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An integrated solution of
deep reinforcement learning
for automatic IMRT treatment
planning in non-small-cell
lung cancer

Hanlin Wang*, Xue Bai, Yajuan Wang,
Yanfei Lu and Binbing Wang

Department of Radiation Physics, Zhejiang Key Laboratory of radiation Oncology, The Cancer Hospital
of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou,
Zhejiang, China
Purpose: To develop and evaluate an integrated solution for automatic intensity-

modulated radiation therapy (IMRT) planning in non-small-cell lung cancer

(NSCLC) cases.

Methods: A novel algorithm named as multi-objectives adjustment policy network

(MOAPN) was proposed and trained to learn how to adjust multiple optimization

objectives in commercial Eclipse treatment planning system (TPS), based on the

multi-agent deep reinforcement learning (DRL) scheme. Furthermore, a three-

dimensional (3D) dose prediction module was developed to generate the patient-

specific initial optimization objectives to reduce the overall exploration space

during MOAPN training. 114 previously treated NSCLC cases suitable for

stereotactic body radiotherapy (SBRT) were selected from the clinical database.

87 cases were used for the model training, and the remaining 27 cases for

evaluating the feasibility and effectiveness of MOAPN in automatic treatment

planning.

Results: For all tested cases, the average number of adjustment steps was 21 ± 5.9

(mean ± 1 standard deviation). Compared with the MOAPN initial plans, the actual

dose of chest wall, spinal cord, heart, lung (affected side), esophagus and bronchus

in the MOAPN final plans reduced by 14.5%, 11.6%, 4.7%, 16.7%, 1.6% and 7.7%,

respectively. The dose result of OARs in the MOAPN final plans was similar to those

in the clinical plans. The complete automatic treatment plan for a new case was

generated based on the integrated solution, with about 5-6 min.

Conclusion: We successfully developed an integrated solution for automatic

treatment planning. Using the 3D dose prediction module to obtain the patient-

specific optimization objectives, MOAPN formed action-value policy can

simultaneously adjust multiple objectives to obtain a high-quality plan in a

shorter time. This integrated solution contributes to improving the efficiency of
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the overall planning workflow and reducing the variation of plan quality in different

regions and treatment centers. Although improvement is warranted, this proof-of-

concept study has demonstrated the feasibility of this integrated solution in

automatic treatment planning based on the Eclipse TPS.
KEYWORDS

automatic treatment planning, deep reinforcement learning, integrated solution, multi-
objectives adjustment policy network, intensity-modulated radiation therapy
1 Introduction

A major advance in radiotherapy technology is the application of

intensity modulated radiation therapy (IMRT) as one of the principal

delivery techniques (1). Current IMRT plans are usually inversely

planned using treatment planning systems (TPS) (2), to safely deliver

uniform dose to the target, while minimizing damage to the nearby

healthy tissues and organs at risk (OARs).

In the whole plan design process, plan optimization is integral to

inverse treatment planning, which is a trial-and-error process to find

a good set of optimization objectives, including weighting factors,

dose limits, and volume constraints. Among them, the patient-specific

optimization objectives are critically important for the creation of a

high-quality plan. In the clinical workflow, the trial-and-error process

is usually a manual, tedious and time-consuming task. In addition, the

final plan quality is dependent on planners’ experience, planning

difficulty and available time (3). Plans are often accepted under

clinical pressure, although further improvement is still possible.

To address these issues, the concept of automatic planning has

been proposed and implemented using a range of methodologies (4).

Among the most commonly used approach is protocol based

automatic iterative optimization (PB-AIO), which is designed to

mimic the planning operations of the physicians by some artificial

protocols (5). Earlier works on the iterative improvement of

optimization objective/weights built on the seminal work of Xing et

al (6). This approach is often combined with optimization algorithms

in commercial TPSs (7) (8) (9), such as RayStation (RaySearch

Laboratories AB, Stockholm, Sweden), Pinnacle (Philips Healthcare

GmbH, Hamburg, Germany) and Eclipse (Varian Medical Systems,

Palo Alto, CA). Another approach is knowledge-based planning

(KBP), which directly utilizes prior knowledge and experience to

either predict an achievable dose for a new patient from a similar

population or to derive a better starting point for the further

optimization. The commercial Eclipse TPS uses the KBP-based

RapidPlan module in automatic planning for various tumor sites to

estimate two-dimensional dose-volume histograms (DVH) (10) (11).

In addition, deep learning prediction model is a new solution that

uses neural networks to analyze spatial features and achieve patient-

specific three-dimensional (3D) dose distribution (12). The dose

prediction model has been applied to automate treatment planning

in some studies (13) (14).

Recently, deep reinforcement learning (DRL) has showed

exceptional performance in some sequential decision-making

problems. Notably, it outperformed human experts in Atari games
02
(15) and made a breakthrough in Go (16). In TPS, searching for the

optimal optimization objectives of treatment planning through trail-

and-error method is essentially a sequential decision-making

problem. Compared with PB-AIO and KBP approaches, the DRL

model is universal and does not rely on previous training experience.

