies are

gradually becoming and increasing trend. Current combination

treatment options include the combination of multiple

immunotherapy regimens, immunotherapy combined with

hormone therapy, immunotherapy combined with radiation

therapy, and immunotherapy combined with chemotherapy.
6.1 Immune dual combination therapy

Uncertainty about the efficacy of immune checkpoint therapy

monotherapy regimens facilitated the exploration of combination

regimens, and the establishment of the CheckMate650 phase II trial

(NCT02985957) (61). The no-chemotherapy cohort and the post-

chemotherapy cohort received ipilimumab (3 mg/kg) in

combination with nivolumab (1 mg/kg) with a median follow-up

of 11.9 months and 13.5 months, respectively, ORR of 25% and 10%
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in the two groups, and median OS of 19.0 months and 15.2 months,

respectively. Although combination therapy demonstrated

significant treatment effects, the study reported a significantly

increased incidence of TRAEs, with approximately 40% of

patients in both groups requiring the application of high-dose

cortisol for immune-mediated AEs. Approximately half of the

patients exhibited G3-G4-grade TRAEs and 4 patients

experienced TRAE-related deaths. Higher drug-related mortality

in patients with mCRPC compared to the same dose regimen

previously applied in patients with metastatic melanoma may be

associated with advanced age and worse ECOG scores. The

significant treatment effect observed in the CheckMate650 trial

revealed the therapeutic promise of dual immunosuppressant

combinations, and a concomitant increase in drug toxicity needs

to be investigated in future studies. We must explore different

dosing strategies to find the balance between efficacy and toxicity.

The other study investigated the combination of Sipuleucel-T and

Ipilimumab in patients with mCRPC, and the combination did not

achieve greater efficacy than Ipilimumab monotherapy, which is

similar to the results of the previous study (96, 97). It was found that

the timing of Ipilimumab administration after Sipuleucel-T

vaccination may affect the activation of antigen-specific T cells,

but no differences in patient survival benefit and disease progression

were observed. Similarly, no additional benefit was shown with

Sipuleucel-T plus pTVG-HP as an immune-boosting regimen (98).
6.2 Immunotherapy combined with
hormone therapy

Hormone therapy plays an important role in the treatment

strategy of prostate cancer patients, and the new generation of AR

pathway inhibitors provide more options to treat patients with

advanced prostate cancer (99, 100). In recent years, as the

mechanisms of androgen activity in prostate cancer have been

studied, we have gained a richer understanding of the immune

regulatory mechanisms played by androgens and AR in patients

with prostate cancer. AR is expressed not only in tumor cells but

also in various immune cells in vivo, playing an immunomodulatory

role (101, 102). Androgens have long been known to inhibit

the development and activation of T and B cells through

multiple mechanisms (103). In patients with prostate cancer,

immunotherapy combined with hormone therapy has emerged as

a new combination therapy. However, the efficacy of

immunotherapy combined with hormone therapy in patients with

prostate cancer has produced uncertain findings. Conflicting

treatment outcomes are usually attributed to differences in patient

populations. Recent studies have found that AR antagonists

interfere with initial T cell activation and may diminish the

therapeutic effect of combination therapy (104). However, this

immunosuppressive effect can be avoided by judicious selection of

the sequential dose timing (105, 106). A recent study published in

Nature revealed a potential mechanism by which AR antagonists in

combination with anti-PD-1 monoclonal antibodies in clinical trials

led to high patient responsiveness (105). The study reported that

enzalutamide prevented T cell depletion by inhibiting AR in CD8+
Frontiers in Oncology 06
T cells while increasing IFN-g release and improving responsiveness

to targeted PD-1 therapy, which provided a theoretical basis for the

administration of hormone therapy in combination with immune

checkpoint inhibitors. The IMbassador250 trial (NCT03016312)

