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Tumor hypoxic environment is an inevitable obstacle for photodynamic therapy

(PDT) of melanoma. Herein, a multifunctional oxygen-generating hydrogel loaded

with hyaluronic acid-chlorin e6 modified nanoceria and calcium peroxide (Gel-

HCeC-CaO2) was developed for the phototherapy of melanoma. The thermo-

sensitive hydrogel could act as a sustained drug delivery system to accumulate

photosensitizers (chlorin e6, Ce6) around the tumor, followed by cellular uptake

mediated by nanocarrier and hyaluronic acid (HA) targeting. The moderate

sustained oxygen generation in the hydrogel was produced by the reaction of

calcium peroxide (CaO2) with infiltrated H2O in the presence of catalase mimetic

nanoceria. The developed Gel-HCeC-CaO2 could efficiently alleviate the hypoxia

microenvironment of tumors as indicated by the expression of hypoxia-inducible

factor -1a (HIF-1a), meeting the “once injection, repeat irradiation” strategy and

enhanced PDT efficacy. The prolonged oxygen-generating phototherapy hydrogel

system provided a new strategy for tumor hypoxia alleviation and PDT.
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1 Introduction

The global morbidity and mortality of melanoma are increased dramatically, which is still

one of the severe threats to public health (1–3). However, traditional tumor treatment often

confronts obstacles due to visible toxic side effects and drug resistance (4). Recently,

synergetic photodynamic therapy (PDT) has been introduced to overcome melanoma and

has shown great potential in the field of tumor therapy (5, 6). As a noninvasive technology,

PDT addresses spectacular advantages such as high localized tissue damage and minimal side

effects (7). In the PDT process, photosensitizers such as chlorin e6 (Ce6) accumulated in

tumor tissues are usually activated and energized by a specified light, resulting in reactive

oxygen species (ROS) generation and singlet oxygen (1O2) in the presence of biological

substrates and oxygen (8). Therefore, oxygen and photosensitizer contents in tumor tissues

are restrictive factors for PDT reaction and cytotoxicity (9). However, the therapeutic efficacy
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of PDT is often unsatisfactory because of the hypoxic

microenvironment in most malignant tumors and rapid drug

metabolism-induced short-term effects (10–12). It is of great

significance to alleviate hypoxia and prolong photosensitizer supply

in the tumor environment for enhancing PDT efficacy.

Several efforts have been conducted to overcome tumor hypoxia,

such as water splitting (13, 14), respiratory inhibitor (15, 16), O2-

evolving agents (17, 18), catalase (19, 20), and nanoscale metal-

organic framework (21, 22). Among them, catalase could effectively

improve the efficacy of oxygen supply and PDT treatment because of

the catalytic decomposition of elevated H2O2 in the tumor

environment (23, 24). However, the poor stability, cost, and limited

catalyst capacity restrict the application of natural catalase. These

limitations have emerged the nanoenzymes, which are defined as

nanomaterials with enzyme-like characteristics (25, 26). Numbers of

nanomaterials based on iron oxides (27), copper oxides (28, 29),

vanadium oxides (30, 31), and noble metals (Au, Ag, Pt, Pd) (32–36)

have been reported to mimic catalase activity.

