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The occurrence and development of malignancies are closely related to abnormal

cell cycle regulation. Myeloid leukemia factor 1 (MLF1) is a small nucleocytoplasmic

shuttling protein associated with cell cycle exit, apoptosis, and certain immune

functions. Therefore, it is pertinent to explore the role of MLF1 in health and

diseases. Studies to date have suggested that MLF1 could act as a double-edged

sword, regulating biochemical activities directly or indirectly. In hematopoietic

cells, it serves as a protective factor for the development of lineages, and in

malignancies, it serves as an oncogenesis factor. The diversity of its functions

depends on the binding partners, including tumor inhibitors, scaffolding

molecules, mitochondrial membrane proteins, and transcription factors.

Emerging evidence indicates that MLF1 influences immune responses as well.

This paper reviews the structure, biological function, and research progress on

MLF1 in health and diseases to provide new insights for future research.

KEYWORDS
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Introduction

Myeloid leukemia factor (MLF) is a poorly characterized family of conserved proteins

which earliest member, myeloid leukemia factor 1 (MLF1), is associated with hemopoietic

lineage commitment and malignancies. MLF1 has so far been shown to be a double-edged

sword, acting as either a tumor suppressor or an oncogene, depending on the context of the

cell. MLF1 has been initially described in the leukemic fusion protein NPM-MLF1, which is

generated by a rare t(3;5)(q25.1;q34) chromosomal translocation in patients with acute

myeloid leukemia (AML) (1), and implicated in the development of AML and

myelodysplastic syndrome (MDS) (2). Although the role of NPM in the pathogenesis of

leukemia has been well studied (3–6), the contribution of MLF1 to normal hematopoiesis and

oncogenesis has not been adequately characterized. Several studies have demonstrated that

MLF1 can regulate cell cycle exit and differentiation, promote apoptosis, inhibit proliferation

in various cell types, enhance immune function, or impair the lymphocyte population.
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However, its biochemical activity remains largely unclear. Up to now,

no systematic overview of MLF1 studies in pathology and physiology

has been published. In this review, we summarized current knowledge

of MLF1 and provided a valuable reference for future research.
MLF1 structure and function

MLF1 gene is located on human chromosome 3 and encodes

MLF1 protein and its isoforms (7). MLF1 protein is a small

nucleocytoplasmic shuttling protein (268 amino acids), which has a

functional N-terminal nuclear export signal (NES) and two C-

terminal nuclear localization signals (NLS), allowing MLF1 to

shuttle between the nucleus and the cytoplasm (8, 9). MLF1 has a

characterized central domain preserved within the MLF family (10,

11), comprising two identifiable motifs that bind to 14-3-3 protein

and the COP9 signalosome by Ser34 and subunit 3 (CNS3), and a

SAM domain, which is involved in many different biological processes

and has RNA binding properties (12). Above features of MLF1 are

summarized in Figure 1. MLF is highly conserved across species from

Drosophila, murine, and shrimp to humans (13–15). The phenotypic

defects associated with MLF loss in Drosophila can be rescued by

humanMLF1 (16). MLF overexpression reduces Drosophila wing and

eye size (17), which is demonstrated by the fact that MLF activates the

bsk-JNK pathway by interacting with DREF (18). Additionally,

overexpressed MLF causes abnormal DNA synthesis in Drosophila

(19). Enforced expression of murine MLF1 suppresses a rise in the cell

cycle inhibitor p27Kip1 to disturb the development and the

differentiation of erythrocytes (20, 21). Microarray analysis

performed with MLF1-expressing cells has concluded that MLF1,

when expressed in the nucleus, inhibited calcium cycle proteins and
Frontiers in Oncology 02
CR6 (cytokine response protein) associated with differentiation and

