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Introduction: As the top 3 cancer in terms of incidence and mortality, the first-

l ine treatment for CRC includes FOLFOX, FOLFIRI, Cetuximab or

immunotherapy. However, the drug sensitivity of patients to regimens is

different. There has been increasing evidence that immune components of

TME can affect the sensitivity of patients to drugs. Therefore, it is necessary to

define novo molecular subtypes of CRC based on TME immune components,

and screen patients who are sensitive to the treatments, to make personalized

therapy possible.

Methods:We analyzed the expression profiles and 197 TME-related signatures of

1775 patients using ssGSEA, univariate Cox proportional risk model and LASSO-

Cox regression model, and defined a novo molecular subtype (TMERSS) of CRC.

Simultaneously, we compared the clinicopathological factors, antitumor

immune activity, immune cell abundance and differences of cell states in

different TMERSS subtypes. In addition, patients sensitive to the therapy

were screened out by correlation analysis between TMERSS subtypes and

drug responses.

Results: Compared with low TMERSS subtype, high TMERSS subtype has a better

outcome, which may be associated to higher abundance of antitumor immune

cell in high TMERSS subtype. Our findings suggested that the high TMERSS

subtype may have a higher proportion of respondents to Cetuximab agent and

immunotherapy, while the low TMERSS subtype may be more suitable for

treatment with FOLFOX and FOLFIRI regimens.

Discussion: In conclusion, the TMERSSmodel may provide a partial reference for

the prognosis evaluation of patients, the prediction of drug sensitivity, and the

implementation of clinical decision-making.
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Introduction

Colorectal cancer (CRC) represents the third most common

malignancy and the second leading cause of cancer death worldwide

(1, 2). In recent years, radical resection has been the mainstay of

treatment for CRC. In order to avoid recurrence and prolong OS,

neoadjuvant or adjuvant chemotherapy is often required for

surgical patients. Fluorouracil-based combination chemotherapy

is recommended for all patients with stage II or III (3). As first-

line agents, fluorouracil-based combination chemotherapy includes

FOLFOX, CapeOX, and FOLFIRI (4). However, the occurrence of

resistance often makes patients benefit less in the course of

treatment (5). Studies have shown that adjuvant chemotherapy

improves survival rate by only 3% in patients with stage II CRC, and

increases by 15% to 20% for stage III CRC (6). Therefore, it is

necessary to screen out patients who have good response to

fluorouracil-based combination chemotherapy, making

personalized treatment possible.

Colorectal cancer has a complex pathogenesis, and many

potential factors have an important impact on the occurrence and

development of colorectal cancer. Currently, some studies have

reported some factors that affect the occurrence and development of

colorectal cancer. These include changes in the cellular

microenvironment associated with growth and development (7),

the microenvironment in which tumors occur, and the impact of

gastrointestinal tumors and tumors outside the gastrointestinal

tract, such as colon cancer (8), lung cancer (9), and prostate

cancers (10, 11). Meanwhile, increasing evidence demonstrates

that the tumor microenvironment (TME) plays a crucial role in

tumorigenesis and tumor progression (12). The primary

composition of TME includes infiltrating immune cells,

mesenchymal cells, and extracellular matrix (13). The infiltrating

immune cells are composed of multiple immune cell types, such as

T cells, macrophages, and neutrophils (14). Various tumor-

infiltrating immune cells make TME a double-edged sword,

exhibiting an ability to either arrest or support malignancy (15).

The complex role of TME makes it possible to classify cancer

immunologically in terms of prognosis, chemotherapy, and

immunotherapy response prediction. For example, microsatellite

instability tumors show a high abundance of Th1 cells, and effector

memory T cells, and have a favorable prognosis. Given that TME

plays an indispensable role in chemotherapy and immunotherapy

resistance (16), we used the gene expression profiles to define novo

molecular classifications of CRC based on signatures of various

immune components in order to distinguish between drug

sensitivity and TME.

In order to define novel molecular classifications of CRC, gene

expression profiles of 1775 patients were analyzed. In this study, our

main work included: (1) Constructing a scoring model and

redefining the molecular classifications of CRC; (2) Identifying

TME differences between CRC and screening patients who

respond to chemotherapy or immunotherapy, in order to provide

the reference for individualized treatment of patients; (3) Evaluating
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the relationship between molecular classifications of CRC and

clinicopathological factors.
Materials and methods

Data downloading and processing

The gene expression profile and clinical data of patients were

obtained from GEO, TCGA, and cBioportal databases. The datasets

obtained from GEO include GSE17538, GSE12945, GSE39582, and

GSE103479. RNA-seq data were collected from the TCGA (https://

portal.gdc.cancer.gov/) for 33 cancers. Meanwhile, RNA-seq data of

CRC also were collected in cBioportal (https://www.cbioportal.org/).