Cerium nanoparticles (CeNPs) are a remarkably versatile rare earth

nanomaterial with excellent catalytic activities (37, 38). It has been

reported to mimic multiple types of enzymes due to the electron

shuttle between their mixed oxidation states (Ce3+/Ce4+) and has

emerged as a fascinating material in biological fields (39). Recently, we

demonstrated that chemically cytotoxic and oxygen-carrying CeNPs

could act as a nanocarrier to deliver photosensitizers into tumor cells,

resulting in enhanced PDT efficacy (40, 41). In this study, to obtain

sufficient oxygen generation for PDT, the CeNPs nanocarrier was

introduced into the system and used as an ideal renewable catalase-like

enzyme to catalyze the reaction of CaO2 andH2O.Herein, we designed a

prolonged oxygen-generating phototherapy hydrogel system (Gel-

HCeC-CaO2) to improve the therapeutic efficacy of PDT in

treating melanoma.
2 Materials and methods

2.1 Chemicals and reagents

Poloxamer P407 (F127) and Poloxamer P188 (F68) were purchased

from BASF,Germany. H2O2 (technical grade, 30%) was offered by

Aladdin,China. CaO2, Cerium (III) nitrate hexahydrate, Docusate

sodium(AOT), and Alendronate sodium were offered by Sigma

Aldrich,USA. Chlorin e6 (Ce6) was offered by Frontier Scientific, Inc,

USA. HAwith a molecular weight (MW) of 17kDa was purchased from

Lifecore Co. Dulbecco’s modified Eagle’s medium (DMEM), Fetal

bovine serum (FBS) and Trypsin-EDTA (0.25%) were purchased from

Gibco,USA. The Cell counting kit-8 (CCK-8 kit) were purchased from

Dojindo,Japan. Trizol reagent was offered by Invitrogen,USA.

PrimeScript RT Master Mix was purchased from Takara,Japan. SYBR
Abbreviations: PDT, photodynamic therapy; Gel-HCeC-CaO2,oxygengeneratin

hydrogel loaded with hyaluronic acid-chlorin e6 modified nanoceria and calcium

peroxide; Ce6, chlorin e6; HA, hyaluronic acid; CaO2, calcium peroxide; HIF-1a

hypoxiainducible factor -1a; ROS, reactive oxygen species; CeNPs, cerium

nanoparticles; AOT, docusate sodium; NaOH, sodium hydroxide; DMEM

dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum.
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Green PCR Master Mix was purchased from Applied Biosystems,USA.

All chemicals and reagents were of analytical grade.
2.2 Synthesis of materials

The naked cerium oxide nanoparticles (MCeNPs), cerium oxide

nanoparticles-alendronate (CeNPs-AL), hyaluronic acid-chlorin e6

modified nanoceria (HCeC), and Gel-HCeC-CaO2 were prepared as

described in the literature (17, 42).

MCeNPs: 0.4548 g AOT and 1.5 ml Ce(NO3)3·6H2O aqueous

solution(0.1 M) were added to 30 ml methylbenzene under potent

stirring for 45 min (4500 rpm/min). Then H2O2 was added using a

pipette tip slowly under potent stirring for 1 h (4500 rpm/min).

CeNPs-AL: 20 mg AL,200 mg Na2CO3, and 10 ml MCeNPs were

added to 5 ml ddH2O under potent stirring for 24 h, then centrifugal

(5 min,3000 rpm). After that, we used a dialysis bag (Thermo, 10kDa)

to dialyze the acquired CNPs-AL for 24 h.

HCeC: 0.5mLCe(NO3)3·6H2Oaqueous solution(0.1M)were added

to 10mLHAaqueous solution(5mg·ml-1) at 37 °Cunder potent stirring.

After 15 min, 0.8 ml sodium hydroxide (NaOH) (1M) was added to the

mixture and stirred for 30 min. Then, 400 ml Ce6 (10 mM) was quickly

added and stirred for 5.5 h. After that, the dialysis bag (Thermo, 10 kDa)

was used to dialyze the acquired HCeC for 24 h in dark and rinsed with

water repeatedly in a sleeve tube (Millipore, 30 kD). The acquiredHCeC

were dispersed in ddH2O (HCe not contained Ce6).

Gel-HCeC-CaO2: 0.26 g Poloxamer407 (F127),7.5 mg CaO2 were

mixed in a 1 mL bottle, then 400 mL PoloxamerP188 (F68) and 313 mL
HCeC were added to it. At last, ddH2O was added to 1 mL and

acquired Gel-HCeC-CaO2 system (Gel not contained CaO2 and

HCeC, Gel-CaO2 only included CaO2).
2.3 Characterization of HCe and HCeC

The zeta potential of the HCe and HCeC were determined using

dynamic light scattering(Invitrogen, America). The hydration of

nanoparticles was determined by dynamic light scattering (DLS)

analysis. The HCe and HCeC were characterized by HR-TEM (FEI,

America) at an accelerating voltage of 200 kV. The fluorescence

spectra of Ce6, HCe, and HCe6 were determined by Fluoromax-4

spectrofluorometer (Horiba Jobin Yvon Inc, France) at 405nm

excitation light. The absorption spectra of Ce6, HCe, and HCeC

solution were determined by a UV spectrophotometer (KAIAO,

China). Moreover, the HCe and HCeC were cultured with

ddH2OˎPBS ˎDMEMˎDMEM+ 10% FBS for 24 h to observe the

stability. The photosensitivity of HCeC was detected by singlet oxygen

sensor green reagent (SOSG). And we mixed the HCeC with 50 mM

H2O2 to show the CAT-like activity of the HCeC.
2.4 Sol-Gel transition behavior of the Gel-
HCeC-CaO2 system