growth arrest (8). Immune function is also associated with MLF1. It

has been identified in kuruma shrimp and characterized as MjMLF,

which plays a critical role both in antiviral and antibacterial

immunity. MjMLF could inhibit the lethal white spot syndrome

virus (WSSV) replication in vivo and accelerate Vibrio anguillarum,

a gram-negative bacteria, clearance in shrimp (22, 23). In contrast, a

study about lymphoma has shown that the overexpression of MLF1

increases lymphocyte apoptosis in vitro (13). Furthermore, MLF1

absence is consistently associated with the expansion of B- and T-cell

numbers in the spleen (24). These findings imply that MLF1 might

function as a context-dependent factor involved in the regulation of

normal physiological processes and that its absence or overexpression

leads to disease.
MLF1 and its distribution

MLF1 is widely expressed in different tissues. It is highly

presented in the testis, heart, lung, brain, thyroid gland, gall

bladder, kidney, and digestive system and is expressed to some

extent in human bone marrow, spleen, and lymph nodes (25). At

the cellular level, MLF1 transcripts are dominantly expressed in

CD34+ cells but only slightly in GlyA+, CD3+, CD19+, or CD14+

cells and granulocytes (2). These facts indicate that the expression of

MLF1 in CD34+ progenitor cells decreases during differentiation to

each lineage, especially toward the myeloid and erythroid lineage (15).

Cells at an early stage seem to need MLF1. At the subcellular level,

MLF1 is mostly found in the cytoplasm. The apoptosis-inducing

domain contained in MLF1 is unique because it requires dimerization

and nuclear transportation to induce cell death, whereas most of the
FIGURE 1

Schematic representation of human Myeloid Leukemia Factor 1 (MLF1) chromosome, gene and corresponding protein domains: (A) Diagram of MLF1
gene chromosome location. (B) The grey horizontal line represents the DNA sequence, red boxes on the sequence represent coding sequences (CDS) in
MLF1, and two green boxes at the ends indicate UTRs. Underneath, the numbers over the black lines indicate the amino acid positions, which
correspond to human MLF1 protein domains ([1] 14-3-3 protein binding domain (Ser34); [2] the COP9 signalosome subunit 3(CNS3) binding domain; [3]
MLF family characteristic domain; [4] a SAM domain). All sequences were obtained from the NCBI database.
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well-known ‘death domains’ function in the cytoplasm (26). However,

the relationship between the increased accumulation of MLF1 in the

cytoplasm and diseases is still unclear. Notably, a functional NES

sequence is important for both MLF1 protein and NMP-MLF1 fusion

protein to exert proleukemic effects. Additionally, studies have

demonstrated that an MLF1 mutant containing only NES sequence

inhibited proliferation more strongly than WT protein (9, 27). The

contribution of NPM to NPM-MLF1-induced leukemogenesis is

debatable (28), whereas NPM-MLF1 fusion protein without NES

sequence loses oncogenic transformation ability (9). However, the

regulatory mechanisms of the abnormal localization of MLF1 in the

nucleus remain unknown.
MLF1 networks

MLF1 plays an essential role in cell development by interacting

with multiple factors, which are summarized in Figure 2.

1. MLF1 in cell development and apoptosis. MLF1, shuttling

from the cytoplasm to the nucleus, binds COP9 subunit 3 (CSN3),

which leads to the downregulation of COP1; therefore, the cell cycle of

hematopoietic cells becomes arrested because the bonding accelerates

the accumulation of wild-type p53 in the nucleus (29). The above-

mentioned process has also been demonstrated in Drosophila (17).
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Tumor suppressor p53 remains a vital mechanism of inhibiting tumor