We used datasets GSE17538, GSE12945, GSE39582, and

GSE103479 as discovery cohorts, and used the ComBat function

to remove potential multicenter batch effects between different

experiments. CRC data from TCGA and cBioportal databases

were used as testing cohorts 1 and 2, respectively. Simultaneously,

all the data is integrated as the testing cohort 3.

In this research, we conducted systematic bioinformatics analysis

on gene expression profile data of 1775 CRC specimens. In the

discovery cohort, 1022 patients from four datasets were included in

the study. The specific information of each dataset is as follows: The

gene expression profile of tumor tissue samples from 62 patients in

GSE12945 dataset; The GSE17538 dataset stores gene expression

profiles of 244 specimens, of which 238 gene expression profiles from

human CRC tissue samples were used for further analysis; The gene

expression profiles of 156 patients in GSE103479 dataset were

included in the study; The GSE39582 dataset collected the gene

expression profile of 585 samples, including 566 colorectal tumor

tissue samples and 19 colorectal normal tissue specimens, of which

566 tumor tissue samples were included in the study. The testing

cohort 1 integrates the information of 521 colon cancer samples and

177 rectal cancer samples in TCGA database. After excluding 51

normal tissue samples, the gene expression profile of 647 patients was

used for bioinformatics analysis. The testing cohort 2 is RNA-seq data

from 106 CRC patients in the cBioportal database. The gene

expression profile of all cohorts is integrated in cohort 3, including

the gene expression profile of 1775 samples. Finally, we also collected

the gene expression profiles of 33 cancers in TCGA database, and

>1000,0 samples were used for pan-cancer related analysis.

We also collected gene expression profiles of patients with

different treatment regimens, such as GSE104645, GSE72970,

GSE78220, GSE91061, and IMvigor210 (17). In the dataset

GSE104645, the chemotherapy scheme of 104 patients is

FOLFOX, who was used for bioinformatics analysis; In the

dataset GSE72970, the chemotherapy scheme of 87 patients is

FOLFIRI, who was used for bioinformatics analysis; GSE78220

which includes 28 patients is a dataset on anti-PD1 inhibitor

immunotherapy in melanoma; GSE91061 which includes 109

patients is a dataset on anti-PD1 and anti-CTLA4 inhibitor

immunotherapy for melanoma; IMvigor210 which includes 348
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patients is the dataset of anti-PDL1 inhibitor immunotherapy for

patients with urothelial carcinoma.
Collection of TME related signatures

Through an extensive online literature search, we screened 197

representative TME-related signatures from diverse resources.

Among them, 68 signatures come from the work of Wolf et al.

(18), 25 signatures were from the work of Bindea et al. (19), 24

signatures were obtained fromMiao et al.’s work results (20) and 17

signatures were obtained from the Import database (21). In

addition, it also includes some marker genes of immune cells,

such as marker genes of 22 immune cells in CIBERSORT (22),

marker genes of 10 immune cells in MCP-Counter (23), marker

genes of 10 immune cells in the Imsig database (24), and 20

signatures of immune cells recognized by TITR et al. (25). Finally,

we also included the marker genes of exhausted CD8+T cells (26).

More detailed information is listed in the Supplementary Tables

S1, S2.
Differential expression analysis and
enrichment analysis

The differential expression analysis of the data is performed by

the R package “limma”. In this study, the threshold value is |log2FC|

>1 and FDR<0.05.

We performed a single sample gene set enrichment analysis

(ssGSEA) based on the gsva function to assess the infiltration level

of signatures in each sample. The normalized enrichment scores

(NESs) generated by ssGSEA are regarded as the infiltration level

of signatures.

The enrichment analysis of GO and KEGG (27) is achieved by

the R package “clusterProfiler”. Meanwhile, we also used KEGG,

gendoo, gene2pubmed and Reactome databases for gene set

enrichment analysis (GSEA).
Construction of TME related signature
score model

We used the discovery cohort for ssGSEA to calculate the NESs.

Then, the NESs was used to construct a univariate Cox proportional

hazard model for 197 signatures. And 129 signatures were

determined significantly related to the OS (P<0.05).

To screen the most relevant signatures for CRC prognosis in the

discovery cohort, the R package “glmnet” were used to construct the

LASSO-Cox regression model for 129 signatures. 23 signatures with

nonzero coefficients were included in the study, which is the best l
value generated by 10-fold cross validation.

Finally, the hazard ratio (HR) generated by the univariate Cox

proportional hazard model was multiplied with the NESs of 23

signatures to construct the TME-related signature score (TMERSS).