investigated the impact of co-administration of atezolizumab with

enzalutamide compared to enzalutamide alone on the survival

benefit of patients with mCRPC (107). Although the incidence of

AEs in the combination group was essentially identical to

enzalutamide alone, the combination group (median OS: 15.2

months) did not show a survival benefit compared to

enzalutamide alone (median OS: 16.6 months) (HR=1.12 95% CI

0.91–1.37), forcing the early termination of the study. In terms of

secondary outcomes, the combination group similarly did not show

any benefit. It is difficult to provide a plausible explanation for the

IMbassador250 trial results. However, previous single-arm studies

have found that pembrolizumab combined with enzalutamide

produced an 18% response rate in unselected mCRPC. In the

latest Nature study, the ADT+enzalutamide+anti-PD-L1 triplet

regimen provided a superior OS benefit and the most significant

reduction in tumor volume in prostate cancer and sarcoma models

compared to the duplex regimen, and it appears that ADT enhanced

the synergistic effect of enzalutamide in combination with

immunotherapy. A clinical trial of triple combination therapy

ADT + enzalutamide + pembrolizumab (NCT04191096) is

underway in patients with mHSPC, which will further validate

the safety and patient responsiveness of the triple combination

regimen. We cannot help but look forward to the therapeutic

potential of the triple combination regimen for advanced

prostate cancer.
6.3 Immunotherapy combined with
radiation therapy

Radiation therapy has been one of the practical tools for the

treatment of various malignant tumors, and it can stimulate the

production of tumor-specific immune responses by inducing tumor

cell death, enhancing the release of tumor-associated antigens, and

upregulating the expression of tumor suppressor proteins and

cytokines through various pathways and mechanisms (107, 108).

In recent years, targeted radiotherapy, represented by Ra-223, has

gradually gained clinical popularity as an emerging therapeutic tool

for patients with advanced prostate cancer, especially for those with

combined bone metastases (109). Ra-223 is a radioactive calcium

analogue that selectively binds to areas of increased bone

transformation and has a certain degree of “bone targeting”. It

produces antitumor effects by releasing alpha particles into

surrounding tissues to destroy cellular DNA. Due to the small

diameter of the action of the alpha particle (2–10 cell diameters),

Ra-233 causes less damage to surrounding normal tissues, giving it a

better safety profile (110). In 2013, Ra-223 was approved by the

FDA for the treatment of patients with symptomatic mCRPC with

bone metastases (111). The survival benefit and the improvement of

bone-related events in mCRPC patients have been supported by the

results of several large clinical trials, in which Ra-223 significantly

prolonged OS and PFS in patients with advanced prostate cancer,
frontiersin.org

https://doi.org/10.3389/fonc.2023.1126752
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liang et al. 10.3389/fonc.2023.1126752
reduced bone pain symptoms considerably, and delayed the onset of

bone-related events during treatment (112, 113). Several trials have

recently explored the feasibility of a combination immunotherapy

regimen with Ra-223. A recently completed trial of Sipuleucel-T in

combination with Ra-223 demonstrated superiority to Sipuleucel-T

administered alone in patients with mCRPC with bone metastases

(114). The study found that Sipuleucel-T in combination with Ra-

223 did not increase the incidence or severity of adverse events;

however, the combination group did not demonstrate an advantage

in secondary outcome indicators related to the immune response.

The combination group showed higher PSA responsiveness (33% vs

0%) and longer time to tumor progression in the observation of

patient clinical outcomes (median PFS 39w vs 12w; HR=0.32),

which was consistent with the findings obtained in previous studies

(115), in which Sipuleucel-T combined with Ra-223 produced a

more significant benefit in patients with mCRPC without additional

toxicity. However, not all combination therapies with Ra-223

produced exciting results; for example, trials exploring the

administration of atezolizumab in combination with Ra-223 did

not produce any additional therapeutic benefits in the combination

group but instead resulted in more significant drug toxicity in the

combination group compared to monotherapy, Thus, combination

therapy with Ra-223 needs to be further studied (116).

Another radiopharmaceutical with great therapeutic potential,

177Lu-PSMA-617, specifically identifies tumor cells with high

expression of PSMA and releases b-particles to destroy tumor

cells, was recently evaluated in the just concluded VISION trial

(117). Significant benefits in radiology progression-free survival

(rPFS) (8.7 vs 3.4 months, HR=0.40) and OS (15.3 vs 11.3 months,

HR=0.62) have been reported, and significant improvements were

also observed in all secondary endpoints of the study. Because

177Lu-PSMA-617 also has a favorable safety profile, it has been

described as a revolutionary precision radiotherapy modality for the

treatment of mCRPC. The PSA response rate was superior to that

reported for cabazitaxel and docetaxel in other studies (118, 119).