escape from apoptosis, and emerging evidence suggests that mutant

p53 also promotes inflammation and supports tumor immune

evasion (30, 31). Yoneda-Kato et al. have demonstrated that the

MLF1-induced growth arrest depended on the integrity of the p53

allele (29). This raises the question of whether MLF1 still acts as a

protective mechanism when p53 is mutated or if it enhances the

oncogenicity of mutated p53. Overexpression of MLF1 promotes

apoptotic death of the cells but is negatively regulated by 14-3-3

protein blocking its Bcl-XL homology domain 3 (BH3), which

prevents the cell from apoptosis (32, 33). 14-3-3 (RSXSXP) motifs

are involved in important cell processes, such as death, differentiation,

and division (34–36). Bcl-XL, a Bcl-2 family member, maintains a

fully functional immune system that ensures an efficient clearance of

senescent cells (37). The above-presented conclusion has been

obtained in lymphocytes, suggesting that MLF1 is required for

lymphocytes to respond to apoptotic stimulations. Additionally, the

nuclear content of MLF1 is also regulated by 14-3-3 protein, which

sequesters MLF1 in the murine cytoplasm (32), However, another

study has suggested the opposite conclusion that the distribution of

full-length human MLF1 is 14-3-3 protein-independent (38).

Therefore, the subcellular localization of MLF1 is probably

regulated by other unknown proteins. A yeast two-hybrid screen

has identified that MLF1 binds with an adaptor, which contains a 220-
FIGURE 2

Summary of MLF1 networks. Black arrows represent negative regulation (including inhibition or downregulation), orange arrows represent positive
regulation (including promotion or upregulation), orange dotted arrow represents speculation, and bidirectional yellow arrows indicate proteins
interacting with MLF1 protein. The red two-way arrow illustrates the shuttling of MLF1 between the nucleus and the cytoplasm.
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bp cDNA fragment and several potential phosphorylation sites in the

vicinity of both the NLS and NES. At the time of its isolation, it had no

homology to sequences in the database and was named Madm for

MLF1-adaptor molecule. Madm mediates phosphorylation of 14-3-3

binding site of MLF1, which then immunoprecipitates and localizes to

the cytoplasm. Thus, Madm might regulate the localization of MLF1

in the cytoplasm. In contrast to MLF1, which promotes the

maturation, ectopic expression of Madm suppresses differentiation

in myeloid cells (32). Louise N et al. have reported that MLF1

interacts with Manp, also known as scaffold attachment factor-A

(SAF-A), which is a member of the heterogeneous nuclear

ribonucleoprotein (hnRNP) family and homologous to hnRNP-U.

Manp localizes exclusively in the nucleus and redirects MLF1 into the

nucleus (8). Recent studies have suggested that hnRNP-U regulates

DNA replication, organizes large-scale chromosome structures, and

protects the genome from instability (39–41). The effects of MLF on

DNA synthesis have been previously discussed (19). However, the

relationship between MLF1 and hn-RNP in DNA synthesis

remains unclear.

2. MLF1 in immune function and leukemia. In a drosophila

model of leukemia, MLF has been demonstrated to control the

development of hematopoietic stem cells by stabilizing the RUNX

transcription factor Lozenge (LZ). MLF controls LZ activity and

prevents its degradation, which is critical to control crystal cell

number in the fly (42). Further study has shown that MLF and

DnaJ-1 interact through conserved domains to form a chaperone

complex that directly regulates LZ activity. Importantly, the

interaction controls RUNX transcription factor activity and Notch

signaling during blood cell development in vivo (43). RUNXmembers

are key regulators of hematopoiesis; particularly, RUNX1 functions as

a positive regulator for definitive hematopoietic stem cell emergence

and megakaryocyte and lymphocyte differentiation (44). RUNX1-

ETO, the mutant and infusion form of the RUNX1 protein, has been

identified in cancer. MLF1 stabilizes the human oncogenic fusion

protein RUNX1-ETO. Further study has indicated that MLF1 impairs

RUNX1-ETO accumulation and reduces RUNX1-ETO-dependent

leukemia cell proliferation (42). It is reasonable to conclude that

MLF1 functions as a tumor suppressor gene in leukemia. However,

the expression level of MLF1 in healthy adults’ bone marrow is not as

high as expected. Moreover, high expression of MLF1 is associated

with poor prognosis for AML and MDS (2). To some extent, MLF1 is

required to inhibit the development of leukemia. However, it does not

always appear to be a protective factor, and when leukemia is

developed, MLF1 is positively correlated with leukemia (2).

