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Synovial sarcoma is a soft tissue sarcoma accounting for approximately 1,000

cases per year in the United States. Currently, standard treatment of advanced and

metastatic synovial sarcoma is anthracycline-based chemotherapy. While

advanced synovial sarcoma is more responsive to chemotherapy compared to

other soft tissue sarcomas, survival rates are poor, with a median survival time of

less than 18 months. Enhanced understanding of tumor antigen expression and

molecular mechanisms behind synovial sarcoma provide potential targets for

treatment. Adoptive Cell Transfer using engineered T-cell receptors is in clinical

trials for treatment of synovial sarcoma, specifically targeting New York esophageal

squamous cell carcinoma-1 (NY-ESO-1), preferentially expressed antigen in

melanoma (PRAME), and melanoma antigen-A4 (MAGE-A4). In this review, we

explore the opportunities and challenges of these treatments. We also describe

artificial adjuvant vector cells (aAVCs) and BRD9 inhibitors, two additional potential

targets for treatment of advanced synovial sarcoma. This review demonstrates the

progress that has been made in treatment of synovial sarcoma and highlights the

future study and qualification needed to implement these technologies as standard

of care.
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1 Introduction

Synovial sarcoma (SYN) is a soft tissue sarcoma accounting for 5-14% of all soft tissue

sarcomas (1, 2). The incidence of SYN in the United States is approximately 1.42 per million

for adults and 0.81 per million for children and adolescents, accounting for roughly 1,000

cases per year (3). SYN presents at an average age of 35-40 years and there is equal

distribution of cases between females and males (3–6). SYN most often arises in deep tissues
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of the extremities but can also present as head and neck, trunk, and

lung lesions (3, 7). Epidemiologic studies have found that most

patients are diagnosed with local disease while 10-13% of patients

initially present with metastatic disease (3, 7).

The diagnosis and staging of SYN involve pathologic and

radiographic review. SYN is defined by the presence of translocation

of t(X:18) (p11.2;q11.2) using FISH or RT-PCR and is found in more

than 95% of tumors (8). This translocation leads to the fusion of genes

SYT on Chromosome 18 and SSX on Chromosome X, which causes

production of SS18-SSX1, SS18-SSX2, or SS18-SSX4 (9–11). These

oncogenic fusion proteins impact cellular transcription and

metabolism, leading to sarcomagenesis.

For localized cases of SYN, initial therapy is most commonly

surgical resection with or without radiation therapy. Neoadjuvant or

adjuvant chemotherapy is considered in select cases (12, 13). SYN

has high metastatic potential with a historic five year metastasis-free

survival rate of 50-60% (14). For locally advanced or metastatic

disease, first line therapy usually incorporates anthracycline-based

chemotherapy with or without ifosfamide (13, 15, 16). SYNs are

relatively chemosensitive tumors compared to other soft tissue

sarcomas. In primary soft tissue sarcomas, early localized and

metastatic recurrence have been found to occur at a median of
Frontiers in Oncology 02
38.3 and 41.3 months, respectively (17). In contrast, SYN has been

found to have local recurrence at a mean of 43 month and metastatic

recurrence at 68 months (18). A review of 15 clinical trials of first-

line chemotherapy for SYN has shown a 27.8% response rate

compared to 18.8% in other soft tissue sarcomas (19). When

comparing SYN to other soft tissue sarcomas, progression free

survival (PFS) was 6.3 months versus 3.7 months and overall

survival (OS) was 15.0 months versus 11.7 months, respectively

(19). Despite this response, however, for those with metastatic

disease one year survival remains 59.5% and the median overall

survival is 17.0 months (95% CI 14.5-19.5) (6).

Currently, after anthracycline-based chemotherapy, the only

other systemic therapy for treatment of advanced or metastatic

SYN approved by the FDA is pazopanib. This approval was granted

after pazopanib was shown to improve PFS compared to placebo in a

population of patients with varying non-adipocytic metastatic soft

tissue sarcomas which included 30 patients with SYN (20).