The calculation formula is as follows:
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TMERSS =on
i=1log(HRi)*NESi

HRi is the HR of the ith TME related signature, and NESi is the

NES of the ith TME related signature, n=23.
Calculating the proportion of immune cells
and cell states

We quantified the proportion of immune cells in samples by

CIBERSORT, MCP-Counter, xCell, and quanTIseq. In order to

have a more comprehensive understanding of the state and

functional patterns of different immune cells, we based on

EcoTyper (https://ecotyper.stanford.edu/) calculating dominant

cell states in each sample and the cell states abundance.
NTP analysis and filtering of signatures

The NTP classification tool (28) is used to calculate the

classification of each sample in a specific signature. The signature

list of CRC pathologic phenotypes and drug-related genes obtained

from previous studies is as follows: intestinal stem cell signature

(29), colon crypt signature (30), serrated CRC signature (31), EMT

signature (32), FOLFIRI response signature (33), FOLFOX response

signature (34) and VEFG/EGFRi signatures (35) described by

Schutte et al., including Avastin, Cetuximab, Afatinib, Sapitinib,

Gefitinib and Vandetanib.
Cell lines and qRT-PCR

Human CRC 5-FU sensitive/resistant cell line HCT8/HCT8-

5FU and Cetuximab sensitive/resistant cell line Caco2/Caco2-CTX

were purchased from Shanghai Meixuan Company (Shanghai,

China) and cultured according to previous reports (36).

According to the manufacturer’s instructions, total RNA was

extracted and reverse transcribed using TRIzol reagents (Invitrogen,

Carlsbad, CA, USA) and cDNA reverse transcription kits (Applied

Biosystems, Foster City, CA). SYBR Green reagent (Thermo Fisher

Scientific, Waltham, MA) was used for qRT-PCR experiments.

With b-action is an internal parameter that is passed through 2-

DDCT method calculate the relative expression of the target gene. The

primer sequence information is shown in Supplementary Table S3.
Western blot and CCK-8 assay

Western blot analysis was performed to determine the protein

expression levels of LAMB1, APOC1, and AREG. The protein was

extracted by SDS-PAGE and transferred to the PVDF membrane.

They were incubated overnight with anti LAMB1 (1:1000, Cell

Signaling Technology, 4723S), APOC1 (1:1000, Cell Signaling

Technology, 3957S), AREG (1:1000, Cell Signaling Technology,

8751), and GAPDH (ZSGB-Bio, TA-8) primary antibodies at 4°C.

After incubation with horseradish peroxidase linked secondary
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antibodies for 2 hours, ECL (Beyotime, China) was used to visualize

the signal.

Cells were implanted in 96 well microplates and administered

10 mg/ml of 5-FU, 200 mg/ml Cetuximab intervention for 24, 48, or

72 hours. Add 10 ml of CCK-8 solution (Dojindo) to each well,

incubate at 37°C for 2 hours, and measure the OD value at 450 nm.
Statistical analysis

We used the R package “survminer” to calculate the optimal cut-

off value. Meanwhile, Kaplan-Meier survival curves of patients with

different subtypes were plotted based on R package “survminer” and

“Survival”. We divided patients into four consensus molecular

subtypes (CMS) by using the R package “CMScaller”.

In this study, all statistical analyses were conducted based on the

R programming language. All statistical tests are two-sided, and P<

0.05 is considered statistically significant.
Results

Establishment of a scoring model based on
TME related signatures

The design of this study is exhibited in Figure 1. Based on TME-

related signatures, we conducted ssGSEA on all samples to calculate

NESs. After initial screening, 192 signatures were obtained that

were present in all cohorts. First, univariate Cox proportional

hazard regression analysis was conducted on 192 signatures in the

discovery cohort. We found that 129 signatures were significantly

related to the OS of patients (P<0.05). Subsequently, LASSO-Cox

regression models were used to screen for signatures highly

associated with outcomes. In this model, lambda.1se=0.06028869

(Figures 2A, B), and the results show that the coefficients of 23

variables are nonzero. The relationship between infiltration level

and survival of 23 signatures is shown in the forest (Figure 2C). By

calculating the correlation coefficients among 23 signatures

(Figure 2D), we found that there are mainly three types of

relationships among signatures. Namely, negative correlation

(Memory_B_cell, Proliferation_ImSig, LYMPHS_PCA and

Trans la t ion_ImSig) , pos i t ive corre la t ion (IR7_score ,

Troester_WoundSig, Antigen_Processing_and_Presentation,

Activated_dendertric_cell, DAP12_data, and Th1_cell) and weak

correlation (MHC_I, ICR_INHIB_SCORE, STAT1, Monocyte, and

Interleukins_Receptor). The results of the testing cohorts further

confirmed the relationships among 23 signatures (Supplementary

Figures 1A-C). Finally, based on the HRs of 23 signatures and their

infi ltration levels in each patient, we constructed the

TMERSS model.

To analyze the transcriptome and immunology heterogeneity of

patients, we calculated the optimal cut-off value based on TMERSS

values, divided patients into high and low TMERSS subtypes, and

compared the heterogeneity of 23 signatures of immune infiltration

levels between the two subtypes. The results showed that there was
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no significant difference in immune infiltration levels between the

two subtypes (Figure 2E; Supplementary Figure 1D–F).