To date, the feasibility of DRL in treatment planning has been

demonstrated in preliminary studies (17) (18). Pu et al. developed

an intelligent DRL-based brachytherapy treatment planning

framework that can utilize the learned dwell time adjustment policy

to obtain a satisfactory plan (19). Shen et al. proposed the virtual

treatment planner network based on an in-house TPS (20). By an

end-to-end training, the network could operate in-house TPS

parameters to generate high-quality plans. Previous studies showed

that the DRL framework can support decisions for certain tasks in a

human-like fashion to achieve similar or even better performance

compared with humans.

Although the DRL-based solutions to the sequential decision-

making problem of treatment planning are encouraging, the training

efficiency of this model is a major concern. Clinically, the more

adjustable optimization objectives need to be added when the

complexity of treatment planning increases. Depending on a single-

agent model, treatment planning selects one objective to adjust in

each optimization. In this scenario, a longer time is required to solve

the treatment planning optimization problems, which considerably

prolongs the training process. In this paper, we proposed a multi-

objectives adjustment policy network (MOAPN) based on a multi-

agent DRL scheme, and further explored its feasibility to adjust

multiple objectives in commercial Eclipse TPS. Furthermore, we

developed a 3D dose prediction module, which worked with

MOAPN to form an integrated solution for automatic treatment

planning. The patient-specific initial optimization objectives were

generated based on the predicted 3D dose distribution of each patient

case. Therefore, the overall exploration space of each treatment

planning could be reduced during MOAPN training. This study

aimed to demonstrate the feasibility of this approach to automatic

stereotactic body radiotherapy (SBRT) planning for lung cancer.
2 Material and methods

2.1 Patient cases collection

The 114 peripheral non-small-cell lung cancer (NSCLC) cases

were retrospectively selected from the clinical database as the total
frontiersin.org

https://doi.org/10.3389/fonc.2023.1124458
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1124458
study cohort, dated from June 2018 to March 2022. Two or more

radiotherapists agreed that they were suitable for SBRT. Lung

scanning was performed using a GE LightSpeed-RT simulator or a

Philips large-aperture CT simulator. The clinical target volume

(CTV), lung, chest wall, esophagus, bronchus, spinal cord and heart

were delineated by experienced radiation oncologists. Due to set-up

errors and organ motion, the planning target volume (PTV) was

obtained by expanding 5 mm of the CTV in the 3D direction. The

prescribed dose was 50 Gy spread over 5 fractions, and scaled to cover

95% of the PTV for all cases.
2.2 Auto-planning creation

In this study, the proposed automated optimization process of

SBRT plans was implemented with Eclipse Scripting Application

Programming interface (ESAPI) provided by the Eclipse TPS.

Python-based scripts were developed in a research mode to

implement the proposed automatic planning procedure for NSCLC

patients, including plan creation, parameters setting & modification,

plan optimization, data reading, and plan evaluation. All studied cases

were preformed on a Varian True-Beam linear accelerator with a

coplanar beam energy of 6 MV, equipped with the Millennium 120

MLC. All treatment plans were uniformly designed as IMRT and the

angular interval of the fields was set to 40°.

In the inverse SBRT planning process, dose-limiting rings are

often introduced (21) and used to control the dose gradient outside

the target to an acceptable level. In this study, five 3D ring structures

with a width of 4 mm were generated at distance of 0.3 cm, 1.0 cm,

2.4 cm, 4.4 cm and 6 cm outside the PTV, named Ring1, Ring2, Ring3,

Ring4 and Ring5, respectively. These ring structures were used to

participate in planning optimization to control the dose gradient

outside the target and spare the normal tissues surrounding the target

as much as possible. Moreover, an additional ring structure named

D2cm was also generated by a prewritten script to evaluate the result

of dose gradient. This ring structure with a width of 1 cm was

obtained by expanding 2 cm outside the PTV in the 3D direction. All

settings and requirements were the same between different studied

cases. For the target, 100% prescription dose need to cover 95% of the

PTV. For the OARs, the dose constraint fol lowed the

recommendations of radiation oncology working group (RTOG)

0915 report (22). The OAR dose was expected to be as low as

possible without compromising the dose coverage to the target.
2.3 Optimization objective function

In this paper, the Eclipse Photon optimization (PO) algorithm

(23) was used as the optimizer. The optimization was currently

performed on an overall objective with multiple terms of dose

volume histogram (DVH) constraints. Each DVH constraint

designed for various considerations, corresponding to a set of

planning optimization objectives, was composed of four input

parameters: an optimization weight factor, a 2D-position on the

DVH-graph representing the dose-volume objective, and a Boolean

variable describing the direction of the constraint (upper of lower) on

the DVH curve. If the dose-volume objectives are not met, a weighted
Frontiers in Oncology 03
quadratic cost is calculated, as follow:

costd =
1
2
w � (Dactual − Dobj)

2 (1)

Where Dactual and Dobj refer to the actual dose after optimization

and the desired objective (e.g. V20, relative volume of the lung

receiving doses of > 20 Gy should be less than 15%) before

optimization, respectively. is a weight factor of the dose-volume

objective. For the upper objective, the cost is applied for the portion

of doses that exceed the desired dose value and volume level. For the

lower objective, the cost is applied for the portion of doses that fall

short of the desired dose value and volume level.