Improved understanding of cellular and molecular processes

behind the development of SYN and advancements in knowledge of

SYN’s antigen expression will allow for potential targets for treatment

of advanced SYN. In this review, we explore emerging therapies in the

treatment of advanced and metastatic SYN.
FIGURE 1

Adopted Cell Transfer engineered T-cell receptors targeting CTAs for treatment of SYN.
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2 SYN antigen expression and adopted
cell transfer

SYN has been found to express cancer testis antigens (CTAs) (21).

CTAs are antigens with predominant expression in the testis and are

not normally found in somatic tissue (22). CTAs are a potential target

for treatment of malignancies as they elicit humoral and cellular

immune responses (23). SYN has been found to have high expression

of CTAs (24). Due to their high expressivity, selectivity, and

immunologic response, CTAs have been identified as potential

targets for treatment of SYN.

Adopted Cell Transfer (or Therapy) (ACT) uses tumor antigen

specific T-cells obtained from resected tumor specimens which are

expanded in vitro and then infused for treatment of cancers (25, 26).

One challenge of this treatment is that not all resected tumors allow

for the expansion of autologous tumor infiltrating T-cells (27). This

obstacle, along with variable quantities of T-cells within tumors, has

prompted study of genetically engineered T-cell receptors to target

cancer specific antigens. These T-cells are obtained through the

harvesting of patient autologous T-cells which are then genetically

modified to express a T-cell receptor for a cancer antigen. This

technology is currently in development for the treatment of SYN

targeting CTAs (Figure 1).
2.1 NY-ESO-1 adopted cell transfer

New York esophageal squamous cell carcinoma-1 (NY-ESO-1) is

a CTA that was first described from serological analysis of

recombinant cDNA expression libraries (SEREX) of esophageal
Frontiers in Oncology 03
squamous cell carcinoma (28). NY-ESO-1 is expressed in

approximately 80% of SYNs. The immunogenicity of NY-ESO-1

has led to its consideration as a target for treatment of SYN (23, 29).

In 2011, Robbins et al. conduced the first clinical trial of

autologous T-cells genetically engineered to have a specific T-cell

receptor for NY-ESO-1 for patients with metastatic melanoma and

SYN (Table 1) (38). The trial utilized a retroviral vector to create

CD4+ and CD8+ autologous T-cells with a T-cell receptor that

recognized the SLLMWITQC peptide of NY-ESO-1 for HLA-

A*0201, named IG4- a95:LY ([NCI] 08-C-0121) (30). These T-cells

were expanded in vitro and then transferred to patients after

nonmyeloablative chemotherapy along with IL-2. This trial

demonstrated objective clinical response in four out of six patients

with SYN. The study was then expanded for 12 additional patients

with SYN (31). Results demonstrated complete response for one

patient and partial response observed in 10 of the 18 total patients

with SYN. The three-year survival rate was 38% and the five-year

survival rate was 14%.

All participants had neutropenia and thrombocytopenia during

lymphodepleting chemotherapy, and one patient died from E. coli

bacteremia three days after transfer of T-cells during a period of

neutropenia. In this study, no correlation was measured

demonstrating relationship between percentage of anti-NY-ESO-1

CD4+ or CD8+ T-cells at one month post transfer and

disease response.

With evidence of activity for genetically engineered T-cells

targeting NY-ESO-1, additional studies of genetically engineered T-

cell receptors against NY-ESO-1 have been conducted. A Phase I, open-

label trial of NY-ESO-1c259 T-cells (letetresgene autoleucel [lete-cel];

GSK3377794) included 45 patients with recurrent or metastatic SYN

(NCT01343043) (29). This study resulted in one complete response (34
TABLE 1 Clinical trials completed or with preliminary results for treatment of SYN.