Furthermore, we conducted an enrichment analysis of 23

signature genes to determine their biological functions. As

expected, the enrichment analysis results of these genes are

closely related to TME (Figures 2F-H). For example, T−helper 17

type immune response and immune receiver activity. The KEGG
FIGURE 1

Schematic diagram of the study design. *p-value < 0.05, **p-value <
0.01, ***p-value < 0.001, ****p-value < 0.0001.
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pathway is enriched to immune and oncogenic related pathways,

such as natural killer cell mediated cytotoxicity and JAK−STAT

signaling pathway (Figure 2I). We also performed GSEA on the

gene expression data of two subtypes of patients based on KEGG,

gendoo, gene2pubmed, and Reactome databases (Figures 2J–M).
TMERSS is associated with
clinicopathological features of colorectal
cancer

We further analyzed the relationship between TMERSS and

clinicopathological features in four cohorts. A nomogram model

containing information about the TMERSS and CMS subtypes was

constructed by the discovery cohort (Figure 3A). Compared with

CMS subtypes, it was evident that TMERSS contributes most of the

risk points. Based on nomogram calibration curves, we used

TMERSS to predict the 1, 3, and 5-year survival probabilities of

patients. The calibration curve of 1-year survival probability cannot

perfectly fit the ideal curve (Figure 3B), while calibration curves of

3-year and 5-year survival probability can well predict the survival

probability of patients (Figures 3C, D). Similarly, the decision curve

analysis showed that the nomogram was poor at predicting 1-year

survival probability because of its low clinical net benefit

(Figure 3E); Because of the high clinical net benefit in the 3-year

and 5-year decision curves, the nomogram can well predict the 3-
Frontiers in Oncology 05
year and 5-year survival probability (Figures 3F, G). Overall, these

observations indicated that the nomogram of TMERSS proved well

discrimination and calibration capabilities.

In 2015, Sabine et al. divided CRC into CMS1-CMS4 subtypes

and analyzed the relationship between each subtype and the

prognosis of patients (37). Here, by comparing the relationship

between distinct TMERSS and CMS subtypes in the discovery

cohort, we found that high TMERSS subtypes are mainly

associated with CMS2, while low TMERSS subtypes are associated

with CMS4 (Figures 3H, I). In testing cohort 1, the high TMERSS

subtype was evenly distributed across CMS subtypes, while the low

TMERSS subtype was strongly correlated with CMS4. Of course, the

results of testing cohorts 2 and 3 were similar to the discovery

cohort (Supplementary Figures 2A, B). It is well known that among

CMS subtypes, CMS4 exhibits poorer OS, while CMS2 exhibits

longer OS (37). The Kaplan-Meier survival curve of the study

confirmed that the survival probability of the high TMERSS

subtype was higher than that of the low TMERSS subtype

(Figure 3H; Supplementary Figure 2C), which was consistent with

the survival probability of patients among CMS subtypes.

We used the previously reported gene signatures to identify the

cellular and precursor origins of TMERSS subtypes based on the

NTP algorithm. Applying the intestinal stem cell signature and

colon crypt signature to the expression data of four cohorts

(Figure 3I; Supplementary Figure 2D), we found that low

TMERSS subtype significantly enriched the stem-like and colon
DA B

E F G IH

J K L M

C

FIGURE 2

Building the TMERSS model by the discovery cohort. (A) LASSO coefficient distribution of 129 signatures; (B) LASSO regression model showed partial
likelihood deviation in 10-fold across validation; (C) The forest of 23 signatures; (D) The heatmap of spearman’s correlation between 23 signatures;
(E) The heatmap according to NESs of 23 signatures; (F–H) Visualization of 10 terms in BP, CC and MF, respectively; (I) 10 KEGG pathways of
differentially expressed genes in distinct TMERSS subtypes; (J–M) The databases gendoo, gene2pubmed, KEGG and Reactome were used for GSEA
of TMERSS model related genes, and the terms associated with TMERSS was described.
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top crypt phenotype. Considering that epithelial-mesenchymal

transition (EMT) plays a crucial role in the development and

progression of CRC (38), we used the EMT signature for analysis.

The results showed that the low TMERSS subtype significantly

enriched the “emt” phenotype, while the high TMERSS subtype

more expressed the epi phenotype.
Heterogeneity of tumor immune response
between TMERSS subtypes

We have constructed a TMERSS model based on 23 signatures.

Although the infiltration level of 23 signatures has no apparent

difference between TMERSS subtypes (Figure 2E; Supplementary

Figures 1D–F), a more systematic characterization and comparison

of the heterogeneity of immune responses in their classified samples

was still needed. To this end, we summarized the characteristic

divergence of TMERSS subtypes from the three aspects of

antitumor immune activity, an abundance of tumor-infiltrating

immune cells, and functional states of immune cells, and

deepened the understanding of CRC classified based on the

TMERSS model.