In addition, an alternative solution of the dose-volume objectives

is the generalized form of equivalent uniform dose (gEUD) (24).

Compared with physical dose, the gEUD considers radiobiologic

factors and has the potential to improve the sparing of the critical

structures in IMRT (25). However, the target is insensitive to the

existence of hot spots within the gEUD optimization, and potentially

has worse dose coverage. Then, optimization evaluates the gEUD

values for the structure, and a square law cost is applied when an

objective is not met in the same manner as in Eq. (1):

costgEUD = w � (gEUDactual − DEUD)
2 (2)

Where w is a weight factor of the gEUD objective.DEUD is the

desired objective for EUD. The gEUDactual represents the actual value

for EUD after optimization, as follows:

gEUD = (
1
V
�oVD(x)

a)
1
a (3)

Where a is a biological parameter controlling the dose

distribution inside the structure. Typical values range from -40 to

40. For serial structures (e.g., spinal cord, esophagus, chest wall) or

ring structures, the gEUD parameter is assigned to a large positive

value (a = 40) that tends to near the maximum dose. For parallel

structures such as lung, the value of a would be small and positive (a =

1), the dose response may be more closely related to the mean dose

(26). V is the volume of the structure. D(x) represents the dose in

position x inside the volume V. For the lower gEUD objective, the cost

value is 0 when gEUD > DEUD. For the upper gEUD objective, the cost

value is 0 when gEUD > DEUD.

In Eclipse TPS, the optimization of an IMRT plan using PO

optimizer was defined as a minimization problem. To obtain the ideal

dose coverage and spare the critical structures, a hybrid objective

function combined gEUD and physical dose constraints is developed

as:

min
D

(wPTV
L (DPTV

actual − Dp)
2
lower + wPTV

H (DPTV
actual − Dmax)

2
upper+

o
i
wOAR
i (gEUDOAR

i − Di
EUD)

2
upper +o

j
wring
j (gEUDring

j − Dj
EUD)

2
upper)

(4)

Where wPTV
L and wPTV

L are weights for the two objectives of the

PTV, respectively. Dp and Dmax are the prescription dose and the

maximum dose for the PTV. wOAR
i is a weight of the ith OAR,

including chest wall, spinal cord, esophagus, bronchus, heart and

lung, respectively. wring
j is a weight of the jth ring structure, including

Ring1, Ring2, Ring3, Ring4 and Ring5, respectively.
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2.4 Dose prediction module

At the initial step of optimization, the clinical planners are

accustomed to loading a set of predefined objectives generated by

plan experience templates into the PO optimizer, performing the first

optimization. These predefined objectives represent that a set of fixed

optimization parameters is applied to a large number of patient cases,

even with various variations between them. A set of good initial

optimization objective parameters can not only achieve good

optimization result, but also shorten the optimization process and

improve work efficiency. In this study, a dose prediction module was

developed to predict the 3D dose distribution and obtain the patient-

specific initial optimization objective parameters.

With previous experiences on dose prediction (27), a dose

prediction module based on U-Net architecture was configured

with 76 clinical treated SBRT plans for peripheral NSCLC cases (60

cases for training and 16 cases for validation). All training plans were

manually created by senior physicians following consistent dose

prescription and planning protocols. The U-Net model had a total

of 10 layers and all convolutional layers applied a 3×3×3 kernel except

the output layer with 1×1×1 kernel. The input data was contours of

the planning structures, which were converted from DICOM format

files. It was a 3D matrix (64×256×256) with one channel, including

PTV, lung, chest wall, esophagus, bronchus, spinal cord and heart,

respectively. According to the structure type, each voxel was assigned

a specific value (e.g. 1.0 for PTV, 0.88 for heart, 0.75 for spinal cord,

0.63 for esophagus, 0.5 for chest wall, 0.43 for bronchus and 0 for the

voxel outside of the body). The output data was the 3D predicted dose

distribution. The model was implemented in Keras, and the Adam
Frontiers in Oncology 04
optimization algorithm was used for the sharp loss function

minimization (28).

A complete dose prediction module is composed of the following

three steps, as shown in Figure 1. First, using previously treated plans

as training data generated DL model to predict the 3D dose

distribution. Second, the new case’s CT with structure information

of the target and OARs was used as inputs to automatically generate

the 3D dose distribution. Third, based on the 3D dose distribution

predicted by new cases, a prewritten script was utilized to count the

dose values obtained for each dose voxel in the entire dose grid. The

statistical results would form a 2D dose-volume histogram, yielding

smooth dose-volume curves for all structures by interpolation.