Target Treatment, Population Trial,
Publication

year

Phase,
Study
Size

Summary

NY-ESO-1 Anti-NY-ESO-1 T-cells,
HLA- A*0201,
Metastatic SYN or melanoma

[NCI] 08-C-0201,
2015 (30, 31)

II, 18 with
SYN

1 complete response, 10 partial responses. Three-year survival 38%, five-year
survival 14%
AEs: 100% of patients with neutropenia and thrombocytopenia

Autologous
NY-ESO-1c259

T-cells,
HLA- A*02,
Unresectable, metastatic, or
recurrent SYN

NCT01343043,
2020 (26, 32)

I, 45 1 complete response (34 weeks), 14 partial responses (across four cohorts)
AEs: 40% with Grade 3 or higher hematologic AEs, 44% with cytokine release
syndrome (4 patients Grade 3 or higher)

PRAME Anti-PRAME
T-cells,
HLA matching, PRAME
expression solid tumors

NCT03686124*,
2021 (33)

I, 12 6 patients with partial response, 6 with stable disease (3 patients with SYN)
AEs: cytopenia, cytokine release syndrome and neurotoxicity (Grade 1-2), one
dose limiting toxicity

MAGE-A4 Autologous MAGE-A4c1032 T-
Cells,
HLA-A*02, expression of
MAGE-A4

NCT03132922,
2020 (34, 35)

I, 28 7 patients with partial response, 11 with stable disease
AEs: No dose limiting toxicities, >30% Grade 3 or higher hematologic AEs, two
trial related deaths due to aplastic anemia and cerebral vascular accident

Anti-MAGE-A4
T-cells,
HLA-A*02, Advanced SYN or
myxoid/round cell liposarcoma

NCT04044768*,
2022 (36, 37)

II, 51 36.2% response rate, median duration or response 52 weeks (8.29 – 75.14)
AEs: Not reported
*Preliminary results presented, recruitment continues.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1123464
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fuchs et al. 10.3389/fonc.2023.1123464
weeks) and 14 partial responses (29, 32). In this trial, four cohorts were

established with varying NY-ESO-1 expression and lymphodepleting

chemotherapeutic regimens. Cohort 1 included patients with high NY-

ESO-1 expression and a high lymphodepletion regimen (fludarabine

and cyclophosphamide). Cohort 2 included patients with low NY-ESO-

1 expression with a high lymphodepletion regimen. Cohort 3 included

patients with high NY-ESO-1 expression with a differing high

lymphodepletion regimen (cyclophosphamide only). Cohort 4

included patients with high NY-ESO-1 expression and a low

lymphodepletion regimen (dose reduced cyclophosphamide

and fludarabine).

Cohorts 1-3 have complete data available as of January 2020. In

Cohort 1, six of 12 patients had at least a partial response, one patient

had a complete response, and the median overall survival (OS) was

24.3 months (29). In Cohort 2, four patients of 13 had partial response

and the median OS was 9.9 months. In Cohort 3, one patient of 5 had

a partial response with an OS of 19.9 months. In Cohort 1 all six

responders had presence of anti-NY-ESO-1 T-cells at 6 months post

cells transfer (39). More than 40% of patients in all cohorts had Grade

3 or higher hematologic Adverse Events (AEs) and 44% of patients

had cytokine release syndrome, of which four were Grade 3 or higher

(29). This is similar to toxicity seen for chimeric antigen receptor

(CAR) T-cell therapy, where 69% of patients had Grade 3 or higher

neutropenia and 92% of patients had cytokine release syndrome, of

which 6% were Grade 3 or higher (40). A Phase II master protocol is

currently in recruitment to test NY-ESO-1 T-cells for patients with

metastatic SYN or myxoid/round cell liposarcoma who have

progressed after standard treatment (NCT03967223) (Table 2) (41).

Next generation NY-ESO-1 T-cell products may provide

additional benefits, but qualification is needed. Currently, a Phase II

master protocol of three different next generation NY-ESO-1 T-cell

products is in recruitment for treatment of solid tumors with NY-

ESO-1 expression (NCT04526509) (42).

CD8 is a cell surface glycoprotein that acts as a co-receptor with

T-cell receptors and assists in T-cell binding to MHC1 (47, 48).

