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Deep learning-based algorithm
improves radiologists’
performance in lung cancer bone
metastases detection on
computed tomography
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Yuyu Duan3, Jiayao Zhang1, Honglin Wang1, Mingdi Xue1,
Songxiang Liu1*‡ and Zhewei Ye1*‡

1Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China, 2Research Institute of Imaging, National Key Laboratory of Multi-
Spectral Information Processing Technology, Huazhong University of Science and Technology,
Wuhan, China, 3Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China
Purpose: To develop and assess a deep convolutional neural network (DCNN)

model for the automatic detection of bone metastases from lung cancer on

computed tomography (CT)

Methods: In this retrospective study, CT scans acquired from a single institution

from June 2012 to May 2022 were included. In total, 126 patients were assigned to

a training cohort (n = 76), a validation cohort (n = 12), and a testing cohort (n = 38).

We trained and developed a DCNN model based on positive scans with bone

metastases and negative scans without bone metastases to detect and segment

the bonemetastases of lung cancer on CT. We evaluated the clinical efficacy of the

DCNN model in an observer study with five board-certified radiologists and three

junior radiologists. The receiver operator characteristic curve was used to assess

the sensitivity and false positives of the detection performance; the intersection-

over-union and dice coefficient were used to evaluate the segmentation

performance of predicted lung cancer bone metastases.

Results: The DCNN model achieved a detection sensitivity of 0.894, with 5.24

average false positives per case, and a segmentation dice coefficient of 0.856 in

the testing cohort. Through the radiologists-DCNN model collaboration, the

detection accuracy of the three junior radiologists improved from 0.617 to 0.879

and the sensitivity from 0.680 to 0.902. Furthermore, the mean interpretation time

per case of the junior radiologists was reduced by 228 s (p = 0.045).

Conclusions: The proposed DCNN model for automatic lung cancer bone

metastases detection can improve diagnostic efficiency and reduce the

diagnosis time and workload of junior radiologists.

KEYWORDS

artificial intelligence, deep learning, deep convolutional neural network, lung cancer
bone metastases, computer-aided diagnosis
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1 Introduction

Lung cancer (LC) is the main cause of cancer-related deaths

globally (1). Approximately 1.5 million people are diagnosed with LC

every year, with 1.3 million deaths (2). Furthermore, bone is the most

common and the initial site of metastases from LC (3). Approximately

30%–70% of bone metastases are associated with LC, and 20%–30% of

patients with LC already have bone metastases upon initial diagnosis

(4). LC is often asymptomatic at the initial stage. Therefore, patients

possibly already have metastases at diagnosis (5, 6). Although bone

metastases may progress to pathologic fracture and/or nerve and

spinal cord compression; some patients have no painful symptoms at

the time of detection (7, 8). Once a tumor metastasizes to the bone, it

is practically incurable and has a high mortality rate (9). Therefore,

early detection of bone metastasis is important for decreasing

morbidity as well as for disease staging, outcome prediction, and

treatment planning (10).

Imaging is an important part of the management of bone

metastasis (11–13). Computed tomography (CT) has the advantages

of good anatomical resolution, soft-tissue contrast, and detailed

morphology (14, 15). It also facilitates simultaneous evaluation of

the primary and metastatic lesions (12, 16). The most important

advantage of CT is the relatively low cost, which is very patient-

friendly (17). Thus, in the clinical setting, CT is the most commonly

used imaging for the diagnosis of primary cancer and whole-body

staging when bone metastases are suspected (17, 18). The

measurements of all metastatic lesions are time-consuming,

especially, if multiple metastases are present. The heavy workload

of image evaluation can be tiresome for radiologists, thus increasing

the risk of missing lesions and leading to decreased sensitivity (19).

Therefore, automated analysis of CT images is ideal for assisting

radiologists in the accurate diagnosis of bone metastasis from LC.

Deep learning has been identified as a key sector in which artificial

intelligence could streamline pathways, acting as a triage or screening

service, decision aid, or second-reader support for radiologists (20).

By now, artificial intelligence with deep convolutional neural network

(DCNN) has been exploited to develop automated diagnosis and

classification of cancer, including prostate cancer (21, 22), pancreatic

cancer (23), gastric cancer (24, 25), breast cancer (26, 27), and LC

(28–30). Furthermore, there has been a line of research on DCNN-

based automated classification of CT images for the detection of

metastasis caused by various primary tumors including gastric cancer

(30), breast cancer (31), LC (32), and thyroid cancer (33). There is

emerging evidence suggesting that DCNN could also be used to

extract information from bone scan images for the automatic

detection of LCBM (34, 35).

