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Chromatin remodeling proteins contribute to DNA replication, transcription,

repair, and recombination. The chromodomain helicase DNA-binding (CHD)

family of remodelers plays crucial roles in embryonic development,

hematopoiesis, and neurogenesis. As the founding member, CHD1 is capable of

assembling nucleosomes, remodeling chromatin structure, and regulating gene

transcription. Dysregulation of CHD1 at genetic, epigenetic, and post-translational

levels is common in malignancies and other human diseases. Through interacting

with different genetic alterations, CHD1 possesses the capabilities to exert

oncogenic or tumor-suppressive functions in context-dependent manners. In

this Review, we summarize the biochemical properties and dysregulation of

CHD1 in cancer cells, and then discuss CHD1’s roles in different contexts of

prostate cancer, with an emphasis on its crosstalk with diverse signaling

pathways. Furthermore, we highlight the potential therapeutic strategies for

cancers with dysregulated CHD1. At last, we discuss current research gaps in

understanding CHD1’s biological functions and molecular basis during disease

progression, as well as the modeling systems for biology study and

therapeutic development.

KEYWORDS

CHD1, prostate cancer, epigenetic remodeler, dysregulation, therapeutic strategy
Introduction

Chromatin remodeling is a major regulator of gene expression. Chromatin remodelers

utilize ATP hydrolysis to slide the nucleosomes onto and off the DNA, thereby regulating the

accessibility of genes to a range of nuclear factors, including transcriptional factors (1).

Chromatin remodeling proteins contribute to DNA recombination, transcription, repair, and

replication (2). Based on the similarities and differences in catalytic ATPases and associated

subunits, chromatin remodelers can be classified into four subfamilies: Imitation Swtich

(ISWI), Chromodomain Helicase DNA-binding (CHD), Switch/sucrose Non-fermentable

(SWI/SNF) and INO80 (3). The CHD family comprises nine members and plays crucial roles

in embryonic development, hematopoiesis, and neurogenesis (2, 4, 5). Notably, nearly all

CHD members are dysregulated and mutated in human malignancies. Increasing evidence

points to the roles of CHD members during cancer development and progression. Through

promoting the transcription of oncogenes or tumor suppressor genes, some CHD enzymes
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possess the capability to exert both oncogenic and tumor-suppressive

functions in context-dependent manners.

CHD1 is the founding member of the CHD family and is

conserved across all eukaryotes (6). CHD1 is capable of assembling

nucleosomes, remodeling chromatin structure, modulating histone

turnover, and regulating gene transcription (7–9). In embryonic stem

cells (ESCs), CHD1 is a key regulator of open/loose chromatin,

correlates with a permissive transcriptional state, and directly

contributes to developmental pluripotency characteristics (10–13).

The induction of CHD1 expression is also essential in the

programming of the pluripotent stem cells (5). In the past decade,

large-scale cancer genome studies showed recurrent deletions of the

CHD1 gene in ~8% of prostate cancer (14–20). In prostate tumors,

loss of CHD1 causes DNA repair defects, androgen receptor (AR)

redistribution and dysfunction, chromatin instability, and

transcriptional plasticity (21–24). However, in PTEN-deficient

prostate tumors, the CHD1 protein is stabilized and contributes to

cancer progression, tumor microenvironment remodeling, and drug

resistance (25–27).

In this Review, we focus on the chromatin remodeler CHD1 that

plays multifaceted roles in prostate cancer. We summarize CHD1’s

biochemical properties and dysregulation in cancer cells, as well as

discuss its biological functions in different contexts of prostate cancer,

emphasizing its crosstalk with diverse signaling pathways. In

addition, we highlight the differential therapeutic strategies for

cancers harboring CHD1 defects or overexpression.
Biochemical and structural
properties of CHD1

Compared to other chromatin remodelers, the CHD family is

distinguished by two signature motifs: tandem chromodomains

located in the N-terminal region and the SNF2-like ATP-dependent
Frontiers in Oncology 02
helicase domain centered in the middle of the protein (28) (Figure 1).