In combination with the characterization of the immune

activity of CRC, we observed the differences between distinct

TMERSS subtypes from the level of immune response activity.
Frontiers in Oncology 06
First, the variation in immune microenvironments of TMERSS

subtypes is reflected in the overall level of immune infiltration. We

calculated the immune score and stromal score for TME based on

ESTIMATE. The results showed that the low TMERSS subtype had

the higher immune score and stromal score, but tumor purity was

lower than that of the high TMERSS subtype (Figure 4A,

Supplementary Figure 3A). Simultaneously, there was significant

variation in the antitumor immune activity of TMERSS subtypes,

with high TMERSS subtype having a higher cytolytic

activity (CYT).

Then, four deconvolution tools were used to analyze differences

in the abundance of tumor-infiltrating immune cells. We observed

that antitumor immune cells are highly expressed in high TMERSS

subtypes, such as NK cells, cytotoxic T cells, CD8+T cells, etc.

(Figures 4B–E; Supplementary Figures 3B–E). Conversely, tumor-

promoting immune cells are highly expressed in low TMERSS

subtypes, such as cancer-associated fibroblasts, M2 macrophages,

dendritic cells, and regulatory T cells.

To have a more comprehensive understanding of the state and

functional pattern distinction of cells in different TMERSS subtypes,

we determined the dominant cell states and cell state abundance in

each sample based on the EcoTyper algorithm and carried out a

comparative analysis. In the machine learning framework,

EcoTyper, each immune cell is considered to have multiple cell

states. Such as CD8+T cells have 3 cell states (Naïve/central memory
D

A B

E F G

IH

C

FIGURE 3

Correlation analysis of clinicopathological factors in the discovery cohort. (A) Nomogram, containing TMERSS and CMS; (B-D) Observing the
consistency between the predicted 1, 3 and 5-year survival probability and the actual survival probability according to calibration curves. The
predicted survival probability of nomogram is displayed on the x-axis, and the actual survival probability is displayed on the y-axis. The ideal curve of
nomogram is represented by a dotted line along the 45-degree angle; (E) Analysis of decision curves for 1, 3, and 5-year, with black lines indicating
assuming no patient dies within 1, 3, and 5-years; (F) Sankey of TMERSS and CMS subtypes; (G) The violin shows the distribution of TMERSS values of
different CMS; (H) Kaplan-Meier survival curve according to the overall survival of TMERSS subtypes; (I) The heatmap of pathological factors of
TMERSS subtypes based on published gene signatures.
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(S01), Late-stage differentiated effector (S02), and Exhausted/

effector memory (S03)), epithelial cells have 6 cell states (Basal-

like (S01), Normal-enriched (S02), Pro-angiogenic (S03), Pro-

inflammatory (S04), Unknown (S05), and Metabolic (S06)), mast

cells have 6 cell states (Normal-enriched (S01), Normal-enriched

(S02), Unknown (S03), Classical (S04), Unknown (S05), and

Activated (S06)), dendritic cells have 8 cell states (Myeloid cDC1

(S01), Myeloid cDC2-B (Inflammatory) (S02), Mature

immunogenic (S03), Unknown (S04), Mature (normal-enriched)

(S05), Langerhans-like (S06), Migratory activated (S07), and

Unknown (S08)) and NK cells have 5 cell states (Classical (S01),

Normal-enriched (S02), Unknown (S03), Unknown (S04), and

Unknown (S05)). The different cell states of more immune cells

can be found in Supplementary Table S4. We observed significant

differences in the proportional distribution of cell states between

TMERSS subtypes (Figure 4F; Supplementary Figure 3F). Some cell

states were dominant in the high TMERSS subtype with high

immune activity (the proportion is significantly highest), while

they are significantly reduced or almost absent in low TMERSS

subtype (the proportion is almost 0). For example, the relative

proportion of CD8+T cells in the Exhausted/effector memory (S03)
Frontiers in Oncology 07
state, epithelial cells in the Pro-inflammatory (S04) state, Mast cells

in the Classical (S04) state, dendritic cells in the Myeloid cDC1

(S01) state, and NK cells in the Classical (S01) state in low TMERSS

subtype is almost 0.