In this study, we developed a DCNN model that automated

detecting LC bone metastases (LCBM) on CT and validated the

model internally and externally. We also compared the DCNN
Abbreviations: LCBM, Lung cancer bone metastases; AI, Artificial intelligence; DL,

Deep learning; DCNN, Deep convolutional neural network; AUC, Area under the

receiver operating characteristic curve; PPV, positive predictive value; NPV,

Negative predictive value; CT, Computed tomography; ROC, Receiver operating

characteristic; ROI, Region of interest; FPs, False positive; IoU, Intersection-

over-Union.
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model with five radiologists and explored whether it could enhance

the diagnostic accuracy of junior radiologists.
2 Materials and methods

2.1 Patients

We collected 102 patients with pathologically confirmed primary

LC who were confirmed to have synchronous or metachronous bone

metastases and 100 patients who were confirmed to not have bone

metastases by CT-guided biopsy pathology from June 2012 to May

2022. After reviewing the clinical and imaging data, we excluded

patients who did not undergo CT examination (n = 53); who

underwent surgery, chemotherapy, and radiation therapy for bone

metastases before CT examination (n = 9); and who had poor CT

image quality (n = 14). Finally, the CT images from 126 patients were

included for the DCNNmodel development to detect bone metastases

from LC, including a positive sample dataset of patients with biopsy-

proven LC and bone metastases (n = 57), and a negative sample

dataset of patients with biopsy-proven LC without bone metastases (n

= 69). The process of patient enrollment is shown in Figure 1.

We randomly split the whole dataset (n = 126) into three cohorts:

training (76 cases, to train the DCNN model), internal validation (12

cases, to fine-tune the hyper-parameters of the DCNN model), and

external testing (38 cases, to evaluate the model and radiologists’

performance). Furthermore, the patients included in the validation

and testing datasets were excluded from the training dataset.
2.2 Imaging preprocessing and annotation

The clinical and imaging information of all patients was obtained

through the medical record system and follow-up. To protect patients’

privacy, all identifying information, such as name, sex, age, and ID, on

CT was anonymized and omitted through image processing when data

were first acquired. After image preprocessing in the Digital Imaging

and Communications in Medicine (DICOM) format, complete thin-

layer CT images were stored (see Supplementary Methods for CT

protocols). The manual annotations of bone metastases were

performed using LabelMe (36) with an image segmentation software

(Mimics; Materialize, Belgium).
FIGURE 1

Flow chart showing the overall study process. All computed
tomography (CT) scans were retrospectively collected from the clinical
databases of a single institution.
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Two board-certified radiologists (8 and 9 years of experience in

CT diagnosis) evaluated all CT examinations and, section by section,

manually annotated five locations (spine, pelvis, limb, sternum, and

clavicle) on the CT images of patients with LCBM. Two expert

radiologists (14 and 20 years of experience in CT diagnosis,

respectively) checked and manually delineated the volume of

interest of the bone metastatic lesion in a voxel-wise manner on CT

images using the diagnosis reports from two board-certified

radiologists for establishing the reference standard of bone

metastases. Furthermore, both of them repeated the annotations

and modifications at least 3 weeks later and used them as ground

truth (GT) labels for diagnosis and evaluation.
2.3 Model development

We developed a cascaded three-dimensional (3D) U-Net with 3D

spatial SE modules and 3D GAU modules based on 3D U-Net (37),

which is a robust state-of-the-art DCNN-based medical image

segmentation method (see Supplementary Methods for training

protocol). The Cascaded 3D U-Net (38) contains two 3D U-net

architectures, wherein the first one is trained on down-sampled

images and the second one is trained on full-resolution images.

Training on down-sampled images first can enlarge the size of

patches concerning the image and also enable the 3D U-Net

network to learn more contextual information. Training on full-

resolution images next refines the segmentation results predicted

from the former 3D U-Net.