Reasonably, it can be inferred that MLF1 is a context-dependent

gene, with its elevated expression being associated with leukemia

promotion and suppression in different settings. CCAAT/enhancer-

binding protein-a (C/EBPa) is a key transcription factor regulating

myeloid differentiation in normal hematopoiesis and is frequently

dysregulated in AML (45). Studies have shown that Trib1 and

RUNX1-ETO downregulate C/EBPa and induce AML in mouse

models (46, 47). MLF1 treatment upregulates the level of C/EBPa
by suppressing Trib1 or RUNX1-ETO, which causes the inactivation

of myeloid-derived suppressor cells (MDSCs) with potent antitumor

responses across different tumor models and cancer patients (48). In

mouse or leukemia cell models, the distribution of C/EBPa is

paralleled with MLF1 (49). MLF1-interacting protein (MLF1IP),
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also known as PB1P1, KLIP1, KLP1, CENP-U, and CENP-50,

specifically binds with MLF1, as shown by yeast two-hybrid analysis

and pulldown assays (50). MLF1IP differs from MLF1 without other

known protein homology. MLF1IP is a centromere-binding protein

(51) that shows 25% identity to the SMC family of proteins and some

homology to myosin, which is involved in actin cytoskeletal

organization (52). MLF1IP may be an erythroid lineage-specific

gene, as it is expressed exclusively in CFU-E erythroid precursor

cells but not in mature erythrocytes (50, 53). MLF1 drives the

occurrence of erythroleukemia as well (20, 21). A study has found

that NMP-MLF1 infusion protein is more likely to occur in M6

(according to FAB classification) patients than in other leukemia

types (54). Therefore, the interaction betweenMLF1IP andMLF1 will

most likely play a role in the occurrence of M6. High expression of

MLF1IP is associated with poor prognosis in several cancers, such as

breast cancer, glioma, and diffuse large B-cell lymphoma (DLBC)

(55). Furthermore,MLF1IP also plays a role in the development of the

immune system (56). However, the functional consequences ofMLF1

and MLF1IP interaction remain largely unknown. HAX-1, a 35-kDa

inner mitochondrial membrane protein, functions as an anti-

apoptosis protein (57), and its deficiency and overexpression result

in the loss of lymphocytes and tumorigenesis, respectively (58, 59).

This expression balance of MLF1 is also critical for its function. MLF1

has been recently revealed to directly associate with HAX-1 by co-

immunoprecipitation assay. Animal experiments have confirmed that

the two have interaction, and severe splenocyte and thymocyte

lymphopenia in Hax1−/− mice can be reversed by MLF1 deficiency

(13). However, it is unclear whether their effects on lymphocytes are

synergistic or antagonistic. As of now, despite conflicting evidence,

the relationship between MLF1 and immune function has not been

adequately investigated. Further research is required to clarify

this issue.

3. MLF1 in antitumor protection. MLF1 protein is directly

associated with the deubiquitinase ubiquitin-specific peptidase 11

(USP11), which is a promising therapeutic target. Additionally,

USP11 has promoted the accumulation of MLF2 in all tested cells

(60), whereas MLF1 and MLF2 are approximately 40% similar (11).

USP11 plays a dual role in the development of tumors (61, 62). Based

on the studies conducted so far, MLF1 may act as both a tumor

suppressor and tumor oncogene, depending on the context of the cell.