1 mL Gel and Gel-HCeC-CaO2 solution were added into a 10 mL

bottle, then put the bottle into a 37 °C water bath at a different time

until the solution transformed to gel, recording the time (43). The test
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tube inverting method was used to determine the sol-gel transition

behavior of the hydrogel (44), 1 mL Gel and Gel-HCeC-CaO2 solution

was placed in a 10 mL bottle at -20 °C, 4 °C, 25 °C, and 37 °C to observe

the solution transformed to gel. 1 mL Gel-HCeC-CaO2 solution was

placed in a 10 mL bottle and incubated at 37 °C for 5 min to gel. 1 mL

PBS (pH = 7.4, 37 °C) and CaCl2 solution were gently added into the

bottle as a release medium. The bottles were shaken at the speed of 50

rpm in a thermostatic shaker (HENGZI, China) at 37°C while the

weight of the gel was measured every 20 min.
2.5 Oxygen generation of the Gel-HCeC-
CaO2 system

N2 was injected into 30 mL PBS for 30 min to produce the

deoxygenated PBS. The deoxygenated PBS was divided into two

groups, and the PH was adjusted by concentrated hydrochloric acid

to 5.4 and 7.2, respectively. 5 mL Gel-HCeC-CaO2 solution were put

into a 50 mL centrifuge tube and incubated at 37 °C for 5 min to gel.

Then, 30 mL deoxygenated PBS (PH=7.2/5.4, 37 °C) was added into

Gel-HCeC-CaO2 solution. Afterward, we added 10 mL cooking oil

isolate deoxygenated PBS and air. We used the Dissolved Oxygen

Meters (Mettler, Switzerland) to detect oxygen generation.
2.6 Cell experiment and design

We obtained the murine melanoma cells (B16F10) lines from the

Chinese Academy of Sciences cell bank. Cells were cultured in RPMI

1640 culture medium containing 10% FBS and 1% penicillin-

streptomycin in a controlled environment (37 °C, 95% air, 5% CO2).

Cell migration assay: B16F10 cells were seeded into 6-well plates

and allowed to grow 80%-90% confluence. We used a sterile 20 mL
pipette tip to scrape the confluent monolayer to form a cell-free zone.

Then, B16F10 cells were incubated with HCeC (1 mg ·mL−1) or Gel-

HCeC-CaO2 (1 mg ·mL−1) for 24 h and irradiated by the 660 nm laser

(200 mW/cm2) irradiation for 5 min (45). Cells were photographed at

0, 24, and 48 h with a light microscope (Olympus, Japan).

Cytotoxicity assays: B16F10 cells were seeded at an initial density

of 1 × 104 in 200 µl RPMI 1640 medium. After 24 h, cells were

incubated with HCeC (0,0.125,1.25,12.5,25 mg·mL-1, dark, laser) or

Gel-HCeC-CaO2 (0,0.005,0.05,0.5,1 mg·mL−1, dark, Laser). The laser

group received the 660 nm laser (200 mW/cm2) irradiation for 5 min

after incubation at 24 h. After 48 h, we added 10 mL CCK-8 solution to
each well and detected the absorbance at 450 nm.
2.7 Animal experiment and design

Animal model: All BALB/c-nu mice animal procedures were

approved by SPF Biotechnology Co., Ltd in our experiments.
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injection of B16F10 cell (5×105) suspended in PBS into the flank

region of the right back of BALB/c mice and allowed them to grow

into solid tumors.

Biodistribution of Gel-HCeC-CaO2 in B16F10 tumor-bearing

mice: Mice were injected with 100mL Ce6, HCeC, and Gel-HCeC-

CaO2 after the tumor volume reached about~65 mm3. We used an in

vivo imaging system (Perkin Elmer, America) to observe the mice at

0,4, and 20 h after injection. And the major organs such as the liver,

spleen, kidney, heart, lung, and tumor were excised for further

imaging analysis.

