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Immune cells play a key role in host defence against infection and cancer. Unlike

infection, cancer is a multidimensional disease where cancer cells require

continuous activation of certain pathways to sustain their growth and survival.

The tumour milieu plays an important role in defining the metabolic

reprogramming to support this growth and evasion from the immune system.

Cancer and stromal cells modulate each other’s metabolism during cancer

progression or regression. The mechanism related to change in the metabolism

and its role in the crosstalk between tumour and immune cells is still an area of

immense importance. Current treatment modalities can be immensely

complemented and benefited by targeting the immuno-oncology metabolism,

that can improve patient prognosis. This emerging aspect of immune-oncology

metabolism is reviewed here, discussing therapeutic possibilities within various

metabolic pathways and their effect on immune and cancer cell metabolism.
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Introduction

It is well recognized that cancer cells can alter and rewire cellular signaling networks to

adapt to stress conditions and continue to proliferate (1). Being a metabolically

heterogeneous disease and cancer can promote the metabolic plasticity which can impact

tumorigenicity (2). Reprogramming, which is considered as a hallmark of transformation,

may be necessary at the genetic and epigenetic levels to maintain the malignant

transformation. The tumour microenvironment lacks enough supply of oxygen and

nutrients due to its usage by cancer cells (3). Immune metabolism, which is an interplay

between the tumour, its microenvironment and immune cells, aims at studying the immune

system and body’s metabolic functions in a broad perspective. Previous studies have

demonstrated that the interaction and cooperative action of cells in the tumour

microenvironment alter the tumour and immune cell metabolism and promote

malignancy (4–6). The extracellular matrix proteins and other soluble factors in the

tumour microenvironment, standardize heterogeneity and clonal evolution and facilitate

cancer cell proliferation and, inevitably, metastasis. The majority of tumour types are
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characterized by a microenvironment that is nutrient-poor, hypoxic,

and acidic because of high levels of lactate, produced due to anaerobic

glycolysis (7). Extracellular lactate concentrations are correlated with

tumour vascularization, systemic immune suppression, and tumour

progression. Similarly, it has been found that adenosine also modifies

tumour microenvironment to make it favorable for cancer cells by

stimulating anti-inflammatory activities, which hampers the

sustainability of immune cells. The interaction of innate and

adaptive immunity can drive a well-regulated and effective response

against tumorigenesis. The tumour microenvironment is infested by

innate immune cells such macrophages, dendritic cells, and natural

killer cells as well as T cells and B cells of adaptive immunity. T cells

engage directly with cancer cells as well as communicate and activate

various cellular components in tumour milieu. The B cells have

antitumor and protumor functions that are yet to be discovered.

On the other hand, depending on the stimulus provided within the

tumour microenvironment, macrophages can be categorized as pro-

inflammatory (M1) or anti-inflammatory (M2). While IL-4 and IL-1

induce the M2 phenotype, interferon (IFN) and toll-like receptor

(TLR) ligands favor the M1 phenotype (8). There has always been

partial success in accessing the therapeutic modalities again as

metabolic switching is not taken into account.

Immune responses can both destroy tumour cells as well as help

accelerate tumour progression through selective pressures created in

the dynamic and constantly changing interactions between the

immune system and cancer cells (9). The interaction of immune

system with cancer is thought to progress through at least three

steps, which are known as elimination, equilibrium, and escape.

Newly formed cancer cells get destroyed by the immune system

during the elimination phase, which occurs frequently during the

early stages of carcinogenesis. No clinically detectable tumours form

if the elimination stage is successful in identifying all pre-malignant

and malignant cells. On the other hand, failure to totally eliminate

cancer cells may lead to an equilibrium phase in which the immune

system can suppress the tumour growth but is unable to destroy it.