Referring to the clinical guidelines, the specific dose values or

volume values for each structure (e.g. lung V5 and spinal cord

Dmax) were selected in dose-volume curves and converted into

initial optimization objective values, e.g. Di
EUD and Dj

EUD, to

participate in the optimization in Eq. (4).
2.5 Multi-objective adjustment
policy network

2.5.1 Network architecture
To build the proposed MOAPN, we used the Q-learning

framework, which is a reinforcement learning algorithm (29) for

solving the Markov Decision Processes (30). This framework tries to

build the optimal action-value policy and its updated formula is:

Q(st , at) Q(st , at) + a(rt + gmaxQ(st+1, at+1) −Q(st , at)) (5)
FIGURE 1

The overall workflow of an integrated solution for automatic treatment planning.
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Where St and St+1 are the states at t and t+1 steps; at and at+1 are

the actions at t and t+1 steps; rt represents reward value at t step; g is
the discount factor; a is the learning rate.

For large state spaces and action spaces, the standard Q-learning

algorithm cannot bear huge computational burden. Thus, deep Q

network (DQN) (15) is proposed to approximate action value

function via a multi-layered neural network. Generally, the loss

function of DQN is defined as:

Li(qi) = ½r + gmaxatQ(st+1, at+1; q
tar
i ) − Q(st , at ; q

eva
i )�2 (6)

Where qeva
i and q tar

i are the evaluation-network parameter and

the target-network parameter, respectively.

To avoid overestimation of action values in the training process,

the double-deep Q network (DDQN) (31) was proposed to decouple

the selection of target Q-value actions and the calculation of target Q-

value. The updated action-value function for DDQN algorithm is as

follows:

QDDQN
t = Rt+1 + gQ(st+1, argmaxatQ(st+1, at ; q

eva
i ); q tar

i ) (7)

In this study, we developed MOAPN based on the network

architecture of DDQN. Additionally, the experience replay and fix

Q target techniques were used in MOAPN to stabilize the

training process.

2.5.2 States and actions
In the MOAPN, the state was defined as input data, which was the

DVH matrix (850×12) of an optimized plan for each set of objectives,

including PTV, all ring structures, lung, heart, spinal cord, esophagus,

bronchus and chest wall. To shorten the training process and increase

the robustness of network, we used the dose prediction module to

obtain patient-specific initial optimization objectives. The MOAPN

consisted of five similar DDQN networks controlled by five agents

and with independent input data and memory buffers, as shown in
Frontiers in Oncology 05
Figure 2. During optimization, four input parameters were used for

each optimization objective: an optimization weight factor, a 2D

position goal on the DVH graph, and Boolean variable describing the

direction of the constraint, as described in Section 2.3. In this model,

the optimization weight factors of all structures were maintained at

fixed values of 300 and 150 for the target objectives and other

structures’ objectives, respectively. This indicates that more

attention was paid to the target than other structures in planning

optimization. The objective values of five ring structures obtained

from the dose-volume goal on the DVH graph were adjusted to

achieve desired dose gradient outside the target. Because the dose of

OARs was affected by the adjustment of the ring dose, the dose

constraints of all OARs were not adjusted in the optimization. When

the ring dose reached the established requirements, the dose of OARs

could meet the clinical requirements. Input data for each DDQN

network were included in three columns corresponding to the DVHs

of PTV, body and ring structure. In addition, we defined four possible

adjustment actions for each objective: (a) 0-action: decrease the

objective by 10%; (b) 1-action: decrease the objective by 3%; (c) 2-

action: keep the objective unchanged; (d) 3-action: increase the

objective by 5%. The network output was Q value matrix for

all actions.
2.5.3 Reward function
To evaluate the plan quality, we used a plan quality scoring

system Eva(s). The Eva(s) scoring system was derived from the Plan

IQ evaluation system (Sun Nuclear, Melbourne, FL), which included

partial functions considered applicable to our study. The scoring

system consisted of a set of criteria for evaluating plan quality based

on target coverage, dose gradient and spring of OARs. Following the

UK 2022 consensus (32) and RTOG 0915 report (22), the Eva(s) gave

stricter criteria to achieve better plan quality. For theD95% of PTV, the

scoring criterion was defined as a piecewise linear function. No
FIGURE 2

The network architecture of the MOAPN.
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penalty occurred when the prescription dose was met. Once the actual

dose was below the prescription dose, this criterion score rapidly

decayed. Other scoring criteria were defined as once-linear functions

to reduce the surrounding OARs dose as much as possible while

maintaining the clinical prescription dose. The components of the

Eva(s) are shown in Table 1.

With the scoring system Eva(s), the reward function in MOAPN

can quantify the plan quality change caused by objectives adjustment.