The efficacy and safety of 177Lu-PSMA-617 combined with

immunotherapy or other drugs have been explored in patients

with mCRPC. Considering the low possibility of overlap in toxicity

of radiotherapy combined with other therapeutic agents, 177Lu-

PSMA-617 combination therapy may provide a relatively safe

treatment option for patients with mCRPC.
6.4 Immunotherapy combined
with chemotherapy

Chemotherapy, a conventional treatment for cancer patients, is

widely used in the treatment of various malignant diseases.

Docetaxel and cabazitaxel have been successively approved for the

treatment of patients with mCRPC and have been shown to prolong

patient survival and control disease progression. Some studies have

shown that chemotherapy-induced tumor cell destruction may

enhance the development of specific immune responses (120). A

study evaluating pembrolizumab in combination with docetaxel for

mCRPC reported the efficacy of combination therapy in patients

with mCRPC previously treated with enzalutamide or abiraterone.
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The PSA response rate was 27% and ORR and DCR were 23% and

52%, respectively. The median OS of combination therapy was 20.2

months, which was significantly prolonged compared to the median

OS of 9.5 months in the PD-L1 positive cohort in KEYNOTE-199.

KEYNOTE-365 showed initial success with PD-L1 antibodies in

combination with chemotherapy. However, the patients included in

the study were previously chemotherapy naïve patients.

All KEYNOTE-199 patients were treated with docetaxel

chemotherapy prior to treatment with PD-L1 antibodies.

Nonetheless , we cannot define the specific impact of

chemotherapy on the benefit of combination therapy. The

ongoing KEYNOTE-921 trial includes patients with mCRPC after

chemotherapy and will provide further evidence to support this

combination strategy (121).
6.5 Immunotherapy combined with
PARP inhibitors

PARP inhibitors have recently become one of the most popular

drugs in the mCRPC therapeutic area, and is represented by

olaparib and rucaparib. PARP plays an important role in DNA

damage repair in vivo, and PARP1 and PARP2 mediate DNA

damage repair through base excision. The restoration of single-

stranded DNA (ssDNA) damage can be blocked by PARP

inhibitors. Homologous recombination repair proteins can

compensate for the above by repairing broken double-stranded

DNA. However, under the homologous recombination repair gene

defect (HRD), this compensatory pathway is blocked. PARP

inhibitors and HRD cause a synthetic lethality of tumor cells,

generating tumor neoantigens that increase immunogenicity and

improve immune responsiveness in the tumor microenvironment

(122). The safety and significant therapeutic effects of olaparib and

rucaparib monotherapy in patients with mCRPC have been

reported in several studies (123, 124). In the TOPARP-A trial, the

ORR to treatment was 32%, with a response rate of 88% in patients

with DNA repair gene mutations, and other studies have confirmed

that patients with genetic defects such as BRCA1, BRCA2, ATM,

FANC, and CHEK2 have higher sensitivity to PARP inhibitors

(125). PARP inhibitors have been shown to have synergistic effects

with PD-1/PD-L1 or CTLA-4 blockade (126, 127). A recent study of

rucaparib in combination with nivolumab for mCRPC reported its

results: regardless of previous chemotherapy (128), the CheckMate

9KD study showed significantly improved ORR and PSA response

rates with combination therapy in the HRD+ cohort, particularly in

patients with BRAC1/2 mutations; in terms of OS and rPFS, the

median OS for the A2 cohort without chemotherapy was 20.2

months (95% CI 14.1–22.8 months) and the median rPFS was 8.1

months (95% CI 5.6–10.9 months). Regarding safety, common

TRAEs observed following combination therapy were nausea,

fatigue, anemia, and loss of appetite, with G3-G4 TRAEs

occurring in half of the patients in both cohorts, and neutropenia

warranting focus during treatment. In general, rucaparib combined

with nivolumab did not appear to show additional benefits in

unselected mCRPC patients, which is consistent with the findings

of the previous KEYLYNK-010 trial of olaparib combined with
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pembrolizumab. It is also encouraging that a significant response to

combination therapy was observed in the subgroup of patients with

BRAC1 and BRAC2 mutations, but the failure to translate into a

survival benefit is difficult to explain and will require further

evidence. Many studies have been conducted to screen and

identify new, highly effective therapeutic predictive factors for

mCRPC patients (129). Continued advances in next-generation

exon sequencing technology and liquid biopsy technology will

contribute to the precise treatment of mCRPC patients and will

provide more significant benefits to patient.
6.6 Immunotherapy combined tyrosine
kinase inhibitors (TKIs)