These results indicated that there is heterogeneity of tumor

immune response between TMERSS subtypes, and high TMERSS

subtype show higher antitumor immune activity, abundances of

antitumor immune cell, and antitumor immune cell states. This

may explain the longer OS of high TMERSS subtype.
TMERSS model has a potential function to
evaluate the chemotherapy response

Chemotherapy plays an indispensable role in the treatment of

CRC. In order to make the TMERSS model applicable to the clinic,

we analyzed differences in response to chemotherapy drugs in CRC

between TMERSS subtypes. Based on the NTP algorithm, we

applied drug-related signatures to the gene expression profile of

four cohorts to predict the response of patients to eight

chemotherapy regimens (Figure 5A; Supplementary Figures 4A–
D
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C

FIGURE 4

Immunological heterogeneity of TMERSS subtypes in the discovery cohort. (A) The differences of CYT, stromal score, immune score, ESTIMATE
score and tumor purity among TMERSS subtypes; (B-E) Based on CIBERSORT, MCP-Counter, quanTIseq and xCell, the proportion of immune cells
between high and low TMERSS subtypes was estimated. ns ≥ 0.05, *< 0.05, **< 0.01, ***< 0.001 and ****< 0.0001; (F) Distribution of immune cell
states in different TMERSS subtypes.
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C). In the discovery cohort, the response rates of low TMERSS

subtype to FOLFIRI, FOLFOX, and Cetuximab regimens were

69.3%, 57.5%, and 26.82% respectively (Figures 5B–D);

Contemporary, the response rates of high TMERSS subtype to

FOLFIRI, FOLFOX and Cetuximab regimens were 24.8%, 18.4%,

and 38.98% respectively. It is obvious that the low TMERSS subtype

has a higher response rate to FOLFIRI, and is more resistant to

Cetuximab; However, the response rate of the high TMERSS

subtype to FOLFIRI and FOLFOX regimen was low, and it was

sensitive to Cetuximab. Except that the response rates of low

TMERSS subtype in testing cohort 1 to the FOLFIRI were low

(Supplementary Figure 4D), the analysis results in other testing

cohorts are similar to those in the discovery cohort (Supplementary

Figures 4D–F). To further analyze the reasons for the differences in

the response of TMERSS subtypes to different chemotherapy

regimens, we have collected FOLFIRI (33), FOLFOX (34), and

Cetuximab (35) sensitive related genes in previous literature, and

compared the expression of these genes in different TMERSS

subtypes. Compared to the high TMERSS subtype, FOLFIRI, and

FOLFOX sensitive related genes are highly expressed in the low

TMERSS subtype (Supplementary Figures 5A, B). The Cetuximab

sensitive related genes are highly expressed in the high TMERSS

subtype (Figure 5E). In addition, we analyzed the expression of

related genes in 5-FU sensitive/resistant cell lines HCT8/HCT8-
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5FU and Cetuximab sensitive/resistant cell lines Caco2/Caco2-

CTX. Supplementary Figures 5C–E further confirmed our analysis

results. After overexpression of LAMB1, APOC1, or AREG in

HCT8-5FU and Caco2-CTX cells, we found that HCT8-5FU and

Caco2-CTX cells restored their sensitivity to 5-FU and Cetuximab,

respectively (Supplementary Figures 5F, G). Moreover, we found

that overexpression of LAMB1 or APOC1 can reduce the resistance

of HCT8-5FU; Overexpression of AREG can reduce the resistance

of Caco2-CTX (Supplementary Figures 5H–I). Based on the above

results, we speculate that the difference in the expression of

chemotherapy-related genes in different TMERSS subtypes may

explain to some extent the difference in response between TMERSS

subtypes to distinct chemotherapy regimens.

In addition, we analyzed the responses of patients to FOLFIRI

and FOLFOX based on datasets GSE72970 and GSE104645. We

first analyzed the relationship between infiltration levels of 23

signatures and drug response in the TMERSS model. However,

the infiltration level of 23 signatures was not significantly correlated

with responses of FOLFOX or FOLFIRI (Figures 5F, G). Then, we

explored whether the TMERSS model based on the datasets

GSE72970 and GSE104645 was related to drug response. In

GSE72970, the response rates of high and low TMERSS subtypes

to FOLFIRI were 43.9% and 47.4%, respectively. Compared with the

low TMERSS subtype, the high TMERSS subtype had a lower
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FIGURE 5

Correlation analysis between TMERSS subtypes and chemotherapy. (A) The heatmap of the correlation between the response of single CRC patient
to FOLFIRI, FOLFOX and EGFR inhibitors, and the samples with FDR<0.2 were considered significant; (B-D) The histogram shows the number of
clinical responses of high and low TMERSS subtypes to FOLFIRI, FOLFOX and Cetuximab. Chi-square test p-value differences are shown; (E) Boxplot
showed differences in the expression of Cetuximab response-related genes in high and low TMERSS subtypes; (F) The heatmap of 23 signatures in
GSE72970 cohort; (G) The heatmap of 23 signatures in GSE104645 cohort; (H-I) The histogram shows the number of clinical responses of high and
low TMERSS subtypes to FOLFIRI in GSE72970 cohort. Chi-square test p-value differences are shown; (J-K) The histogram shows the number of
clinical responses of high and low TMERSS subtypes to FOLFOX in GSE104645 cohort. Chi-square test p-value differences are shown; (L-M) Kaplan-
Meier survival curve based on OS of TMERSS subtypes in GSE72970 and GSE104645 cohort. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001,
****p-value < 0.0001.
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proportion of drug resistance to FOLFIRI (Figures 5H, I). Similarly,

in GSE104645, the response rates to FOLFIRI were 56.8% for the

high TMERSS subtype and 60.0% for the low TMERSS subtype, and

the low TMERSS subtype was more sensitive to FOLFOX

(Figures 5J, K). Finally, the relationship between TMERSS

subtypes and outcomes was clarified. As expected, the OS of the

low TMERSS subtype is shorter (Figures 5L, M).