Antitumor on orthotopic B16F10 model: When the tumor size

achieved ~65 mm3, B16F10 tumor-bearing mice were randomly

divided into eight groups (n=6/group): PBS (100mL,dark),Gel-CaO2

(100mL,dark),HCeC (100mL,dark),HCeC (100mL,laser),HCeC

(100mL,laser*2),Gel-HCeC-CaO2 (100mL,dark),Gel-HCeC-

CaO2 (100mL,laser), and Gel-HCeC-CaO2 (100mL,laser*2). The laser
group was irradiated with 660 nm laser (200 mW/cm2) irradiation for

5 min at 4 h or 20 h. And we recorded the body weights and tumor

volumes of mice every 2 days (46). The tumor volumes were

measured with a digital caliper and calculated as the following

formula: width2×length×0.5.

Histological analysis and anti-metastatic activity of mice: The

tumors of all mice were collected and subjected to the H&E staining

or TUNEL assays after the mice were sacrificed. We used a light

microscope (Olympus, Japan) to observe the histological change. At

the same time, the lungs of mice were also excised and

photographed (47).
2.8 Quantitative polymerase chain reaction

The oligonucleotide primers were designed by Sangon Biotech

(Shanghai, China) and listed in Table 1. The total RNA was

extracted by TRIzol reagent and quantified by NanoDrop2000

spectrophotometer (Thermo Fisher Scientific, USA). The

PrimeScript RT Master Mix and SYBR Green PCR Master Mix

were used for performing the qPCR (48).
2.9 Statistical analysis

The data were expressed as mean values ± SEM, including at least

three biological replicates. The Student’s t-test and one-way analysis

of variance (ANOVA) were utilized to determine the statistical

significance of differences among groups. Statistical values are

indicated according to the following scale: ⁎p < 0.05, ⁎⁎p < 0.01,

⁎⁎⁎p < 0.001. All statistical analyses were performed by SPSS

19.0 software.
TABLE 1 Primer sequences of target genes for qPCR.

Gene Species Forward primer sequence (5'-3') Reverse primer sequence (5'-3')

b-actin mouse CCACCATGTACCCAGGCATT CGGACTCATCGTACTCCTGC

TNF-a mouse GAATGAAGTGCACCCTAACAAG GAGGAATGGGTTCACAAATCAG
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3 Results

3.1 Characterization of HCe and HCeC

The MCeNPs was synthesized by the microemulsion method (49).

As shown in Supplementary Figure 1, the solutionwasmilkywhite in the

process of magnetic stirrers, which stratified overnight. The upper

popcorn liquid was a toluene organic phase containing MCeNPs and

the underlying dark yellow liquid was an aqueous phase containing

CeNPS-Al. Due to the lack of effective surface protection, MCNPs was

agglomerated in solution and cleared by the endothelial reticular system

(ERS) in the body. Therefore, HCe and HCeC were synthesized by

probing the interaction between CeNPs andHA to improve the stability

of MCeNPs. To measure the size distribution of HCe and HCeC, we

performed the DLS. As shown in Figure 1A, the average diameter of

HCeC was approximately 25.60 nm while HCe was about 19.86 nm,

because theCe6molecule increased themolecular diameter ofHCe. And

the zeta potential of the HCeC was approximately -6mV and the HCe

was -5.6mV in Figure 1B, owing to the presence of the carboxyl group in

Ce6. To examine the structure of the HCe and HCeC, the detailed

morphology was characterized by HR-TEM. Due to the protective effect

ofHA (50), we found the size ofHCe andHCeC are about 2-3nm and 3-

4nm, showinggooddispersion inwater inFigure1C.TheCe3+/Ce4+ ratio

is crucial for the enzyme-mimetic activity, the X-ray photoelectron

spectroscopy (XPS) analysis of HCe and HCeC showed high Ce3+/Ce4

+ ratio in Figures 1D, E and Supplementary Figures 2A–C. Besides, the

results of Fourier transform infrared spectra (FT-IR) showed that HA

was conjugated to nanoceria successfully in Supplementary Figure 2D.

To verify that Ce6 was linked to HCe, the fluorescence spectra of

Ce6, HCe, and HCeC were determined by a fluorescence
Frontiers in Oncology 04
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characteristic fluorescence peaks of Ce6 were between 640-690nm.