The reward function is defined as follows:

r =

−200,       if  D95%(PTV) < 95%�Dp

− 50,       if  Dactual(ring
i) ≤ Dobj(ring

i)   and   at(ring
i) = 3

− 20,       if  Eva(st+1) < Eva(st)

5,       if   Eva(st+1) = Eva(st)

20,       if  Eva(st+1) > Eva(st)

8>>>>>><
>>>>>>:

(8)
This reward function assigned a positive reward when the plan

score increased at the next step. In contrast, a negative reward was

given when the plan score decreased. We awarded a large penalty

value to avoid adjusting objectives in the wrong direction. In addition,

when the plan score was unchanged, we assigned a smaller positive

reward to encourage MOAPN to maintain the current state to avoid

non-convergence caused by endless exploration for a better state. In

the training process, we allowed MOAPN to search for a better state

by sacrificing a certain amount of target coverage. A decay factor was

defined to penalize plan score when the target did not meet the

prescription dose. When the target coverage was below the minimum

limitation, we assigned a bigger negative reward and stopped

the optimization.
Frontiers in Oncology 06
2.5.4 Prioritized experience replays
In the training process, the states st and st+1, the chosen action at,

and the reward rt were stored as a transition (st, at, rt, st+1) in the

experience replay pool. The temporal difference error (TD-error)

which represented the difference in Q value between the evaluation-

network and target-network was used to update network parameters

in MOAPN. Based on the TD error, the Sum-Tree structure was

introduced to give sampling priority to each transition stored in the

experience replay pool (33), which was constantly updated for each

transition during training. When sampling from the experience replay

pool, samples with larger TD-error were easier to be sampled.

2.5.5 Training strategy
The MOAPN was trained on 11 patient cases selected from the

total study cohort. All training cases included the patient-specific initial

optimization objectives by dose prediction module, as shown in

Table 2. For each training case, five DDQN networks independently

performed three processes: objectives adjustment, transition storage

and sample, and network training. After all objectives were adjusted, an

optimization process was performed. In each step, the ϵ greedy

algorithm was used for MOAPN to select actions. Specifically, each

DDQN network randomly selected its own action among all possible

actions with a probability of ϵ. Otherwise, the optimal actions that

achieved the highest output value were selected with a probability of 1 -

ϵ. The probability ϵ was started at 0.95 and decayed at a rate of 0.95/

episode along the training process, with a minimum of 0.1. Considering

that there were five objectives to adjust, five independent experience

replay pools each with maximum capacity of 4096 were generated to

store transitions (St, at, rt, St+1) based on the Sum-Tree structure. In
TABLE 1 Plan quality metrics and assigned scores for assessing automatic plan quality.

Structure Metric Scoring Criterion

PTV D95% (Gy) score =
100,  if  D95% ≥ 50  

100*(D95% − 48:5)=(50 − 48:5)     if  D95% < 50

(

PTV CI score=100*(CI−0.75)/(1−0.75)

PTV GI score=100*(GI−3.75)/(3−3.75)

Ring1 Dmax (Gy) score=100*(Dref−Dmax)/500

Ring2 Dmax (Gy) score=100*(Dref−Dmax)/500

Ring3 Dmax (Gy) score=100*(Dref−Dmax)/500

Ring4 Dmax (Gy) score=100*(Dref−Dmax)/500

Ring5 Dmax (Gy) score=100*(Dref−Dmax)/500

Chest wall Dmax (Gy) score=50*(50−Dmax)/(50−20)

Spinal cord Dmax (Gy) score=50*(15−Dmax)/15

Heart Dmax (Gy) score=50*(15−Dmax)/15

Lung (AS) V5 (%) score=50*(35−V5)/35

Bronchus Dmax (Gy) score=50*(15−Dmax)/15

Esophagus Dmax (Gy) score=50*(15−Dmax)/15
Dmax, maximum dose; Dref, reference dose; Dx%, absolute dose received by x% of the volume; Vx, relative volume receiving > x Gy absolute dose; CI, conformity index; CI, (TVRI/TV)×(TVRI/VRI). TVRI

is the target volume covered by the prescription dose, TV the target volume, VRI the volume covered by the prescription dose; GI, gradient index, GI = V50%/Vp, V50% is the volume covered by the 50%
of the prescription dose, Vp is the volume covered by the prescription dose; Lung (AS), lung (affected side).
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each iteration, 20 training samples were selected to update the

parameters qeva of evaluation-network. The parameters qtar of target-
network were replaced with those of evaluation-network after every 80

steps. The processes of adjustment, optimization and training were

repeated for each training case until either of the following termination

criterion was met: (1) a maximum number of adjustment steps of 20

was reached; (2) the target coverage reached the minimum limitation,

i.e. D95% (PTV)< 95% ×Dp

All the computations were performed using Python on a Varian

desktop workstation with 16 Intel Xeon Silver 4110 CPU processors,

32GB memory and 2 NVIDIA Quadro P5000 GPU cards. Based on

the Python-ESAPI, the Pycharm software was used to interact with

TPS and debug all scripts.

2.5.6 Evaluation
MOAPNwas evaluated on a total of 27 cases were selected from the

study cohort. The prescription dose for all cases was 50 Gy/5 fractions.

Based on the dose prediction module, the optimization for each case

started with patient-specific initial optimization objectives. The trained

MOAPN was used for objectives adjustment and optimization. The

iteration was terminated if the target did not meet the prescription dose,

or the maximum number of 25 adjustment steps was reached.

Wilcoxon signed rank test was used to investigate the significance of

the difference in the final plans versus the initial plans and the clinical

plans, with a statistically significance threshold set at P value< 0.05.
3 Results

In this study, the MOAPN training for lung SBRT cases was

successfully performed, and the training time was about 3 days. The
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automatic treatment plan for each tested case was generated by

MOAPN. The completed planning optimization process took about

5-6 min.