The chromodomains bind to methylation marks on histones, while

the SNF2-like ATPase domain confers enzymatic activity and

regulates nucleosome remodeling and chromatin conformational

change (2, 29). Based on the constituent domains, CHD proteins

are classified into three subfamilies: subfamily I (CHD1/2), subfamily

II (CHD3–5), and subfamily III (CHD6–9) (Figure 1). In addition to

chromodomains and ATPase domain, CHD1 and CHD2 proteins

also contain SANT-SLIDE DNA-binding domains located in the C-

terminal region (Figure 1), and preferentially bind to AT-rich DNA

motifs (28, 30, 31). Although CHD1 and CHD2 are highly

homologous to one another, they are significantly divergent in the

3′ regions and may possess distinct functions. In contrast, subfamily

II proteins (CHD3–5) are distinguished by N-terminal tandem PHD

(plant homeodomain) Zn finger-like domains (Figure 1). They are

core components of the nucleosome remodeling and histone

deacetylase complex (NuRD) (32). The third subfamily (CHD6–9)

is evolutionarily conserved and contains additional featured domains,

such as the Brahma and Kismet domain (BRK), the conserved region

(CR) domains, and the SANT-SLIDE-like domain (Figure 1).

The chromatin association specificity of CHD proteins is largely

mediated by interactions with transcription factors, modified

histones, and methylated DNA and RNA (4). The tandem

chromodomains of human CHD1 protein selectively bind to

methylated lysine 4 on the histone H3 tail (H3K4) (33, 34), a

hallmark of the transcriptionally active chromatin. The

chromodomains target CHD1 to specific areas of chromatin-

trimethylated H3K4 marks regions for open chromatin and

transcriptional activation (35). Despite the double chromodomains

of human CHD2 and yeast CHD1 share significant sequence

similarity with human CHD1, they have much lower binding

affinity to methylated H3K4 (33). In mice, the chromodomains of

CHD1 are also required for proper chromatin localization (36). The

SNF2-like ATP-dependent helicase domain shared in the CHD family
FIGURE 1

CHD family and signature domains. Three subfamilies of CHD chromatin remodelers are presented with signature domains. The major functions of each
domain are listed.
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anchors on the nucleosome and functions as an ATPase motor for the

nucleosome remodeling (9, 36, 37). The SANT-SLIDE DNA-binding

domains bind to DNA that flanks the nucleosome to increase the

nucleosome-binding affinity of CHD1 and influence the direction of

the nucleosome movement (12, 38).

CHD1 protein has DNA translocase activity that utilizes the

energy of ATP hydrolysis to impel DNA around the octamer and

mobilize nucleosomes (4). The CHD1 remodeler is a unique

organization of domains on the nucleosome that reveals the direct

interdomain communication (12, 37, 39). The chromodomains allow

CHD1 to distinguish between nucleosomes and naked DNA by

physically gating access to the ATPase motor (37). Disruption of

the chromodomain-ATPase interface reduced the reliance on the

histone H4 tail for nucleosome sliding (37). Besides, the

chromodomains bind to nucleosomal DNA at the superhelical

location (SHL) SHL1 site, resulting in ATPase closure; the ATPase

motor binding to the SHL2 site is anchored to the N-terminal tail of

histone H4 (12, 39). Both pack against the DNA-binding domain on

DNA exiting the nucleosome (39). This arrangement spans and

bridges two DNA gyres of the nucleosome and enables the ATPase

motor to promote the translocation of DNA towards the nucleosome

dyad, thereby loosening the first DNA gyre and remodeling the

nucleosome (12, 39). The cycles of ATP hydrolysis of the ATPase

motor trigger a succession of conformational changes of CHD1,

promoting DNA translocation and nucleosome remodeling (4). By

the endpoint of the remodeling reaction, the binding affinity of CHD1

for the nucleosome decreases, leading to its release from nucleosome

substrates (40).

In addition to the assembly, disruption, and repositioning of

nucleosomes, CHD1 is also involved in H3.3 histone variants

incorporation and transcription regulation. H3.3 is deposited on

gene bodies and regulatory elements marking active transcription,

and its levels are constantly high throughout the cell cycle. In

Drosophila models, depletion of CHD1 in embryos caused

incorrect assembly of H3.3 in the paternal pronucleus chromatin,

while CHD1 loss in the adult brain resulted in reduced H3.3

incorporation chromatin, global chromatin perturbation,

transcriptional dysregulation, and metabolism reprogramming (41,

42). By disassembling nucleosomes at the promoter region, CHD1

promotes open chromatin and is associated with transcriptionally

active locations throughout the genome (10, 43, 44). Deletion of Chd1

resulted in the general downregulation of transcription by RNA

polymerases I/II in mouse ESCs (45), and impaired efficient

reprogramming of fibroblasts to the pluripotent stem cell state via

downregulating the transcriptional factor Oct4 (10). Besides, CHD1

was also found to influence the pre-mRNA splicing, transcription

initiation and transcription termination by bridging core factors to

H3K4me3 (46–49).