This stage involves some immune evasion, that can put cancer cells

under strong selective pressure to undergo mutation that

would enable them to evade immune surveillance, either by

compromising their immunogenicity or by establishing a localized

immunosuppressive environment. Successful completion of these

processes leads to the escape phase, which permits uncontrollable

cancer cell growth and the development of clinically evident

tumours with different levels of immune evasion and suppression

(10). Cancer cells’ immune evasion and metabolic reprogramming

are interdependent as the cancer cells modulate the tumour milieu

to establish the metabolic intermediates involved in suppressing the

immune responses (11). The role of immune-onco-metabolism is

now well recognized; however, further research and insights are still

needed to establish the role and its impact on cancer progression.

Immunotherapy-based treatments have shown remarkable success

in recent years, with cytokine treatments, therapeutic vaccines,

immune checkpoint inhibitors (ICIs), and small molecules being

recent examples of active immunotherapies (12). In this review, we

discuss the interaction between the cells of tumour milieu and

cancer cells with possible therapeutic opportunities related to

these interactions.
Frontiers in Oncology 02
Modulation of immuno-oncology
metabolism through
carbohydrate metabolism

Glycolysis, which involves the breakdown of glucose into

pyruvate remains the main metabolic pathway of the carbohydrate

mechanism. The expedient byproducts include glucose-6-phosphate,

which can be used for NADPH production and synthesis of a pentose

sugar, ribose through the pentose phosphate pathway (PPP), ribose-

5-phosphate which is the main precursor of nucleic acid synthesis

(13). The conversion of end product pyruvate to acetyl-CoA is

another important aspect, recognizing its participation in the TCA

cycle (Figure 1) (10). Cancer cells and other cells that proliferate

rapidly consume a lot of glucose and produce a lot of lactate (14). p53,

c-Myc, and hypoxia-inducible factor (HIF1) are a few oncogenes and

growth factors that regulate glucose metabolism in cancer cells. This

metabolic reprogramming involves Notch, Akt, phosphoinositide-3-

kinase (PI3K), AMP-activated protein kinase (AMPK), and

mammalian target of rapamycin (mTOR). C-Myc can stimulate

mitochondrial biogenesis in cancer cells, resulting in an increase in

the number of mitochondria and inducing enzymes involved in the

glycolytic pathway (15). During tumour metabolic reprogramming,

p53 regulates glycolysis by inhibiting the glucose transporters GLUT-

1 and GLUT-4 and inducing the TP53-inducible glycolysis and

apoptosis regulator (TIGAR). In response to apoptosis, p53

can inhibit the same pathway whereas c-Myc can initiate

glutaminolysis (16). Increased fructose levels enhance the

accumulation of inflammatory cytokines, whereas galactose has

been shown to influence immune cell functioning in the tumour

microenvironment (17).

Immune effector cells, such as activated cytotoxic T cells, target

and destroy cancer cells while undergoing self-metabolic

reprogramming required to carry out cancer elimination functions

(18). T cells regulate the glucose transporter GLUT-1 to promote

glucose absorption and glycolysis during antigenic stimulation (19)

However, anaerobic glycolysis is necessary for T cells to carry out

effector functions, and this cannot be sustained in a permanent state.

As a result, memory T cells, which mostly depend on mitochondrial

respiration rather than aerobic glycolysis, increases during acute

infection immediately after briefly increasing the effector T cells.

Contrarily, cancer cells consume an excessive amount of glucose due

to a high proliferation rate, hence limiting the glucose availability for

the other cells in the tumour microenvironment (20). Utilizing

glucose in accordance with their active state is the primary

characteristic of T cells. For this, naive T cells require glucose to

generate ATP through the OXPHOS and tricarboxylic acid (TCA)

cycle whereas activated T cells do conversion using OXPHOS cycle

into aerobic glycolysis. B cells are not that momentous in the

utilization of glucose as it depends on the stage of B cell

development. However, in a hypoxic environment, the germinal

centres of B cells exhibit increased glycolytic activity. NK cells have

not been studied in detail but it has been demonstrated that NK cells

utilize glucose via glycolysis and OXPHOS (21). It is demonstrated

that M1-like macrophages necessitate a high glycolytic activity while

the M2-like macrophages depend on the OXPHOS (22).
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Macrophages have also been shown to accelerate the PPP through the