Previous in vitro study has found that engineered T-cells targeting a

cancer testis antigen that co-expressed CD8a led to greater CD4+ T-

cell activity (49). One arm of the master protocol will use anti-NY-
Frontiers in Oncology 04
ESO-1 T-cells which co-express the CD8a chain to determine efficacy

of this technology (GSK3901961) (42).

An additional technology of interest combines anti-NY-ESO-1 T-

cells with a dominant negative transforming growth factor- b (TGF-b)
type II receptor (GSK3845097) (42). TGF-b is a regulator of immune

homeostasis and has been found to inhibit tumor cellular immunity

(50, 51). T-cells genetically engineered to target prostate cancer

combined with a dominant negative TGF-b receptor have been

found to cause tumor regression and enhanced survival in a murine

model (51) . This technology may improve the tumor

microenvironment by limiting the impact of immune down-

regulators, specifically TGF- b, in treatment of SYN.

T-cell quality impacts success in ACT. Previous study of ex-vivo

ACTs has found that stem-like surface markers on T-cells are more

likely to lead to response and stem-like T-cells are more capable of in

vivo expansion (52). This knowledge has led to the development of

technology that improves the stem-like quality of engineered T-cell

receptors ex vivo through epigenetic reprogramming (53). The third

arm of the master protocol will assess anti-NY-ESO-1 T-cells after a

proprietary epigenetic reprogramming process to enhance the stem-like

quality of the T-cells (GSK4427296). Combining engineered T-cells

with additional genetic modifications may enhance efficacy of ACT

targeting NY-ESO-1. Beyond NY-ESO-1 targeted therapies, other

ACTs against cancer testis antigens have been developed for the

treatment of SYN.
2.2 PRAME adopted cell transfer

Preferentially expressed antigen in melanoma (PRAME) is a cancer

testis antigen that is expressed in 95% of metastatic melanoma (54). It is

also expressed homogenously in SYN at high levels (55). PRAME

functions through inhibition of apoptosis and signal transduction of the

retinoic acid receptor, causing tumorigenesis (56). Based on its

expression and impact on sarcomagenesis, it is an additional target

for directed engineered T-cell therapy.

The IMA203 trial utilized T- cell receptor engineered T-cells

against PRAME in HLA-A*02:01 (NCT03686124) (57). This Phase I
TABLE 2 Clinical trials in recruitment for treatment of SYN.

Target Treatment Population Trial Phase

NY-ESO-1 Autologous NY-ESO-1c259 T-cells HLA- A*02,
Previously untreated advanced SYN or myxoid/round cell
liposarcoma

NCT03967223
(41)

II

Anti-NY-ESO-1 T-cells with co-expression of CD8a
chain
Anti-NY-ESO-1 T-cells with co-expression of TGF-b
Epigenetically reprogrammed NY-ESO-1 T-cells

HLA- A*02,
Previously treated advanced SYN or myxoid/round cell liposarcoma

NCT04526509
(42)

I

NY-ESO-1 aAVCs Relapsed, refractory advanced solid tumors known to express NY-
ESO-1

NCT04939701
(43)

I, II

PRAME Anti-PRAME
T-cells

HLA-A*02, Relapsed, refractory PRAME positive NCT04262466
(44)

I, II

BRD9 BRD9 inhibitor (CFT8634) Locally advanced or metastatic SMARCB1-perturbed cancers,
including SYN

NCT05355753
(45)

I

BRD9 inhibitor
(FHD-609)

Advanced SYN or advanced SMARCB1-loss tumors NCT04965753
(46)

I
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trial of 12 evaluable patients resulted in six patients with stable disease

and six patients with partial response, three of whom had SYN (33).

The most common adverse events were cytopenias, neurotoxicity, and

cytokine release syndrome. One patient had a dose limiting toxicity.

Another, currently recruiting, trial for treatment of advanced solid

tumors with PRAME and HLA-A*02:01 expression will test IMC-

F106C, a T-cell receptor against PRAME, both in combination with

checkpoint inhibitors and as a single agent (NCT04262466) (44).