The 3D Spatial SE (39) module and 3D GAU (40) module are used

more fully as the spatial attention module and the channel attention

module to exploit the multiscale and multilevel features, respectively;

they guide DCNN to efficiently focus on the targets rather than the

background. The flowchart of our DCNN model for segmenting bone

metastases is shown in Figure 2. The input of the end-to-end DCNN

model is the 3D CT volume, and the output is the segmentation result

of the bone metastases margin and the possibility of LCBM.
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2.4 Observer study

To scale the proposed deep learning system with human readers,

five radiologists (no overlap with the radiologists who labeled and

checked the annotations) with 3–8 years of experience in CT

diagnosis were required to participate in an independent human-

only observer study. These radiologists were randomly shown the

testing dataset to independently segment bone metastases and record

the localization (corresponding CT layers); they were blinded to the

bone metastases results and patient information.

To simulate the real clinical scenario, a radiologists-DCNNmodel

collaboration study was conducted on three junior radiologists with

1–3 years of CT diagnostic experience, besides the independent

observer study. These radiologists independently assessed the

images to reach the first conclusion (whether bone metastases are

present). Readouts of the DCNN model, including lesion labeling and

probability of LCBM, were sent to the radiologists for reevaluating the

images. The second assessment of radiologists served as the final

output. In addition, we scheduled the 8 radiologists to perform the

test in different locations to ensure their relative independence.
2.5 Statistical analysis

Our method followed a segmentation methodology to perform a

detection task; therefore, both segmentation and detection metrics

were important for evaluating the DCNN model performance. The

metastases segmentation performance of the network was assessed

using the metrics of dice coefficient and Intersection-over-Union

(IoU) (41). The dice value indicates the overlapped voxels between

the predicted results and GT. Its mathematical definition is as follows:

Dice(P, G) =
2 P ∩ Gj j
Pj j + Gj j

where denotes the number of labeled voxels, and P and G

represent the predicted and GT values, respectively. The larger the
FIGURE 2

The flowchart of the proposed Cascaded 3D-Unet network. The network structure is divided into two parts: encoder and decoder. Between the encoder
and decoder, we used the three-dimensional (3D) spatial squeeze and excitation modules (3D Spatial SE) and 3D global attention-up sample modules
(3D GAU) to replace the original skip connections used in 3D U-Net.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1125637
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huo et al. 10.3389/fonc.2023.1125637
value of the dice, the higher the degree of overlap between the

segmentation prediction and GTs.

The evaluation of detection performance was based on case-based

analysis; cases with at least one positive lesion were considered true

positive (TP). We compared the model predictions with radiologists

with TPs, false negatives (FNs), and false positives (FPs). According to

the TP rate (sensitivity) versus the FP rate (1-specificity), we

calculated the areas under the receiver operating characteristic

(ROC) curve (AUC) and the 95% confidence interval (CI) for the

five radiologists (averaged), DCNN model alone, three junior

radiologists alone (averaged), and DCNN-assisted three junior

radiologists. P< 0.05 was considered statistically significant. All

statistical analyses were performed using SPSS 22.0 (IBM Corp.,

Armonk, NY, USA). The interpretation time for each scan was

recorded automatically by the viewer and the detection time of the

DCNN model was obtained from the computer terminal.
Frontiers in Oncology 04
3 Results

No significant difference was noted in age or sex among the

monocentric training, validation, and testing cohorts. In total, 34

positive and 42 negative scans were collected for the training dataset.

The validation dataset comprised five positive and seven negative

scans, and the testing dataset comprised 18 positive and 20 negative

scans. The characteristics of the training, validation, and testing

cohorts are listed in Table 1.
3.1 Performance of the DCNN model

A threshold of 0.5 (IoU > 0.5) was defined as the detection hit

criterion; then, the segmentation metrics were computed with the GT

labels generated in the image annotation procedure. At a threshold of
TABLE 1 Characteristics of patients in the three datasets.

Variables Training Cohort (N=76) Validation Cohort (N=12) Testing Cohort (N=38) Total (N=126) P value

Age (years), mean ± SD 61.55 ± 13.22 61.48 ± 13.14 61.41 ± 13.45 61.52 ± 13.25 <0.001

Gender <0.001

Male 44 (57.8%) 7 (58.3%) 22 (57.9%) 73 (57.9%)

Female 32 (42.2%) 5 (41.7%) 16 (42.1%) 53 (42.1%)

Positive with bone metastases 33 (43.4%) 5 (41.7%) 19 (50.0%) 57 (45.2%)

Bone metastasis site 0.417

Spine 14 (42.4%) 2 (40.0%) 8 (42.1%) 24 (42.1%)