modulation of CARKL to assist the increasing demand for NADPH

(23). Dendritic cells do not have much significance except for the fact

that they have been known to maintain immune function by

consuming the stored glycogen.
Targeting carbohydrate metabolism

The foremost reason for the reduction in the effector function of

immune cells is due to the formation of a nutrient-deprived milieu by

the cancer cells due to their dissolute metabolizing capacity. It creates

an alteration from effector to regulatory functioning of the T cells by

favouring the FOXP3 expression (24). The prime focus of steering

cancer associate glucose metabolism is either by targeting enzymes of

the glycolytic pathway or by using an analogue of glucose that can act

as a competitive inhibitor e.g., 2-DG. One of the major areas of focus

would be targeting immune checkpoints, like PD-1, PDL1, and

CTLA-4 by using checkpoint inhibitors (25). The usage of PD-1 is

broadly studied and is vaguely effective in curbing the cancer cell

proliferation. All these approaches have been hugely successful in

inhibition of tumours with a high neoantigen load or a high glycolytic

index. There has been a build-up of lactate in the microenvironment

which tends to inhibit the T cell function and its proliferation (26).

However, neutralization of the environment with bicarbonate has

fairly been successful so far. Mouse model studies have shown

promise results on using V-domain Ig suppressor of T-cell

activation (VISTA) in combination with anti-PD1 for neutralizing

the microenvironment (27). The usage of a lactate dehydrogenase

(LDH) is not encouraged due to its differential effects on the immune

cells (28). In the bottom-line, it is essential to perform a clinical
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evaluation of the effect on immune cells by using these therapeutic

approaches (Table 1).
Modulation of immuno-oncology
metabolism through amino
acid metabolism

Since amino acids are the building blocks of proteins, they serve

all the important nutrients that are related to immune-oncology

metabolism (Figure 1). Glutamine, one of the most extensively

studied non-essential amino acids, is known for its key role with

cancer proliferation (45). Modification in glutamine metabolism has

been known to have adverse effects on immune cells. It has been

shown that cancer cells possess the mutated Myc gene, which can

induce glutaminolysis and increase the uptake of glutamine from

extracellular space. It has been observed that a reduction in levels of

glutamine stimulates Treg proliferation, whereas the B cells and

macrophages will require a glutamine-rich environment for their

multiplication (46). Arginine is another important amino acid, which

helps in upregulating the immune cells via the Arg1 and iNOS

enzymes. It is also observed that a high level of expression of Arg-1

leads to the degradation of arginine by the M2 macrophages, leading

to a negotiated antigen-specific T-cell response. The role of serine and

glycine is not widely known or studied, but it is known that purine

biosynthesis requires serine, essential for T-cell multiplication (47).

Tryptophan which is an essential amino acid is believed to play an

important role in cancer biology, especially in the kynurenine

pathway. Increased production of kynurenine is said to lessen T-cell

expression. Low to moderate levels of tryptophan have been shown to

impair Th17 function and promote Treg development (48). As a
FIGURE 1

Overview of Carbohydrate, Amino acid, Fatty acid metabolism-hexokinase, phosphor-glucose isomerase, phosphofructokinase, aldolase, triose
phosphate isomerase, pyruvate kinase, lactate dehydrogenase, pyruvate dehydrogenase, isocitrate dehydrogenase, phosphoglycerate dehydrogenase,
serine hydroxymethyl transferase, transaminase, glutamate dehydrogenase, arginosuccinate lyase, nitric oxide synthase, arginosuccinate synthase, IDO/
TDO, citrate synthase, ATP citrate lyase, acetyl-CoA carboxylase, fatty acid synthase, elongase, desaturase, cyclooxygenase (1 and 2), acetyl-CoA acyl
transfers, HMG CoA synthase, HMG CoA reductase, fatty acyl CoA synthase. (A) mitochondrial pyruvate carrier, (B) electron transport chain, (C)
cholesterol synthesis, (D) b-Oxidation, (E) oxidative phosphorylation.
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crucial component of tumour metabolism, the exchange of