Results of this trial are expected in 2024.
2.3 MAGE adopted cell transfer

Melanoma-associated antigen (MAGE) proteins are clustered on

the X chromosome. Expression of MAGE protein is generally

restricted to reproductive tissues. This protein functions by

inhibition of p53 and thereby limits tumor suppression (58, 59).

MAGE-A4 is a cancer testis antigen that is expressed in many tumor

types including lung cancer (19-35%), breast cancer (13%), ovarian

cancer (47%), colon cancer (22%), esophageal cancer (60%), and soft

tissue sarcomas, including 50-80% of SYN (24, 60–62).

Afamitresgene autoleucel are autologous T-cells which are isolated

from patients, transduced with a lentiviral vector containing the

MAGE-A4c1032 T-cell receptor, and expanded prior to infusion.

Recently, results of a Phase I dose-escalation and expansion trial of
Frontiers in Oncology 05
Afamitresgene autoleucel was conducted in patients who were HLA-

A*02 positive with advanced cancers that expressed MAGE-A4

(NCT03132922). In this study, patients received lymphodepletion

regimen of cyclophosphamide and fludarabine prior to

Afamitresgene autoleucel infusion (34, 35).

In the Cohort 3/expansion group (28 patients), 7 of 28 patients had

a partial response, 11 of 28 had stable disease, while 10 of 28 either had

progressive disease or were not evaluable (34). Results of this study

showed no dose limiting toxicities and the most common Grade 3 or

higher AE (>30%) were hematologic, including lymphopenia,

leukopenia, neutropenia, anemia, and thrombocytopenia. Two

patients had trial related deaths due to aplastic anemia and cerebral

vascular accident. Notably, all responses to therapy occurred in patients

with SYN, perhaps emphasizing the validity of targeting MAGE-A4 in

this histology.

A Phase II, single arm, open-label clinical trial of Afamitresgene

autoleucel in patients with advanced SYN or myxoid/round cell

liposarcoma (MRCLS) called SPEARHEAD-1 is currently underway

(NCT04044768) (36). Preliminary results from SPEARHEAD-1 were

presented at the 2022 American Society of Clinical Oncology Annual

Meeting (37). Patients received Afamitresgene autoleucel and were

evaluable for response (Phase I, n = 18; Phase II, n = 51) with all

patients expressing the HLA-A*02 allele. The pooled investigator-

assessed overall response rate was 36.2% which occurred across

MAGE-A4 H-scores of 134-400. The median duration of response
FIGURE 2

Mechanism of action of Artificial Adjuvant Vector Cells targeting NY-ESO-1 for treatment of SYN.
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was 52 weeks (8.29 – 75.14). Response rate was higher in patients with

fewer lines of previous therapy, smaller target lesions, higher MAGE-

A4 scores, those without bridging therapy, women, patients over 40,

and patients from North America. The SPEARHEAD-1 trial is

currently recruiting for Cohort 2 which will specifically evaluate

patients with SYN (36).
2.4 Challenges of cancer testis antigen ACT

There has been success in treating SYN through targeting NY-

ESO-1, PRAME, and MAGE-A4 using ACT, with more trial results

forthcoming. While this is laudable, there are challenges to the

treatment of SYN using these technologies. One barrier is the

restriction of many of these therapies to patients with HLA-A*02.

Studies have found that HLA-A*02 is more common in Caucasian

populations compared to African-American and Asian populations

(63). Other barriers for ACT include the multi-week time needed for

the production of genetically engineered T-cells, the pre-treatment

lymphodepletion regimen which often requires hospitalization, and

the high cost of therapy (64, 65). While many of these issues may be

overcome through improvement in manufacturing techniques and

health systems changes, some may be incontrovertible.
3 NY-ESO-1 artificial adjuvant vector
cells