TKIs represented by Cabozantinib and Masitinib belong to the

class of small-molecule inhibitors with RARP inhibitors, and both

drugs have shown antitumor activity in previous studies.

Cabozantinib is a mesenchymal-epithelial transition factor (c-

MET) and vascular endothelial factor receptor 2 (VEGFR2)

inhibitor that has been approved for the treatment of patients

with advanced renal cell carcinoma. In a phase 2 study,

cabozantinib significantly prolonged PFS in patients with CRPC

(130). However, in the COMET-1 study, mCRPC patients after

chemotherapy failed to show an OS benefit (131). Studies have

shown that Cabozantinib has immunomodulatory effects and may

be synergistic with other immunotherapy combinations (132, 133).

The COSMIC 021 trial evaluated the safety and clinical benefit of

Cabozantinib in combination with atezolizumab in patients with

mCRPC. The study found that the combination regimen had better

PSA response rate and DCR than either drug monotherapy. In

terms of safety, 95% of patients experienced TRAEs at any grade

and 55% of patients experienced G3-G4. The most common G3-G4

AEs were pulmonary embolism, diarrhea, fatigue, and

hypertension. The safety profile of cabozantinib combined with

atezolizumab was generally consistent with that of the individual

agents, but the incidence of pulmonary embolism is higher than

that of monotherapy (134). Elderly age and concurrent use of ADT

are possible causes of pulmonary embolism. Due to the differences

in patient groups included in different studies, it is difficult to

compare the specific benefits of combination therapy at present,

and future evidence support from other studies is needed.
7 Limitations and future prospects

There are still many obstacles and challenges in prostate cancer

immunotherapy, such as the balance between efficacy and toxicity

of immunotherapy, the timing of sequential administration, the

requirement of individualized dosing regimen for prostate cancer

due to tumor heterogeneity, the lack of appropriate biomarkers for

efficacy evaluation, and the insufficient understanding of the

mechanism of drug resistance. These issues need to be focused on

in the future. Due to the extensive differences between the studies of
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comparison of the treatment effects of different regimens, and

more large-scale controlled trials are needed in the future.

Immunotherapy of prostate cancer is a promising treatment.

With the deepening of research, new tumor-specific antigens have

been discovered, which provides more potential targets for

immunotherapy. The continuous progress of high-throughput

sequencing technology and liquid biopsy technology has

promoted the identification of tumor heterogeneity of prostate

cancer and promoted the precision treatment of prostate cancer

patients. The continuous exploration of drug combination is helpful

to the study of drug interaction mechanism. The development of

imaging technology represented by PSMA-PET/CT provides a

powerful aid in disease diagnosis and efficacy evaluation.
8 Conclusion

Over the past decade, as immunotherapy for solid tumors

continues to be explored, our understanding of immunotherapy

and immunomodulation of solid tumors, including prostate cancer,

has also improved, and a variety of immunotherapeutic agents,

including tumor vaccines and immune checkpoint inhibitors, have

achieved exciting results in clinical trials for advanced prostate

cancer. Although most current trials on immunotherapy for

prostate cancer have focused on patients with mCRPC, there is

reason to believe that immunotherapy may bring earlier clinical

benefits to prostate cancer patients as immunotherapy continues to

improve and mature. In this review, we summarize the experience

and lessons learnt from recent immunotherapy studies and update

the theoretical basis and regulatory mechanisms underlying

immunotherapy for prostate cancer, helping to understand the

latest progress in immunotherapy for prostate cancer. As more

and more clinical trials are conducted, these will provide strong

evidence to support and compare the efficacy of immunotherapy for

prostate cancer, providing a valuable reference that will allow more

patients with prostate cancer to choose their treatment regimen and

prolong survival and also improve the quality of patient survival.
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