For all training cases, the relationship between the total training

steps and the cumulative reward value is shown in Figure 3. The

effectiveness of the proposed MOAPN framework was indicated by

the increasing trend in rewards along the training steps. In the

original curve, the cumulative reward value was found to fluctuated

slightly. This phenomenon reflected that MOAPN used the trial-and-

error approach to explore the optimal action-value policy. In the fitted

curve, the cumulative reward per 4000 iterations increased by 65%

and 67%, which indicated that MOAPN gradually learned objectives

adjustment policy to improve the plan quality.

Figure 4 shows the actual dose result of the ring structures of all

tested cases in adjustment steps. The average number of adjustment

steps for all tested cases was 21 ± 5.9. For all ring structures, the

median, extremum and quartile of the average Dmax decreased

significantly before 13 adjustment steps. After the 13th adjustment

step, the median Dmax of all ring structures tended to converge.

Therefore, a new case was able to complete optimization with about

13 adjustment steps by the trained MOAPN.

A summary of the quantitative comparison of MOAPN final

plans, MOAPN initial plans and clinical plans for the OARs sparing is

presented in Table 3. Compared with the MOAPN initial plans, the

actual dose of the listed OARs in the MOAPN final plans decreased

significantly except for the esophagus (p > 0.05). Among these, the

average Dmaxfor the chest wall and the average for the affected side

lung were reduced by 14.5% and 16.7%, respectively. However, the

dose result of various OARs in the MOAPN final plans was similar to

those in the clinical plans, e.g. spinal cord, heart, affected side lung,

esophagus, bronchus and D2cm structure. Among these, the average
TABLE 2 The initial patient-specific objectives of two representative cases based on the 3D dose prediction module.

Structure Objective type Parameter a/Volume (%)
Patient 1 Patient 2

Dose (Gy) Weight Dose (Gy) Weight

PTV Point (lower) Volume=100 52.0 300 52 300

PTV Point (upper) Volume=0 67.5 300 67.5 300

Ring1 gEUD (upper) a = 40 51.4 150 52.2 150

Ring2 gEUD (upper) a = 40 35.4 150 34.9 150

Ring3 gEUD (upper) a = 40 23.4 150 21.1 150

Ring4 gEUD (upper) a = 40 18.2 150 14.0 150

Ring5 gEUD (upper) a = 40 15.2 150 8.5 150

Chest wall gEUD (upper) a = 40 41.1 150 37.1 150

Spinal cord gEUD (upper) a = 40 6.8 150 6.5 150

Esophagus gEUD (upper) a = 40 10.2 150 7.3 150

Heart gEUD (upper) a = 40 14.9 150 24.1 150

Lung(AS) gEUD (upper) a = 1 8.6 150 5.5 150

Bronchus gEUD (upper) a = 40 12.8 150 4.0 150
fron
Point (lower), the type of optimization objective function is dose-volume objective (minimum constraint); Point (upper), the type of optimization objective function is dose-volume objective
(maximum constraint); gEUD (upper), the type of optimization objective function is gEUD objective (maximum constraint); Lung (AS), lung (affected side).
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Dmax for spinal cord, esophagus, bronchus and D2cm structure

showed no significant difference (p > 0.05).

To better demonstrate the effectiveness of MOAPN, the result

of one representative case is shown in Figures 5, 6. In the first 10

adjustment steps, the 0-action and 1-action were frequently

selected for five ring structures to decrease the corresponding

objectives significantly or slightly, respectively. After 15
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adjustment steps, the 2-action was selected for each ring

structure to keep the objectives unchanged. In addition, the

Ring2 selected the 2-action 23 times in overall adjustment steps,

indicating that the result of dose prediction module had basically

reached the desired objective of MOAPN. The advantages of

MOAPN can also be observed visually through the planning

score in overall adjustment steps, as shown in the Figure 6. The
FIGURE 4

Box plots showing the relationship between the adjustment steps and the maximum dose of Ring1, Ring2, Ring3, Ring4, Ring5 and D2cm in all tested
cases. The symbol * indicates some outliers present in the statistical values.
FIGURE 3

Correlation between the total training iterations and the cumulative reward value.
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average plan score increased from 18.3 to 809.1 and converged after

15 adjustment steps.