Pelvis 10 (30.3%) 1 (20.0%) 6 (31.6%) 17 (29.8%)

Limb 5 (15.2%) 1 (20.0%) 3 (15.8%) 9 (15.8%)

Sternum 3 (9.1%) 1 (20.0%) 2 (10.5%) 6 (10.5%)

Clavicle 1 (3.0%) 0 (0.0%) 0 (0.0%) 1 (1.8%)

Negative without bone metastases 43 (56.6%) 7 (58.3%) 19 (50.0%) 69 (54.8%)

Brain metastases 9 (20.9%) 2 (28.6%) 4 (21.1%) 15 (21.7%)

Liver metastases 26 (60.5%) 4 (57.1%) 12 (63.2%) 42 (60.9%)

Lymph nodes metastases 8 (18.6%) 1 (14.3%) 3 (15.8%) 12 (17.4%)

Primary Subtype 0.034

Small cell lung cancer (SCLC) 63 (82.9%) 10 (83.3%) 32 (84.2%) 105 (83.3%)

Adenocarcinoma (LUAD) 13 (17.1%) 2 (16.7%) 6 (15.8%) 21 (16.7%)

Number of tumors 0.002

Single 59 (77.6%) 9 (77.6%) 31 (81.6%) 99 (78.8%)

Multiple (2) 17 (22.4%) 3 (22.4%) 8 (18.4%) 27 (21.4%)

Tumor size 0.124

0≤X ≤ 3 16 (20.5%) 2 (16.7%) 8 (21.1%) 26 (20.3%)

3<X ≤ 5 25 (32.9%) 3 (25.0%) 13 (34.2%) 41 (32.5%)

5<X ≤ 7 17 (22.4%) 4 (33.3%) 9 (23.7%) 30 (23.8%)

>7 18 (23.7%) 3 (25.0%) 8 (21.1%) 29 (23.0%)

Grade 0.297

(Continued)
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0.5, the detection sensitivity of our DCNN model was 0.898 with 5.23

average FPs for the validation dataset and 0.894 with 5.24 average FPs

for the testing dataset. Besides, our DCNN model achieved an

acceptable segmentation performance (dice = 0.859 and 0.856 on

the validation and testing datasets, respectively). The overall results of

the DCNN model for the validation and testing datasets are shown in

Table 2. An illustration of the predicted segmentation by DCNN is

shown in Figure 3, where all cases were predicted with highly similar

segmentation to GT.

3.2 Comparison with other networks
and radiologists

We compared our model with several state-of-the-art deep neural

networks in the validation and testing datasets to validate the
Frontiers in Oncology 05
effectiveness of the proposed DCNN model (Figure 4 and Table 2).

As shown in the results, the Cascaded 3D U-Net outperformed the 3D

U-NET and 3D FCN (42) by large margins, which verified the

effectiveness of network design in the proposed DCNN model.

Moreover, the results of the ablation experiments demonstrated the

best performance of our 3D U-Net with a 3D GAU module and 3D

spatial SE module.

We performed observer studies and compared them with five

radiologists using all images in the testing dataset to characterize the

diagnostic value of the DCNNmodel. The DCNNmodel achieved high

performance, outperforming any radiologists for LCBM detection with

respect to both the primary metric AUROC (0.875 vs. 0.819 for the best

radiologist) and sensitivity (0.894 vs. 0.892) tested in the observer-

independent study. As for segmentation performance, our DCNN

model outperformed all other networks and five radiologists (Table 2).
TABLE 2 Results of comparison with other networks and five radiologists on the testing cohort.

AUROC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) IoU Dice Avg

FP

Validation Cohort

3D FCN 0.775 (0.746–0.803) 0.777 (0.724–0.823) 0.811 (0.792–0.840) 0.741 (0.720–0.766) 0.674 (0.643–0.750) 0.766 (0.736–0.796) 7.64

3D U-NET 0.781 (0.746–0.810) 0.790 (0.738–0.836) 0.810 (0.790–0.843) 0.752 (0.741–0.779) 0.681 (0.686–0.791) 0.785 (0.759–0.819) 7.20

3D GAU U-Net 0.805 (0.798–0.832) 0.807 (0.787–0.821) 0.784 (0.760–0.806) 0.834 (0.809–0.859) 0.693 (0.680–0.722) 0.794 (0.758–0.828) 5.97