It is worth mentioning that MLF1 is a positive factor in various

biological processes, such as progenitor cell development and tumor

regression. Whether MLF1, together with upregulated USP11 protein,

enhances antitumor ability still needs further research.
MLF1 and disease

MLF1 functions as a double-edged sword in various diseases. An

early clinical study has found that t(3;5) is more likely to occur in M6

patients than in patients with other leukemia types (54). A preclinical

study has confirmed that MLF1 expression drives the occurrence of

erythroleukemia (20, 21). A significantly higher level of MLF1

expression is detected in over 25% of patients with immature AML

subtypes and higher malignant MDS (2). MLF1 is also upregulated in

lung squamous cell carcinoma and esophageal carcinomas (63, 64).

MLF1 overexpression results in aggregate formation; however, there
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is still controversy over the cause and effect of protein aggregate in

neurodegenerative diseases (65). The whole-exome sequencing of

small intestine neuroendocrine tumors has revealed that MLF1 is

therapeutically relevant (66). The presence of MLF1 protein inhibits

apoptosis caused by neurotoxicity induced by Huntingtin (HTT)

aggregates (67). An extensive genome-wide association study

(GWAS) has indicated that MLF1 expression is high in

neuroblastoma and that silenced MLF1 significantly suppresses

tumor proliferation (68). Recent research in the heart has shown

that the increased expression of MLF1 leads to accelerated apoptosis

and reduced cardiac cell proliferation (69). However, an aberrant

downregulation of MLF1 is also related to tumorigenesis. Aberrant

DNA methylation plays a significant role and is extensive (70), as

indicated by the higher incidence of aberrant DNA methylation of

known tumor-suppressor genes than that of mutations (71). MLF1 is

methylation-silenced in the gastric cancer cell line and is upregulated

27-fold after 5-AZA-dC treatment. There is a possibility that MLF1

silencing is causally related to the development and progression of

gastric cancer (72, 73). A comparative study has identified thatMLF1

is also a methylation marker for the detection of early gastric

neoplasia and field cancerization (74). Shuang Zhao et al. have

found that the expression levels of MLF1 were downregulated in

tumor tissues compared to normal tissues, which suggested that

MLF1 influences tumor ini t ia t ion and progress ion in

nasopharyngeal carcinoma (75). Defects in the centrosome and

cilium are associated with a set of human diseases. Ramona A. Hoh

et al. have found that MLF1 was associated with diseases, was

upregulated during ciliogenesis, and localized to centrioles and cilia

(76). Hypermethylated MLF1 gene in mantle cell lymphoma (MCL)

has been confirmed by genome-wide DNA methylation analysis, and

aberrant methylation is associated with inverse changes in mRNA

levels (77). Marcela B. Mansur et al. have identified a recurrent

somatic deletion on chromosome 3. This loss results in the

complete deletion of MLF1 and has not been previously described

in infant T-cell acute lymphoblastic leukemia (78).
Conclusion and future perspectives

In conclusion, MLF1 is a small shuttling protein playing a critical

role in biological and pathological processes. Currently, research

regarding MLF1 has mainly focused on cancer development, which

is still an obscure and disputed topic. In general, although there is

more evidence supporting the point that MLF1 contributes to tumor
Frontiers in Oncology 05
suppression, a few studies have confirmed the tumorigenesis of MLF1

in solid and hematologic tumors, which cannot be neglected.

Additionally, the functions of MLF1 in immune response still need

further investigations despite some already reported studies. Given

the complexity and variety of involved proteins, we may draw a

conclusion that MLF1 might be a double-edged factor in the

regulation of cell cycle, immunity, stem cell development, and

cancer. However, studies about MLF1 are still inadequate; therefore,

expanding the research on MLF1 is significant and may enrich the

knowledge of MLF1 in the above-mentioned conditions. On the other

hand, exploring regulations of MLF1 shuttling will provide a better

understanding of MLF1, which helps develop novel specific MLF1-

aimed drugs that might provide a promising strategy for cancer

treatment, as well as other pathologies, such as neurological

diseases. Therefore, analysis of the partner protein, localization, and

shuttling mechanism might provide new insights for future research.
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