Owing to the electron transfer between HCe and Ce6, HCeC showed

significant fluorescence quenching compared with Ce6. The

successful preparation of HCeC was validated by UV–vis

absorption spectroscopy in Figure 1G. The characteristic absorption

peak of Ce6 was at 404nm, with the Q wave between 500-700nm. The

absorption peak of HCeC was similar to Ce6 besides a little red shift,

which indicated that Ce6 had been successfully covalently linked to

HCe. To explore the stability of nanomaterial, HCe and HCeC were

mixed in a series of physiological solutions (water, PBS, DMEM,

DMEM+10% FBS) for 24 h. As shown in Supplementary Figure 2E,

we found there were no obvious agglomeration and precipitation of

HCe and HCeC. These results indicated that HA modification could

improve the stability of CeNPs effectively as literature report (51, 52).

Besides, we found that the mass ratio of Ce to Ce6 of the HCeC is

about 1:0.33 Supplementary Figures 2F, G and the HA modification

could not affect the photosensitivity of HCeC in Figure 1H. The

HCeC showed high CAT-like activity in Figures 1I, J. Therefore, we

demonstrated that HA had been successfully modified on the surface

of nano-sized cerium oxide and covalently bound to Ce6, which

provided a foundation for further biological application.
3.2 Characterization of the Gel-HCeC-CaO2
system

Hydrogel was a kind of polymer material that had been widely

studied at present (53), which could be converted between liquid and

solid state with a change of temperature. To show the sol-gel

transition behavior of the hydrogel by the test tube inverting method
A B

D E F G

IH J

C

FIGURE 1

Characterization of HCe and HCeC. (A) DLS of HCe and HCeC. (B) Zeta potential of HCe and HCeC. (C) TEM of HCe and HCeC. (D) XPS analysis of HCe.
(E) XPS analysis of HCeC. (F) Fluorescence spectra of Ce6, HCe, and HCeC. (G) UV–vis absorption spectroscopy of Ce6, HA, HCe and HCeC.
(H) Photosensitivity of HCeC. (I, J) The CAT-like activity of HCeC.
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(44), the Gel and Gel-HCeC-CaO2 were liquid at -20°Cˎ 4°C ˎ25°Cand
37°C.As shown inFigure2A, the liquid transformed intogel at -20°Cand

37°C and the sol state at 4°C and 25°C. With the extension of the bath

time at 37°C, the hydrosol transformed into the gel phase gradually, and

the rheological temperature was affected by the addition of CaO2 and

HCeC.The gelation timeofGel-HCeC-CaO2was approximately9 swith

the Gel needing 12 s and more time in Figure 2B. To observe the

corrosion behavior of the Gel, the release experiment in vitro was

performed, which showed the gel is almost completely dissolved at

approximately 6 h in Figure 2C, following zero-order kinetics. Besides,

the UV–vis absorption spectroscopy was used to investigate the

photophysical properties of HCeC, Gel, Gel-CaO2, and Gel-HCeC-

CaO2 in Figure 2D, and the absorption peak of Gel-HCeC-CaO2 was

similar to HCeC, indicating that HCeC was mixed with the gel.

Furthermore, owing to the catalase activity of HCeC, the O2

generation of Gel-HCeC-CaO2 in vitro was detected. As shown in

Figure 2E, the generation rate of oxygen from Gel-HCeC-CaO2

(PH=7.2) was fast compared with other groups, indicating that the

catalase activity of HCeC was influenced by the PH value. Owing to

the catalase activity of the Gel-HCeC-CaO2 being affected by PH (54), the

catalase activity of the Gel-HCeC-CaO2 was the highest under neutral

conditions while reducing the catalase activity under acidic conditions.

Therefore, the Gel-HCeC-CaO2 could release oxygen slowly to relieve

tumor hypoxia in the acidic tumor microenvironment.
3.3 In vitro PDT of HCeC and Gel-HCeC-
CaO2 system

To detect the phototoxicity of Gel-HCeC-CaO2, cell viability was

measured by CCK-8. There was almost no significant phototoxic effect
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observed in B16F10 cells treatedwithHCeCwith or without irradiation in

Figure 3A. However, the B16F10 cells treated with Gel-HCeC-CaO2

(Laser) had a significant effect on B16F10 cells compared with Gel-

HCeC-CaO2 (Dark) in Figure 3B. Because the Gel-HCeC-CaO2 (Laser)

could release oxygen to improve the PDT efficiency, and produce a large

number of 1O2 andROS to kill tumor cells.Moreover, theH2O2 (300mM)

could almost kill 50% of B16F10 cells owing to the toxicity in

Supplementary Figure 3A, but the H2O2 (100 mM) had almost no effect,

confirming that the toxicity of Gel-HCeC-CaO2 was not caused by H2O2.