3D SSE U-Net 0.853 (0.845–0.881) 0.853 (0.838–0.868) 0.860 (0.795–0.889) 0.850 (0.825–0.873) 0.750 (0.721–0.784) 0.827 (0.781–0.859) 5.65

Cascaded 3D U-
Net

0.871 (0.849–0.880) 0.877 (0.821–0.907) 0.893 (0.881–0.905) 0.866 (0.835–0.875) 0.751 (0.701–0.790) 0.843 (0.812–0.888) 5.41

Our network 0.883 (0.878–0.901) 0.886 (0.842–0.922) 0.898 (0.881–0.905) 0.863 (0.835–0.875) 0.782 (0.741–0.810) 0.859 (0.826–0.884) 5.23

Testing Cohort

3D FCN 0.771 (0.749–0.784) 0.773 (0.751–0.794) 0.806 (0.789–0.822) 0.736 (0.710–0.759) 0.677 (0.651–0.754) 0.762 (0.732–0.790) 7.74

3D U-NET 0.775 (0.756–0.796) 0.784 (0.787–0.801) 0.802 (0.785–0.818) 0.748 (0.723–0.770) 0.680 (0.664–0.782) 0.781 (0.750–0.818) 7.50

3D GAU U-Net 0.803 (0.776–0.834) 0.810 (0.799–0.853) 0.778 (0.761–0.818) 0.817 (0.801–0.844) 0.691 (0.674–0.718) 0.791 (0.764–0.823) 6.12

3D SSE U-Net 0.846 (0.828–0.867) 0.847 (0.783–0.897) 0.857 (0.786–0.891) 0.847 (0.819–0.868) 0.749 (0.720–0.798) 0.822 (0.779–0.855) 5.74

Cascaded 3D U-
Net

0.868 (0.838–0.872) 0.875 (0.834–0.908) 0.887 (0.881–0.905) 0.854 (0.835–0.867) 0.750 (0.706–0.783) 0.841 (0.810–0.888) 5.58

Our network 0.875 (0.863–0.883) 0.878 (0.867–0.886) 0.894 (0.874–0.896) 0.857 (0.831–0.885) 0.789 (0.733–0.808) 0.856 (0.820–0.885) 5.24

Radiologist 1 0.785 (0.759–0.800) 0.771 (0.755–0.798) 0.846 (0.797–0.887) 0.766 (0.737–0.783) 0.642 (0.611–0.688) 0.726 (0.698–0.750) 3.25

Radiologist 2 0.792 (0.776–0.822) 0.793 (0.768–0.802) 0.861 (0.813–0.900) 0.769 (0.733–0.787) 0.668 (0.639–0.690) 0.741 (0.700–0.777) 3.10

Radiologist 3 0.795 (0.779–0.799) 0.799 (0.773–0.813) 0.876 (0.830–0.913) 0.776 (0.753–0.796) 0.679 (0.652–0.721) 0.750 (0.712–0.789) 2.68

Radiologist 4 0.804 (0.791–0.825) 0.810 (0.795–0.827) 0.880 (0.875–0.925) 0.792 (0.770–0.819) 0.691 (0.670–0.744) 0.769 (0.722–0.808) 2.14

(Continued)
frontie
TABLE 1 Continued

Variables Training Cohort (N=76) Validation Cohort (N=12) Testing Cohort (N=38) Total (N=126) P value

Grade I 4 (5.3%) 3 (25.0%) 9 (23.7%) 31 (24.6%)

Grade II 19 (25.0%) 8 (66.7%) 23 (60.5%) 75 (59.5%)

Grade III 44 (57.9%) 1 (8.3%) 4 (10.5%) 14 (11.1%)

Grade IV 9 (11.8%) 3 (25.0%) 9 (23.7%) 31 (24.6%)
For patient age, the mean age and standard deviation are presented, with a range of values in parentheses. For other data, the number of patients is presented, with percentages in parentheses.
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TABLE 2 Continued

AUROC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) IoU Dice Avg

FP

Radiologist 5 0.819 (0.800–0.849) 0.822 (0.801–0.839) 0.892 (0.891–0.929) 0.807 (0.792–0.831) 0.717 (0.700–0.762) 0.798 (0.759–0.841) 1.80

