AUTHOR=Tejera Nevado Paloma , Tešan Tomić Tajana , Atefyekta Ali , Fehr André , Stenman Göran , Andersson Mattias K. TITLE=Synthetic oleanane triterpenoids suppress MYB oncogene activity and sensitize T-cell acute lymphoblastic leukemia cells to chemotherapy JOURNAL=Frontiers in Oncology VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1126354 DOI=10.3389/fonc.2023.1126354 ISSN=2234-943X ABSTRACT=

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with poor prognosis. The MYB oncogene encodes a master transcription factor that is activated in the majority of human T-ALLs. In the present study, we have performed a large-scale screening with small-molecule drugs to find clinically useful inhibitors of MYB gene expression in T-ALL. We identified several pharmacological agents that potentially could be used to treat MYB-driven malignancies. In particular, treatment with the synthetic oleanane triterpenoids (OTs) bardoxolone methyl and omaveloxolone decreased MYB gene activity and expression of MYB downstream target genes in T-ALL cells with constitutive MYB gene activation. Notably, treatment with bardoxolone methyl and omaveloxolone led to a dose-dependent reduction in cell viability and induction of apoptosis at low nanomolar concentrations. In contrast, normal bone marrow-derived cells were unaffected at these concentrations. Bardoxolone methyl and omaveloxolone treatment downregulated the expression of DNA repair genes and sensitized T-ALL cells to doxorubicin, a drug that is part of the standard therapy of T-ALL. OT treatment may thus potentiate DNA-damaging chemotherapy through attenuation of DNA repair. Taken together, our results indicate that synthetic OTs may be useful in the treatment of T-ALL and potentially also in other MYB-driven malignancies.