Totest themigrationofB16F10cells treatedwithGel-HCeC-CaO2(Laser),

weperformed the scratch test.As shown inFigure 3C, themigration ability

of B16F10 cells in the Gel-HCeC-CaO2 (Laser) group was significantly

lower compared with other groups. Therefore, the Gel-HCeC-CaO2

(Laser) could enhance PDT efficiency and kill B16F10 cells significantly.
3.4 In vivo biodistribution of Gel-HCeC-
CaO2 system

To show the biodistribution of Gel-HCeC-CaO2 in vivo, the

fluorescence of Ce6, HCeC, and Gel-HCeC-CaO2 in mice was

detected at 0 h,4 h, and 20 h post-injection. As shown in

Figure 3D, only a small amount of fluorescence appeared at the

tumor site in Ce6 and HCeC group whereas predominantly observed

in the Gel-HCeC-CaO2 group at 20 h, suggesting that the good

retention of the Gel-HCeC-CaO2 in the mice. The biodistribution of

the nanomaterials in mice was quantitatively analyzed in Figure 3E.

Fluorescence imaging of some organs like lungs, liver, and kidneys

showed that free Ce6 and HCeC were rapidly cleared over time up to

20 h, and the Gel-HCeC-CaO2 had the good retention of the tumor to

improve the PDT efficiency.
A

B

D E

C

FIGURE 2

Characterization of the Gel-HCeC-CaO2 system. (A) The sol-gel transition behavior of Gel and Gel-HCeC-CaO2 system. (B) The gelation time of Gel and
Gel-HCeC-CaO2. (C) The corrosion behavior of the Gel-HCeC-CaO2. (D) The photophysical properties of HCeC, Gel, Gel-CaO2, and Gel-HCeC-CaO2.
(E) The O2 generation of Gel-HCeC-CaO2.
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3.5 In vivo photodynamic effect of Gel-
HCeC-CaO2 system

The athymic nude mouse xenograft B16F10 model was generated

for photodynamic therapy of melanoma. To examine the PDT

efficiency of different materials to reduce tumor progression in the

athymic nude mouse xenograft B16F10 model, 100mL PBS, Gel-CaO2,

HCeC, Gel-HCeC-CaO2 were intravenously injected into the mice at

1 week after engraftment, and the NIR irradiation (660 nm, 200 mW/

cm2, 5 min) was administered to the tumor site at 4 h and 20 h post-

injection in the laser groups in Supplementary Figures 3B, C. The

tumors of mice in each group were photographed, the Gel-HCeC-

CaO2 group could significantly inhibit the B16F10 tumor progression

in Figures 4A, B. As shown in Figures 4C, D, the HCeC and Gel-

HCeC-CaO2 groups showed significant tumor regression with a

reduction of the tumor volume by ∼42%, indicating the

chemotherapy toxicity of the HCeC. The laser groups which

irradiated one time could delay B16F10 tumor progression

by∼69%, indicating that HCeC had obvious phototherapy toxicity.

The Gel-HCeC-CaO2(Laser*2)had high tumor growth inhibition

than HCeC(Laser*2), showing that Gel-HCeC-CaO2 could satisfy

repeat PDT therapy.

The tunnel assay confirmed that the Gel-HCeC-CaO2 (Laser)

group induce apoptosis of B16F10 cells in vivo in Figure 4E.

Furthermore, hematoxylin and eosin (H&E) staining revealed large

areas of necrosis, inflammatory cell infiltration and broken blood

vessels of tumor tissue in Gel-HCeC-CaO2 (Laser*2) group in

Figure 4F. Hypoxia-inducible factor 1 a (HIF-1 a) was an

important transcriptional regulator, which was crucial for tumor

progression (55). The Gel-HCeC-CaO2 system could significantly
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inhibit the expression of HIF-1 a compared with the HCeC in