Average of five
radiologists

0.799 (0.772–0.821) 0.799 (0.782–0.834) 0.871 (0.841–0.899) 0.782 (0.758–0.800) 0.679 (0.654–0.702) 0.757 (0.730–0.783) 2.59
F
rontiers in Oncology
 06
 frontie
A comparison of detection and segmentation performance in the testing dataset of our proposed network (Cascaded 3D U-Net with 3D GAUmodules and the 3D SSE modules), five other deep neural
networks [Cascaded 3D U-Net, 3D FCN, 3D U-net, 3D GAU U-Net (3D U-Net with 3D global attention-up sample modules, and 3D SSE U-Net (3D U-Net with spatial squeeze and excitation
modules)]. FP: false positives per scan. IoU: Intersection-over-Union. Dice: dice coefficient The bolded words “Our network” represent our proposed network (Cascaded 3D U-Net with 3D GAU
modules and the 3D SSE modules). The bolded words “Validation Cohort” and “Testing Cohort” represent two equal cohorts containing different data.
A

B

D

E

F

C

FIGURE 3

The segmentation results. Representative example of a patient with lung cancer bone metastasis with abnormal signals in the 4 lumbar spine (A–C) and a
patient with lung cancer bone metastasis with abnormal signals in the 11 thoracic spine (D–F), and true-positive lesions with various appearances and
locations. From left to right, the three images in a row are the original image, the corresponding GT label (red), and the candidate region output from the
deep convolutional neural network (DCNN) (green). Note that the green region on the right image is a candidate region with a threshold of 0.5, and dice
was calculated on this region.
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3.3 Radiologists-DCNN model collaboration

We further validated the radiologists-DCNN model collaboration

performance in the testing dataset. As demonstrated, the three junior

radiologists (with the assistance of the DCNN model) showed

substantial improvement in identifying LCBM (Figure 4 and Table 3).
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The DCNN model assisted junior radiologists in diagnosing

LCBM with a higher mean AUROC (0.874 [95% CI: 0.807–0.874]

vs. 0.609 [95% CI: 0.591–0.634], P< 0.001), mean accuracy (0.879 vs.

0.617, P< 0.001), and mean sensitivity (0.902 vs. 0.680, P = 0.009)

compared with those achieved alone. Moreover, the mean

interpretation time per case of the junior radiologists was
FIGURE 4

The receiver operator characteristic curve for the performance of the deep convolutional neural network (DCNN) model-only, radiologist-only, junior
radiologist-only, and junior radiologists-DCNN model collaboration detection performance. Each orange triangle represents the performance of an
individual radiologist; each pink fork represents the performance of a junior radiologist without the aid of DCNN; and each green fork represents the
performance of a junior radiologist with the aid of DCNN. The red triangle indicates the average value of five radiologists, and the bolded forks indicate the
average value of junior radiologists.
TABLE 3 A comparison of the DCNN model and three junior radiologists without and with the DCNN model.

Age
(year)

Experiences
(year)

AUROC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI) IoU Dice Avg

Time (s)
Avg
FP

DCNN Model – –
0.875
(0.863–0.883)

0.878
(0.867–0.886)

0.894
(0.874–0.896)

0.789
(0.733–0.808)

0.856
(0.820–0.885)

27 5.24

Junior radiologist
only

R6 25 1.5
0.584
(0.567–0.612)

0.597
(0.575–0.614)

0.657
(0.531–0.768)

0.498
(0.480–0.515)

0.589
(0.568–0.610) 412 4.89

R7 31 2
0.601
(0.588–0.620)

0.609
(0.590–0.632)

0.672
(0.546–0.782)

0.576
(0.534–0.604)

0.663
(0.638–0.686)

312 3.95

R8 34 3
0.643
(0.611–0.668)

0.645
(0.622–0.671)

0.711
(0.695–0.741)

0.620
(0.586–0.645)

0.708
(0.684–0.733)

387 3.36

Avg 30 2.17
0.609
(0.591–0.634)

0.617
(0.602–0.640)

0.680
(0.543–0.753)

0.565
(0.543–0.598)

0.653
(0.637–0.698)

370.3 4.07

Junior radiologist
with DCNN

R6 25 1.5
0.871
(0.852–0.896)

0.875
(0.860–0.900)

0.898
(0.870–0.922)

0.771
(0.748–0.794)

0.833
(0.800–0.867)

204 2.72

R7 31 2
0.873
(0.856–0.891)

0.879
(0.875–0.911)