metabolites between ferroptosis and cancer cells is becoming widely

accepted. There is evidence that amino acid (AA) metabolism is

necessary for ferroptosis (49). Various experimental cancer models

have shown that ferroptosis inducers, that target ferroptosis-

suppressor-protein 1 (FSP1) and glutathione peroxidase 4 (GPX4),

deplete glutathione (GSH), or enhance the iron pool, can effectively

kill cancer cells, especially drug-resistant cancer cells (50). Cysteine

can be catalyzed by glutamate-cysteine ligase (GCL) to produce the

antioxidant GSH. Cysteine can also inhibit ferroptosis independently

of GSH by triggering the Rag-mTORC1-4EBPs signaling axis and

improving the production of the protein GPX4. Cysteine is added to

cystine-glutamate antiporter transport system (System Xc-) in order

to simultaneously generate GSH and exchange Glu. By promoting the

production of glutamine peptide, the glutamate-cysteine ligase
Frontiers in Oncology 04
catalytic subunit (GCLC) prevents ferroptosis and preserves the

equilibrium of the glutamate pool under cystine deprivation (51,

52). Tryptophan (Trp) can be transformed into N-formylkynurenine

by indoleamine-2,3-dioxygenase (IDO) and TDO under catalysis to

regulate the growth of tumour. IDO blocks xCT (solute carrier family

7 member 11), aggravating ferroptosis. In order to prevent ferroptosis,

Trp can also be converted to indole-3-pyruvate through the catalysis

of IL4i1(interleukin 4 induction 1) (53).
Targeting amino acid metabolism

The core tactic in using amino acid metabolism for therapeutic

purposes is to dispossess the metabolites or impede the main regulatory

enzymes. As an example, inhibition of GLS (Glutaminase) tends to
TABLE 1 Summary of anticancer drugs targeting Carbohydrate, Amino acid and Fatty acid metabolism.

Target Therapy Cancer type References

GAPDH 3-Bromopyruvate, ornidazole, a-chlorohydrin Liver cancer, Lymphoma, Breast cancer (29–31)

GLUT
2-Deoxyglucose, Phloretin, Silybin, Glutor, STF-31, WZB117, Fasentin,
Ritonavir, 2,5-AM, Apigenin, Genistein, Cisplatin, Metformin, Tamoxifen,
EGCG, Hesperetin, Kaempferol, Silybin

Breast cancer, Colorectal cancer, Lung cancer, Lymphoma,
Osteosarcoma, Renal cell carcinoma, Hepatocellular cancer,
Prostate cancer, Ovarian cancer, Melanoma, Multiple
Myeloma

(30–32)

HK
2-Deoxyglucose, 3-bromopyruvate, lonidamine, methyl jasmonate, Polydatin,
Tamoxifen, Metformin, EGCG

Breast cancer, colon cancer, lymphoma, neuroblastoma,
pancreatic cancer, Melanoma, Hepatocellular cancer,
Prostate cancer

(29–33)

LDH

Cetuximab, Metformin, Oxamate, Chidamide, Galloflavin, Cisplatin, 2,3-
Dihydroxynaphtalen-1 Carboxylic acid, N-hydroxy-2-carboxy-substituted
indoles, 3-hydroxyisoxazole-4-carboxylic acid, FK866, AZD3965, AR-
C155858, Quercetin

Glioblastoma, lymphoma, pancreatic cancer, Colon cancer,
Breast cancer

(31–33)