One technology in development for the treatment of SYN that

does not require HLA matching is artificial adjuvant vector cells

(aAVCs). aAVCs are loaded with an exogenous glycolipid ligand, a-
galactosylceramide (a-GalCer), which is presented on a CD1d

molecule and activates invariant natural killer T (iNKT) cells
Frontiers in Oncology 06
(Figure 2) (66). aAVCs also express a specific tumor-associated

antigen. The a-GalCer synthetic ligand activating iNKT allows

iNKT and natural killer (NK) cells to kill aAVCs, leading to the

release of the tumor-associated antigen. Endogenous dendritic

cells then serve as antigen presenting cells which allow for creation

of CD4+ and CD8+ anti-tumor antigen T-cells. Previously, a Phase II

trial of patients with non-small cell lung cancer infused with a-
GalCer-pulsed Antigen Presenting Cells (APCs) showed efficacy (67).

aAVCs that express NY-ESO-1 have been shown in a murine model

to elicit NY-ESO-1 specific CD8+ T-cells as well as have an anti-

tumor effect (68).

ASP0739 is an aAVC product targeting NY-ESO-1 being

developed for treatment of SYN. Currently, a Phase I trial is in

recruitment to test ASP0739 in patients with solid tumors including

SYN, myxoid/round cell liposarcoma, ovarian carcinoma, non-small

cell lung cancer, and esophageal squamous cell carcinoma

(NCT04939701) (43). Phase II of the trial will use ASP0739 in

combination with pembrolizumab, an antibody against PD-1 on

lymphocytes that prevents de-activation of T-cells by tumors. While

the results of these studies are yet to come, these trials will hopefully

provide an additional therapeutic opportunity for treatment of SYN

without the need for HLA matching.
4 BRD9 targeted therapy

BRD9 small molecule inhibitors are currently in development for

the treatment of SYN (Figure 3). Mammalian SWI/SNF (mSWI/SNF

or BAF) complexes are chromatin remodelers that allow for

alterations in gene expression and DNA transcription. SS18-SSX

fusion oncoprotein has been found to hijack the BAF complex,

displacing wild-type SS18, resulting in changes in transcription and

thus the development of SYN (69). These findings have led to the
FIGURE 3

BRD9 inhibitor therapy for the treatment of SYN.
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recognition of BAF complexes and specific subunits as potential

targets for treatment of SYN (70).

BRD9 is a non-BET bromodomain protein and subunit of BAF

complexes that has been recognized as a potential target for cancer

treatment. In 2017, the first BRD9 chemical degrader was created that

bridges the BRD9 bromodomain and E3 ubiquitin ligase complexes in

vitro (71). Since then, numerous BRD9 inhibitors and have been

developed (72–75). Degradation of BRD9 inhibits SYN tumor

progression in a murine model (76). Therefore, BRD9 inhibition

and/or degradation is a potential target for treatment of SYN.

CFT8634 is an oral heterobifunctional degrader that bridges

BRD9 with E3 ligase, causing ubiquitination and proteasomal

degradation of BRD9 (77). FHD-609 is an intravenous BRD9

degrader that bridges BRD9 with cereblon (CRBN) E3 ubiquitin

ligase substrate that leads to proteasomal degradation (78). These

therapies are currently undergoing Phase I trials for patients with

advanced SYN (45, 46). The results of these trials are anticipated as

potential therapies for treatment of SYN.
5 Conclusion

While standard of care treatment of advanced and metastatic SYN

remains anthracycline based chemotherapy, there are numerous

technologies in development for the treatment of advanced and

metastatic SYN. These technologies stem from improved understanding

of the tumor antigen expression and molecular mechanisms behind SYN.

Engineered T-cell receptor therapies targeting CTAs has shown success in

early-stage trials. Optimization of these engineered TCR treatments is

currently being studied, with efforts to enhance T-cell antigen binding, alter

the tumor microenvironment, and improve the quality of T-cells used for

treatment. Alternative therapies without the need for HLA matching that

are currently in recruitment for Phase I trials include aAVCs and

BRD9 inhibitors.

Reviewing the new targeted and cellular therapies shows the

tremendous progress that has been made over the preceding

decades. Nonetheless, further study and qualification are required

to ensure that we are doing the best for our patients. We anticipate
Frontiers in Oncology 07
that with the accelerated pace of discovery and application of new

agents, treatment for patients with SYN will make remarkable strides

in the upcoming years.
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