0.901
(0.864–0.924)

0.790
(0.771–0.827)

0.861
(0.811–0.893)

104 2.23

R8 34 3
0.878
(0.861–0.901)

0.883
(0.869–0.923)

0.907
(0.854–0.924)

0.802
(0.784–0.821)

0.886
(0.844–0.928)

119 1.98

Avg 30 2.17
0.874
(0.857–0.914)

0.879
(0.863–0.910)

0.902
(0.844–0.921)

0.788
(0.764–0.823)

0.847
(0.812–0.869)

142.3 2.31
frontie
FP, false positives per scan. IoU, Intersection-over-Union. Dice, dice coefficient. The bolded words “DCNNModel” represent our proposed network (Cascaded 3D U-Net with 3D GAU modules and
the 3D SSE modules). The bolded words “Avg” represent the average of the values in the three cells above.
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significantly reduced from 370.3 s to 142.3 s (228 s decrease, P =

0.045) when assisted by the DCNN model.
4 Discussion

Herein, we proposed an improved Cascaded 3D U-Net based on

the DCNN model to detect and segment LCBM on CT scans.

Radiologists underperformed the DCNN model concerning

detection sensitivities, although they achieved much lower average

FPs. In the segmentation task, the proposed DCNN model achieved a

mean dice of 0.856 and a mean FP of 5.24 in the testing dataset,

showing that the proposed model achieved better results than other

state-of-the-art networks.

In the radiologists-DCNN model collaboration study, the mean

sensitivity of the junior radiologist for LCBM improved from 0.680 to

0.902 with acceptable FPs (2.59). The radiologists-DCNN model

collaboration enhanced the detection sensitivity and FPs compared

with radiologist-only or DCNN model-only diagnosis, demonstrating

the existence of the DCNNmodel-detected bone metastases that were

missed by junior radiologists and vice versa. Moreover, the DCNN

model-assisted diagnosis significantly decreased approximately 62%

clinical time (142 s vs. 370 s), which had never been evaluated in

previous studies.

Prior to our study, two recent studies used deep learning to detect

bone metastases from CT images (43, 18). However, both studies

focused only on spinal lesions. The spine is the most common site of

bone metastases; however, metastases can occur at any site in the

entire skeleton (44). Furthermore, both studies formalized the task as

two-dimensional detection, whereas our study formalized it as 3D

segmentation. Besides, the data and annotation in our study were of a

higher standard. In our study, high-quality thin-slice CT scans with a

thickness of 1–1.25 mmwere used to support the model development.

Moreover, we followed a repetitive and retrospective labeling

procedure by four radiologists to ensure the high quality of our

annotations, thus reducing the risk of overvaluing model

performance. Our model achieved significantly higher detection

sensitivity and remained consistent across the training, validation,

and testing datasets.

Nevertheless, there are still some limitations to this study. First,

our study was retrospective and monocentric; therefore, future

validations in prospective randomized settings can provide more

powerful conclusions. In addition, the sample size was small. We

believe that the main reason for such limitation is the somewhat low

incidence and prevalence of LCBM (45). Although our results were

encouraging, experiments in large multi-center datasets are needed

to verify the results in further studies. Second, the training process

of the DCNN model depends on the segmentation GT labels of

LCBM by radiologists, who also have imperfect reliability. To

address this issue, numerous studies have been conducted to train

the DCNN model using weak labels (46). Third, the DCNN model

was established to detect LCBM so that the patients included in the

positive cohort had LC. However, bone metastases may also arise

from other solid tumors, such as breast, prostate, colorectal, thyroid,

and gynecologic cancers and melanoma (47). Therefore, more

generalized DCNN models that can distinguish multiple origins of
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bone metastases should be followed up. Finally, our DCNN models

were designed to deal with a single task of LCBM detection on CT.

However, in clinical practice, radiologists may not rely on a single

medical file for a final diagnosis, instead, they need to combine other

clinical or imaging reports to achieve the diagnosis of LCBM. If the

models are built based on a single parameter, their clinical value

may be significantly endangered. Therefore, more inclusive models

combining various characteristics should be designed and

emphasized in the future (48).

In conclusion, our DCNN model collaborated with junior

radiologists helped to enhance the diagnostic effectiveness and

efficiency in the diagnosis of LCBM on CT, indicating the great

potential of DCNN-assisted diagnosis in clinical practice.
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