MCT Quercetin, a-cyano-4-hydroxycinnamate and Lonidamine Prostate cancer, Breast cancer, Lymphoma (30)

PFK 3PO, PFK15, PFK158
Breast cancer, lymphoma, melanoma, Gastric cancer, Breast
cancer

(29–31)

PK
TLN-232/CAP-23, Shikonin, Alkannin, TEPP-46, DASA-58, ML-265,
oleanolic acid, dimethylaminomicheliolide, Orlistat, 5-FU, Lapatinib, EGCG,
Quercetin, Vit K3, Vit K5

Breast cancer, glioblastoma, liver cancer, lung cancer,
melanoma, renal cell carcinoma, Ovarian cancer, Bladder
cancer

(29–32)

Arginine
metabolism
ARG 1

CB-1158
BEC hydrochloride
nor-NOHA

Advanced and metastatic solid tumours
Tumour-specific Th2 cells
Breast cancer

(34, 35)

Glutamine
metabolism:
GLS1
GLS
GLS1

CB-839
BPTES
968

Non-small cell lung cancer, myeloma
Hepatocellular carcinoma, B-cell lymphoma, Pancreatic
cancer
Non-small cell lung cancer

(34, 35)

ACAT1 Avasimibe, avasimin, and bitter-melon extract Breast cancer, colorectal cancer, prostate cancer (36)

ACC
TOFA, metformin, AICAR
ND-654, and ND-646

Cervix cancer, colon cancer, head and Neck cancer,
Hepatocellular carcinoma, Lung cancer, Ovarian cancer,
Prostate cancer, Renal cell carcinoma

(37, 38)

ACLY SB-204990 LY294002 Lung cancer (39)

CPT1 Etomoxir, ranolazine, and perhexiline
Breast cancer, glioblastoma, lymphocytic leukaemia,
prostate cancer

(40–42)

FASN C75, cerulenin, orlistat, triclosan, EGCG, TVB-3166, and amentoflavone
Breast cancer, endometrial cancer, glioblastoma, lung
cancer, melanoma, mesothelioma, ovarian cancer, prostate
cancer, renal cell carcinoma

(43)

HMGCR Statins and lipophilic statins
Colorectal cancer, melanoma, multiple myeloma, prostate
cancer

(44)
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persuade mitochondrial stress and thus diminution the glycolytic

activity in the cancer cells. Studies in breast cancer models have

shown that inhibition of GLS has supported the proliferation of M1

macrophages and reduced tumours (54). GLS inhibition can also

regulate effector function and survival of T cells. Whilst studies are

being done on arginine starvation which shows tremendous potential in

maintaining an immune suppressive microenvironment with low side

effects. Inhibition of Gln conversion to Glu or its uptake using

compounds like BPTES and Tamoxifen respectively can also trigger

ferroptosis for cancer treatment and to target drug resistant cells (49,

50). Targeting Arg1 in the acidic tumour microenvironment can cause

decreased levels of tumour growth factors and can improve T effector

functions leading to tumour regression (Table 1). Similarly, inhibition

of the enzymes in the tryptophan metabolism (IDO, TDO) have shown

immense potential in pre-clinical analysis but produced miserable

results in clinical trials. Interestingly, IDO inhibitors showed better

outcomes when combined with conventional treatment modalities such

as chemotherapy, radiotherapy, and immunotherapy. The biggest

success came with the usage of the dendritic cell vaccine along with

the IDO inhibitors, which can convert the Treg cells to Th17 phenotype

and support cytotoxic T cells mediated destruction of the cancer cells

(55). Targeting indole-3-pyruvate (I3P), a Trp metabolite, which traps

lipid peroxyl radicals and prevent ferroptosis is another key strategy to

target tumour mass (53). Induction of cell ferroptosis through targeting

the Xc-system-mediated absorption of cystine is a classic strategy in

fundamental research. Drugs such as sorafenib, erastin and sulfasalazine

are in clinical trials, which prevent cysteine accumulation and hence

deplete GSH to enhance ferroptosis. Cystinase targets cysteine and

hence induces depletion of cystine. The iron-starvation response,

which is induced by NFS1 and has been demonstrated to protect cells

against ferroptosis. Hence, targeting NFS1 can be a viable strategy for to

induce ferroptosis in cancer cells (49, 51, 52).
Modulation of immuno-oncology
metabolism through lipid metabolism