To better understand plan quality changes, the DVH curves of all

structures for the representative case between the 0th, 4th, 8th, 15th and

25th adjustment steps are compared in Figure 7. Obviously, the

significant improvement in the DVH curves can be observed in five

ring structures. Affected by adjusting the ring structure objectives, the

dose of OAR decreased to varying degrees. In addition, we found that

the 15th DVH curve and 25th DVH curve of various structures

basically coincided, indicating that the representative case had

converged and tended to the optimal plan at the 15th adjustment

step. The comparison of the isodose distribution for the representative

case between the 0th, 4th, 8th, 12th, 16th and 25th adjustment steps is

shown in Figure 8. Before the 12th adjustment step, it can be visually

observed that the isodose lines tightened continuously and the value of

the maximum dose point of the transverse slice kept increasing. It

should be noted that the comparison results of isodose distribution in

other tested cases were also similar.
4 Discussion

Based on ESAPI, this study developed an integrated solution for

automatic treatment planning. First, a 3D dose prediction module was
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built to obtain patient-specific initial optimization objectives. With

the help of a multi-agent DRL scheme, the MOAPN was developed

and trained to operate an optimization engine to generate high-

quality plans. The clinical feasibility of automatic optimization of

radiotherapy plans based on the Eclipse TPS was demonstrated. The

MOAPN generated an action-value policy similar to the physician’s

iterative operation during the planning optimization. With this

integrated solution, a more efficient overall workflow of treatment

planning was achieved.

Numerous studies have reported RL-based automatic planning for

different tumor sites. Hrinivich et al. proposed a RL VMAT algorithm

in a in-house developed TPS, which can learn a machine control policy

using previous cases geometry (17). This policy was used for new cases

to rapidly optimize treatment plans and generate sequences of

deliverable machine parameters without adjusting optimization

objectives. Shen et al. constructed a hierarchical virtual treatment

planner network consisting of structure-net, parameter-net and

action-net (34). This network selected the structure and parameter to

adjust and determined the specific adjustment sequence, similar to the

behavior of a planner. Compared with in-house automatic planning

strategy, our approach used the commercial TPS optimization engine

and algorithms to adjust the optimization parameters and generate

dose distribution. To our knowledge, this is the first RL implementation

for automatic IMRT planning via ESAPI. The main limitation is that
FIGURE 5

The selected action values of Ring1, Ring2, Ring3, Ring4 and Ring5 in
the adjustment steps for one representative case.
FIGURE 6

The obtained plan score of one representative case in the MOAPN
adjustment steps.
TABLE 3 Dosimetric parameters comparison between MOAPN final plans versus MOAPN initial plans and clinical plans (mean ± standard deviation).

Structure Parameter Final plans Initial plans P value Clinical plans P value

Chest wall Dmax (Gy) 37.02 ± 11.44 43.33 ± 9.27 <0.001 42.50 ± 9.44 <0.001

Spinal cord Dmax (Gy) 8.05 ± 3.94 9.11 ± 5.43 0.044 8.06 ± 5.46 0.885

Heart Dmax (Gy) 9.24 ± 6.97 9.70 ± 6.89 0.01 9.91 ± 8.01 0.031

Lung (AS) 5 (%) 24.51 ± 9.31 29.45 ± 9.08 <0.001 25.26 ± 7.87 0.037

Esophagus Dmax (Gy) 8.21 ± 3.86 8.37 ± 3.78 0.683 7.26 ± 3.77 0.064

Bronchus Dmax (Gy) 10.70 ± 5.64 11.60 ± 5.61 0.017 10.84 ± 5.59 0.904

D2cm_PTV Dmax (Gy) 22.14 ± 2.29 26.47 ± 1.23 <0.001 22.25 ± 2.18 0.597
fron
Lung (AS), lung (affected side); Dmax, maximum dose; Vx, relative volume receiving > x Gy absolute dose; P value, The P values in the first and second column represent the statistical results of the final
plans versus the initial plans and the clinical plan, respectively.
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the Eclipse’s optimization algorithm is treated as a black box in iteration

process. Hrinivich’s approach used the uniform objective map, which

cannot optimally reflect the variation of cases. With the objective values

met, further improvement was not needed. Based on dose prediction

result, our approach further searched patient-specific optimization

parameters, which helped achieve a better plan quality. In addition,

Shen’s hierarchical DRL network shows a good application in
Frontiers in Oncology 10
parameter decision-making process when the number of

optimization parameters is sufficiently large. We aim to further

enhance the hierarchical framework of MOAPN to improve its

application to complex clinical situations.

The anatomical geometry of the tumor and body varies from case

to case, and this difference can exert various effects on the final dose

distribution. Unreasonable objectives will enlarge the parameter space

explored, resulting in a time-consuming trial-and-error process in

optimization. Therefore, it is necessary to obtain a set of patient-

specific optimization parameters for each patient case (5). In our

study, the dose prediction module was summarized into two steps:

predicting 3D dose distribution by training and generating the two-

dimensional dose-volume parameters. However, a major limitation of

this KBP approach is that the results are strongly dependent on the

training database used. Higher performance of the dose prediction

model can be achieved with a sufficiently large, high-quality planning

database. If the ground truth doses are suboptimal, the predicted

doses will also be suboptimal. Moreover, the dose prediction model

need to consider the unique clinical characteristics of each patient

case, including PTV size, which shows significant variability and

spatial complexity of neighboring anatomy. However, the KBP

approach has region-specific features, as it is typically used with

independent databases and models in different treatment centers to

improve the accuracy of the prediction result. This limits the universal

applicability of effective planning models in different regions. In our

study, the integrated solution combines the respective advantages of

the dose prediction module and DRL method. This precludes the

need for optimal prediction results. The 3D dose prediction module is

utilized to obtain the initial patient-specific initial optimization

objectives. In addition, with this module, uniform optimization

objectives are not necessary, which minimizes the parameter search

space and optimizes computational resources. When the predicted

results are ideal, MOAPN can complete the planning optimization

process in a few iterations. Even with an inaccurate predicted dose,

the action-value policy formed by MOAPN has the ability to adjust

objectives and gradually generate a satisfactory plan. Therefore, this

integrated solution has a wide application potential in different
FIGURE 8

Comparison of the transverse isodose distributions between 0th, 4th, 8th, 12th, 16th and 25th adjustment steps for one representative case.
FIGURE 7