Figure 4G, indicating that Gel-HCeC-CaO2 could alleviate the

hypoxia of the tumor microenvironment. Besides, there were no

metastatic tumor nodules observed in the lungs of the mice in

Supplementary Figure 3D. To show the systemic toxicity of

materials, we observed the body weight and histological change of

mice. As shown in Figure 4H, the treatment could not change the

body weight of mice. Therefore, the Gel-HCeC-CaO2 (Laser) could

reduce tumor progression in the athymic nude mouse xenograft

B16F10 model significantly.
4 Discussion

Notably, the inadequate amount of oxygen generation and short-

term effects of photosensitizers induced by drug metabolism and

clearance in the tumor environment cannot ameliorate the aggravated

stuff supply mediated by PDT consumption (10–12), failing efficient

and repeated PDT. Therefore, an efficient long-term oxygen supply

and drug delivery system should be explored for PDT efficacy

improvement and tumor inhibition. Herein, a prolonged oxygen-

generating phototherapy hydrogel system (Gel-HCeC-CaO2) was

designed to alleviate tumor hypoxia, prolong drug supply, enhance

PDT efficacy, and overcome melanoma. As shown in Figure 5, PSs

loaded biocompatible CeNPs nanocarrier (HCeC) was synthesized by

an HA-mediated self-assembly method under an alkaline

environment, followed by incorporation into a thermo-sensitive

hydrogel prepared by simple mixing Pluronic® F127 and F68, the

FDA-approved polymers (42). Sufficient oxygen generation was

obtained by introducing an O2-evolving agent CaO2 into the
A B

D E

C

FIGURE 3

In vitro photothermal of HCeC and biodistribution of Gel-HCeC-CaO2 system. (A) The phototoxic effect of HCeC. (B) The phototoxic effect of Gel-
HCeC-CaO2 system. (C) The migration of B16F10 cells treated with Gel-HCeC-CaO2 (Laser). (D) The biodistribution of Gel-HCeC-CaO2 in vivo.
(E) Fluorescence imaging of some organs (Top: liver, spleen, kidney; Bottom: heart, lung, tumor). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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hydrogel system, which could react with H2O to form H2O2 and

followed produce O2 catalyzed by catalase-like CeNPs. The prolonged

oxygen supply was achieved by the prepared hydrogel. The prepared

hydrogel could limit the infiltration of H2O into the system and
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moderate the hydrolysis rate of CaO2, resulting in sustained hypoxia

alleviation in tumor tissues. Besides, the prepared hydrogel could act

as a sustained delivery system and be easily injected around the

tumor, resulting in prolonged drug accumulation. The accumulated
FIGURE 5

Synthesis of the Gel-HCeC-CaO2 system. The Gel-HCeC-CaO2 system could alleviate tumor hypoxia microenvironment, prolong drug supply, enhance
PDT efficacy, and overcome melanoma.
A B

D E

F G H
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FIGURE 4

In vivo photothermal effect of Gel-HCeC-CaO2 system. (A, B) The tumors of mice in each group were photographed (#1: PBS; #2: Gel-CaO2; #3:
HCeC; #4: Gel-HCeC-CaO2; #5: HCeC+Laser; #6: Gel-HCeC-CaO2+Laser; #7: HCeC+Laser*2; #8: Gel-HCeC-CaO2+Laser*2). (C, D) The HCeC and
Gel-HCeC-CaO2 showed significant tumor regression with a reduction of the tumor volume. (E) Tunnel assay of the tumor. (F) HE staining of tumor.
(G) The expression of HIF-1 a. (H) The body weight of mice. *p < 0.05; **p < 0.01; ***p < 0.001.
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HCeC entered into tumor cells by endocytosis mediated by CD44, a

targeted receptor ofHAoverexpressed onmost of themalignant tumors,

resulting in a promoted PSs cellular uptake. Synthetically, a “once

injection, repeat irradiation” strategy was achieved through the

developed hydrogel system to enhance the PDT efficiency and

overcome melanoma.
5 Conclusion

In this study, we prepared a Gel-HCeC-CaO2 system which showed

a significant phototoxic effect of B16F10 tumor by NIR irradiation. The

Gel-HCeC-CaO2 system showed the following advantages: (i) utilized

the catalase activity of HCeC to produce O2; (ii) good retention of the

HCeC in the tumor; (iii) no severe systemic toxicity; (iv) alleviate tumor

hypoxia environment, meeting the repeated photodynamic therapy

strategy and effectively inhibiting tumor metastasis. Therefore, we

believe the Gel-HCeC-CaO2 system will provide a new strategy for

the treatment of melanoma, which greatly alleviates the tumor hypoxia

microenvironment to improve PDT efficiency.
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