Just as carbohydrates, lipids are also instrumental in energy

storage functions and are an important constituent of various

signaling pathways (Figure 1). The biggest supportive factor about

the association of cancer with lipids came with obesity, wherein

studies showed that obesity promotes a 1.5 times high risk of

cancer (56). De novo fatty synthesis is known to curb the damage

induced by reactive oxygen species generated by deranged metabolic

pathways in cancer cells. The major lipid pathways congregate around

Acetyl-CoA, which acts as a central player in metabolism due to its

convergence with various metabolic pathways. Cholesterol is again

one of the main lipids whose synthesis pathway is transcriptionally

regulated by sterol regulatory element-binding protein (SREBP). All

of these form potential targets for immune-oncology metabolism

because of their active involvement in various metabolic functions.

The mevalonate pathway regulates ferroptosis by affecting

selenoprotein biosynthesis (57). Ferroptosis is also being regulated

by fatty acid pools in cancer cells, which is modulated by stromal and

immune cells in TME. Immune cells can affect the iron, lactate, and
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lipid metabolism which in turn can modulate ferroptosis in cancer

cells (58). Lipid metabolism is also highly correlated to the sensitivity

of cells to ferroptosis. Lysophosphatidyl-choline acyltransferase 3

(LPCAT3) and Acyl-CoA Synthetase Long Chain Family Member 4

(ACSL4) can incorporate polyunsaturated fatty acids (PUFA) into the

membrane. Either an enzymatic catalysis or a non-enzymatic free

radical chain reaction can be used to oxidise PUFA (59). The build-up

of lipid peroxides, particularly phospholipid peroxides, is thought to

represent ferroptosis during this period. Currently, it is generally

accepted that lipid peroxides are the primary cause of ferroptosis.

When an excessive amount of lipid peroxides accumulates, this

damage to the plasma membrane eventually results in the

occurrence of ferroptosis in the cells (60).
Targeting fatty acid metabolism

Since cancer cells form a storehouse of many key regulatory

enzymes involved in lipid metabolism, targeting their inhibition

could be of potential use. One such example is the (Fatty Acid

Synthase) FASN enzyme which is highly expressed in cancer cells

and is also considered to be a marker for poor prognosis of cancer.

FASN has been explored as a target by the use of cerulenin, C75, IPI-

9119 and orlistat as its inhibitors (61). Similarly, rate-limiting enzymes

such as ATP citrate lyase (ACLY) and Acetyl-CoA can also be

putatively targeted. Inhibition of these enzymes by using inhibitors

like ND-654 and SB-204900 has shown proficiency in many tumours.

Lipids when gets stored in the cells have been shown to weaken the

antigen presentation. However, since the studies are done in-vitro and

in murine models, the benefits are only postulated. The cancer cells

have also been shown to increase their requirement for fatty acids (62).

Since cellular cholesterol uptake is mediated by LDL receptors and the

cluster of differentiation 36 (CD36) protein, these molecules are also

key accessible targets. LDL receptors have been linked to both a better

prognosis and survival in small-cell lung cancer, while their loss has

been linked to a poor prognosis in colorectal cancer. However, there are

instances of negative side effects when these receptors are targeted for

bladder, renal, and pancreatic tumours. Cancers that express CD-36

have a higher propensity to metastasize. Furthermore, CD36

attenuation may be targeted to reduce tumour migration (63).