DVH curves of one representative case between 0th, 4th, 8th, 15th
and 25th adjustment steps compared from ring structures and OARs.
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regions and treatment centers. In addition, the patient-specific initial

optimization objectives can not only better reflect the variation of

cases, but also contribute to faster convergence of MOAPN in training

process and improve the overall work efficiency.

This study focused on a problem of lung SBRT automatic treatment

planning for a less complex case with moderate number of OARs. Five

dose-limiting ring structures were generated using a prewritten script

and used to control the dose gradient outside the target to an acceptable

level without adjusting the dose constraints of all OARs. In Table 3, the

experimental result shows that when the objectives of ring structures

are adjusted, the dose of OARs can be controlled to clinically acceptable

levels. Compared with the single-agent model, the MOAPN can

provide independent training process for each objective and

simultaneously adjust multiple objectives based on the current state.

Thus, this method could improve the work efficiency and reduce the

variation of plan quality in clinical application. As this method is

established using the ESAPI module, it can be readily integrated into

any Eclipse TPS (v. ≥ 15.6) as a plug-in application. Script-based

automatic approaches have been proven to have great potential for

reducing workloads in clinical radiotherapy (35). In addition, it is very

flexible and can be modified for various prescriptions, tumor sites (e.g.

rectum and head-and-neck), and OARs. In a follow-up study, we aim to

develop an automatic planning assistance module for TPS using ESAPI.

Planners can directly use the automatic planning design program by

inputting the relevant parameters in the prompt box, without fully

understanding the code architecture of this method, providing more

convenience for clinical work.

However, the current study still has several limitations. First, to

demonstrate the feasibility of the proposed method, we constructed a

simple plan quality scoring system and reward function. As these may

not fully reflect the clinical criteria for plan quality evaluation, it is

necessary to add more clinical criteria to the reward function. In

addition, this study only illustrated the feasibility of the MOAPN

approach in only a few cases. A large number of cases are required

to find and seal loopholes in its clinical implementation and improve

robustness in the handing of clinical cases. The quality of automatic

planning generated by MOAPN may also not achieve clinical

acceptability by physicians. Second, the MOAPN only had four

action options for adjusting the objectives, which may affect the

ability of adjustment to some degree. To provide diversified

adjustment steps, we aim to improve MOAPN in the future to

implement the continuous action control based on the current state

(36). Third, the input feature of MOAPN only was based on DVH

matrix since DVH is a concise representation of plan quality. However,

it is well-known that DVH cannot capture spatial location information

such as hot/cold spots, which is critical to physician decisions. We

expect that the 3D dose information will be used to handle more

complicated tasks in the future. Fourth, this study is a new attempt at

automatic planning. However, the current application scope of the

automatic plans is limited to peripheral NSCLC cases. Based on the

original model, we have introduced more tumor sites data for training

to obtain a more general model in the future. Nevertheless, it must be

acknowledged that these improvements inevitably lead to a larger

MOAPN architecture and higher computational burden, such as

when training with 3D dose information, adding more adjustable

objectives, and handling more complex plans. We need to upgrade

hardware devices and software to improve the efficiency of algorithm
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execution. Although our method shows good performance and great

potential in the field of automatic planning, it does not completely

replace manual intervention, especially for some complex cases. If the

planners are not satisfied with the results of the automatic planning, the

obtained plan can be an intermediate step for further manual

intervention, which can accelerate the trial-and-error process.
5 Conclusion

With the help of ESAPI, we proposed an effective and efficient

integrated solution for automatic treatment planning. It first includes

the dose prediction module for obtaining patient-specific initial

optimization objectives. We demonstrated that the trained MOAPN

can mimic the operations of the physicians during optimization and

adjust multiple objectives to obtain a high-quality plan in Eclipse TPS.

The quality of automatic plans created by MOAPN shows progressive

improvement during the adjustment step and is close to that of the

clinical plan. Moreover, this integrated solution contributes to

improving the efficiency of the overall planning workflow and

reducing the variation of plan quality in clinical practice. In

conclusion, the proposed integrated solution is a promising practical

and effective approach for automatic planning in commercial TPS.
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DATE SHEET 1

In this document, the dosimetric parameters for all tested cases are recorded

between the MOAPN final plans, the clinical plans, and the MOAPN initial plans.

DATE SHEET 2

In this file is recorded that the actual dose of six ring structures (Ring1, Ring2,
Ring3, Ring4, Ring5, D2cm) changes during the overall adjustment steps..
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