In general, these observations demonstrated that TMERSS

model may be used as a potential tool to evaluate the response

rate of CRC to chemotherapy. Concurrently, TMERSS subtypes can

provide a reference for clinicians to use drugs. The low TMERSS

subtype is more suitable for FOLFOX or FOLFIRI, while patients

with high TMERSS are more sensitive to Cetuximab.
Immunotherapy benefits were positively
correlated with TMERSS values

As a novel modality to remedy cancer, immunotherapy has

been widely concerned because of the high response rates of cancer

patients to immunotherapy. In this research, we wanted to

investigate whether the TMERSS model can predict the benefit of

immunotherapy in patients. However, after an extensive literature

review and extensive literature search, we did not find suitable

datasets for CRC immunotherapy, so we explored the relationship

between immunotherapy responses and the TMERSS model in the

melanoma and uroepithelial carcinoma immunotherapy datasets

(GSE78220, GSE91061, and IMvigor210). Kaplan-Meier survival

curves showed that the high TMERSS subtype had a better

prognosis than the low TMERSS subtype (Figure 6A). Across the

three immunotherapy datasets, we found that the high TMERSS

subtype was more effective in responding to immunotherapy, with
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higher response rates (Figures 6B, C). Compared with progressive-

disease (PD)/stable-disease (SD), the violin further confirmed that

TMERSS values significantly increased the complete-response

(CR)/partial-response (PR) of CRC (Figure 6D).

The TMERSS values in three datasets were also evaluated by

ROC curves analysis to estimate their predictive potential for

immunotherapy benefits. The areas under ROC curves of

GSE78220, IMvigor210, and GSE91061 datasets were 0.62, 0.57,

and 0.55, respectively (Figure 6E), suggesting that the TMERSS

model has good predictive efficacy for immunotherapy benefit.
Analysis of TMERSS model in pan-cancer

We applied the TMERSS model to other cancers to determine

whether it has universal applicability in pan-cancer. Firstly, TPM

data of 33 cancers were downloaded from TCGA and TMERSS

model was constructed. Then, optimal cut-off points were

calculated based on the TMERSS values, and the patients were

divided into high and low TMERSS subtypes. Finally, Kaplan-Meier

survival curves showed that the prognosis of the high TMERSS

subtype was better than that of the low TMERSS subtype in 12

cancers (Figure 7). The results confirmed that the TMERSS model

may be universally applicable in these cancers.
Discussion

CRC, like other malignant tumors, is highly heterogeneous (39).

The complex interaction between malignant tumor cells and TME

contributes greatly to the development and progression of CRC

(40). Effective recognition of the distinction of diver immune
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FIGURE 6

Correlation analysis between TMERSS subtypes and immunotherapy. (A) Kaplan-Meier curve according to the OS of TMERSS subtypes in
immunotherapy cohort; (B) The histogram shows the number of immunotherapeutic responses in the high and low TMERSS subtypes of the
immunotherapy cohort. Chi-square test p-value differences are shown. (C) The waterfall diagram shows the distribution of patients with different
immunotherapeutic response in the immunotherapy cohort; (D) The boxplot of TMERSS distribution of patients with different immunotherapy
response in immunotherapy cohort; (E) ROC curve for predicting response in immunotherapy cohort.
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components in TME may help explain the heterogeneity of CRC.

ESMO guideline recommends FOLFIRI and FOLFOX as first-line

chemotherapies for metastatic CRC. Although FOLFIRI or

FOLFOX can significantly prolong the median OS, nearly 50% of

patients cannot benefit from it (41). Therefore, screening patients

with potential responses to FOLFOX and FOLFIRI is an

urgent priority.

We performed univariate Cox regression analysis on 197

signatures to identify those that are significant for prognosis.

Then the optimal 23 variates were selected by the LASSO-Cox

regression model, and the TMERSS model was constructed based

on 23 signatures. Further analysis showed that the molecular

subtype based on the optimal cut-off point could effectively

distinguish TME and drug sensitivity.