Additionally, CD36 is known to support Treg activity and survival

within the tumour microenvironment. Inhibition of the fatty acid-

binding protein (FABP5) can control the function of Treg cells and

inhibit the accumulation of these cells. The anti-tumour efficacy can be

increased by inhibition of fatty acid oxidation as well. Studies on

inhibitors such as CPT1 and ST1326 has highly been successful for

increasing the immune efficacy by blocking fatty acid oxidation (Table

1). Lastly, an important area is of targeting cholesterol metabolism,

which has been highly successful in blocking cancer cell multiplication.

Research has been done on statins to inhibit the HMGCR, a rate-

limiting enzyme of the mevalonate pathway, and increase survival in

cancer patients. HMGCR inhibition also leads to induction of

ferroptosis by inactivating GPX4 (64). Ferroptosis can also be

induced by inhibiting the GPX4-HSPA5 pathway cancer cells and

has been shown to complement gemcitabine in the cancer treatment

(65). There have been efforts to attenuate monoacylglycerol lipase
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(MAG-L) by the usage of inhibitors which have shown promise in

melanoma and ovarian cancer. CD8+ T cells downregulates SLC7A11

and SLC3A2 by releasing IFN-g, which induces ferroptosis in cancer

cells, but also increases PD-L1 expression (66, 67). Hence, a

combination therapy including immune checkpoint inhibitors and

ferroptosis inducers can be of immense potential. The best results

have come by the combination of targeting the esterification of ACAT-

1 and anti-PD1 immunotherapy or chemotherapeutic agents, which

have shown better efficacy than monotherapies. Hence, inhibition of

rate-limiting enzymes of lipid metabolism can pave way for the

regression and treatment of tumours.
Conclusion

The aforementioned studies reveal a flexible interaction and

relationship between cancer cells and immune cell metabolism.

Cancer cells and stromal cells strongly modulate immune cell

metabolism in the tumour microenvironment. Carbohydrate and

amino acid metabolism together with lipids drive the expression of

key genes responsible for changing phenotypes during cancer

progression. Nutrient deficiency or reticence of key enzymes

associated with the metabolic pathways that utilize these

metabolites can result in the impairment of effector and cellular

functions. A significant amount of research has been devoted to

understand the regulation and role of metabolic play between

immune and cancer cells; nevertheless, still many answers remain a

mystery. Further studies are needed to understand the molecular

signalling pathways that regulates gene expression, cellular and

effector functions. In summary, immuno-oncology metabolism has

a great potential to identify novel therapeutic targets and also provide

mechanistic details into tumour progression. This has become an area

of great interest because a targeted approach for intervention in

metabolic pathways has enormous potential to complement current

therapies and improve treatment outcomes.
Future prospects

Generally, for most human diseases, it is believed that prevention

is of foremost importance than cure. But, ever since the therapeutics

of cancer has expanded its horizons, this field of research demands

continuous innovation with implications for a large scale of patients.

However, there are certain challenges, primarily related to finance and

resource building. But these problems could be catered to by

approaching cancer therapeutics as a challenge to the community

rather than to an individual. The area of cancer therapeutics will

always remain competitive and demand new molecules of interest,

with thousands of new targets in the pipeline. It has to be always clear

that cancer isn’t always about the genes, it can be a dysregulation of

the pathways as well. Targeting immune-oncological mechanism,
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particularly in the earliest stages of the disease before the disease

shatters the immune system, widens the perspective as it corresponds

to the pathways and reactions going in the human body, with a

window for more research as we could dive deep into the intricacy of

the biochemical reactions. Over the past decade, significant

advancements have been made in immuno-oncology. It has enabled

the treatment of aggressive cancers that were previously resistant to

treatment with conventional anticancer therapies, as well as providing

long-term survival benefits. A large percentage of new evolving targets

are still in the preclinical stage. Challenges in cancer will demand

colossal overseas investments, a collaboration of bright heads across

the globe, and a massive amalgamation of academia and the industry

with a vision of developing new tools and technologies for solving the

bigger problem.
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