Firstly, relationships between TMERSS subtypes and

clinicopathological factors were analyzed. Of the two TMERSS

subtypes, the high TMERSS subtype has a longer OS. The

association analysis between TMERSS and CMS subtypes revealed

that the majority of low TMERSS subtypes were included in CMS4,

and the low TMERSS subtype had similar results with CMS4, that

is, the OS was shorter (37); The high TMERSS subtype contains

mainly CMS2, and the longer OS of high TMERSS subtype is

consistent with the longer OS of CMS2 (37). In addition, the

previously reported association analysis between gene signatures

and TMERSS subtypes also revealed the potential biological

characteristics behind TMERSS subtypes. For example, serrated

precursor tumors were significantly associated with the low

TMERSS subtype. In the low TMERSS subtype, the stem-like and

emt phenotypes were significantly enriched.
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The heterogeneity of tumor immune response determines

differences in prognosis in different patients, and infiltrating

immune cells play a vital role in tumor immune response. NK

cells, CD8+T cells, and cytotoxic T cells (42) are considered as

main antitumor immune cells, while fibroblasts and regulatory T

cells promote the occurrence and development of tumors. In our

study, the high TMERSS subtype enriched antitumor immune cells,

which is consistent with the improvement of prognosis of antitumor

immune cells; In contrast, the low TMERSS subtype has a higher

abundance of immunosuppressive cells. Our results show that the OS

of the low TMERSS subtype is shorter than that of the high TMERSS

subtype. Further cell states analysis also found that the immune cell

states in the high TMERSS subtype mostly showed antitumor

immune activity, while the low TMERSS subtype lacked such cells.

The high heterogeneity of CRC also affects the sensitivity of

chemotherapy. Studies have shown that the stem-like phenotype of

CRC has a high response rate to FOLFIRI (43), which is consistent

with our results, low TMERSS subtypes enrich the stem-like

phenotype and are sensitive to FOLFIRI. The response rates of

FOLFOX were similar to that of FOLFIRI and were resistant to the

high TMERSS subtype. The low TMERSS subtype has shorter OS

but is more sensitive to FOLFOX or FOLFIRI, suggesting that the

low TMERSS subtype is a potential response to FOLFOX or

FOLFIRI and that FOLFOX or FOLFIRI has the potential to

improve the prognosis of low TMERSS subtype. In our results,

compared with the low TMERSS subtype, the high TMERSS

subtype has a higher response rate to Cetuximab, which may be

related to the higher expression of Cetuximab responsive-related

genes in high TMERSS subtype.
FIGURE 7

The application of the TMERSS model in pan-cancer. The Kaplan-Meier survival curves of TMERSS subtypes in 12 cancers, which includes ACC
(Adrenocortical Carcinoma), ESCA (Esophageal Carcinoma), KICH (Kidney Chromophobe), LAML (Acute Myeloid Leukemia), LGG (Brain Lower Grade
Glioma), LUAD (Lung Adenocarcinoma), LUSC (Lung Squamous Cell Carcinoma), PAAD (Pancreatic Adenocarcinoma), SARC (Sarcoma), THCA
(Thyroid Carcinoma), THYM (Thymoma) and UCEC (Uterine Corpus Endometrial Carcinoma).
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In addition, there is growing evidence that patients with

microsatellite instability are sensitive to immune checkpoint

inhibitors, and CMS1 was rich in a higher proportion of

microsatellite instability (37). In our analysis, CMS1 was mainly

associated with a high TMERSS subtype. Based on datasets

GSE78220, GSE91061, and IMvigor210, we analyzed the

association of TMERSS subtypes with immune response and

prognosis of patients. Unlike the low TMERSS subtype, which has

high response rates to FOLFOX or FOLFIRI, TMERSS values

significantly increased the sensitivity of patients to immune

checkpoint inhibitors in immunotherapy cohorts. In short, high

TMERSS subtypes are more sensitive to immunotherapy. We also

observed that the OS of the high TMERSS subtype was longer than

that of the low TMERSS subtype.

This study has several limitations worth acknowledging. First of

all, the analysis is based on previously published data, which is a

retrospective study, and more real data are needed for prospective

analysis and verification; Secondly, due to the incomplete clinical

information of data, more clinicopathological factors were not

included in the study, such as TNM stage, age, sex, tumor

pathological type, etc. Finally, we only divided patients into two

subtypes according to the optimal cut-off value, and more

classification algorithms need to be explored to further define and

classify TMERSS subtypes.

Together, we constructed the TMERSS model by using public

datasets and 197 signatures to define novo molecular subtypes.

TMERSS subtypes have different effects on the prognosis of

patients. Moreover, the TMERSS model reveals the efficiency of

chemotherapy or immunotherapy to a certain extent and may be a

potential tool for predicting the response of chemotherapy or

immunotherapy. The high TMERSS subtype may be more

suitable for Cetuximab treatment or immunotherapy, while the

low TMERSS subtype may be more sensitive to FOLFIRI or

FOLFOX regimens.
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