Collectively, biochemical and structural studies reveal that CHD1

protein predominately interacts with methylated H3K4 histone

marks, displays intricate conformational intradomain allosteric

regulation, and exhibits nucleosome assembly and remodeling

activities. This aligns with its epigenetic functions in chromatin

organization, histone variants incorporation, and transcription

reprogramming, and provides the mechanistic basis for

understanding the phenotypes in animal models and human

diseases with dysregulated CHD1.
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Dysregulation of CHD1 in
human diseases

The tandem chromodomains of CHD1 are highly conserved

among species. In yeast, the C-terminal is required for Chd1’s

nucleosome-remodeling activity, and the combined mutations in

the SANT domain (R1016/K1020) and SLIDE domain (R1255)

abolish the binding of Chd1 to DNA and nucleosome and reduce

its nucleosome-remodeling activity (50). In Drosophila, the

Tryptophans W372/W375 mutants in the first chromodomain or

W462 mutant in the second chromodomain impair CHD1’s

interaction with trimethylation of H3K4 (H3K4me3) and reduce

the assembly of H3.3 into chromatin (44). The flies containing

these mutations have decreased viability and fertility (44).

Prior studies have demonstrated the key roles of CHD family

remodelers in neurodevelopment in human being (10, 51–54). Large-

scale exome sequencing in thousands of autism spectrum disorder

cases identified recurrent de novo mutations in CHD2 and CHD8 as

genuine autism risk factors (52–54). Pilarowski-Bjornsson syndrome

is an autosomal dominant neurodevelopmental disorder

characterized by delayed development and intellectual disability,

often with autistic features, speech apraxia, and mild dysmorphic

features. Several de novo heterozygous missense variants of CHD1

(c.1853G>A, c.5123G>A, c.1379G>A, and c.421A>G) were identified

in Pilarowski-Bjornsson syndrome and associated with the closed

status of chromatin and the neurodevelopmental disability (51).

Using genome sequencing techniques, many somatic mutations,

copy number alterations, and chromosomal rearrangements of

chromatin remodelers have been detected in the past decades.

Recent cancer genomic studies identified recurrent mutations and

deletions of the CHD1 gene in prostate tumors (8-10%), uterine

(11%), melanoma (7%), and colorectal cancers (6%) (Figures 2A, B)

(55, 56). Mutations are more dominant than deletion in the CHD1

gene in most cancer types, but not in prostate cancer. CHD1 deletion

was found in both localized prostate cancer and advanced castration-

resistant prostate cancer (CRPC) (14–20). Recent epidemiology and

genomics studies of prostate cancer in Asian men uncovered that

CHD1 is more often deleted (18%) in the East Asian population with

localized prostate cancer than in Western patients (57, 58). Another

recent study uncovered that subclonal deletion of CHD1 is about

three times more frequent in prostate tumors of African American

(AA) men (29.7%) than that of European Ancestry (EA) men (11%)

(59). Besides, CHD1 deletion is strongly associated with pathologic

stages and rapid biochemical recurrence in AA cases (59).

Notably, deletions of CHD1 show distinct patterns of co-

occurrence and mutual exclusivity with genetic alterations of some

oncogenes and tumor suppressor genes (Figure 2C). CHD1 deletion

often co-occurs with missense mutations in SPOP (speckle-type BTB/

POZ protein) and defines a new molecular subtype of prostate cancer,

characterized by increased DNA methylation and homogeneous gene

expression patterns (60). Besides, MAP3K7 and CHD1 were

significantly co-deleted in localized prostate tumors and combined

loss correlated with poor disease-free survival of patients (20, 61).

However, this co-occurrence is rarely found in other cancer types,

suggesting their unique functions in prostate cancer development and

progression. In contrast, CHD1 deletion is mutually exclusive with
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PTEN loss or TMPRSS2:ERG fusion in human prostate tumors (14,

16, 25, 62), by crosstalk with key components in PTEN-AKT and AR

signaling pathways.

The expression of CHD1 is modulated at both post-

transcriptional and post-translational levels, and its dysregulation is

associated with cancer development and other human diseases

(Table 1). MicroRNAs (miRs) represent a critical class of small,

non-coding RNAs and repress target genes either by mRNA
Frontiers in Oncology 04
degradation or repression of translation. Lifespan-related miRNAs,

miR-34a, miR-107, and miR-212-3p, are found preferentially target

Chd1 and are associated with high-fat diet and aging (63). In estrogen

receptor (ER)+ breast cancer, miR-26 is identified as a microRNA

targeting CHD1 and suppresses breast cancer cell proliferation by

downregulating the CHD1 expression (67).

Our prior studies in prostate cancer demonstrated that PTEN-

AKT-GSK3b signaling promotes CHD1 protein degradation via the b-
TABLE 1 Dysregulation of CHD1 in human diseases.

Type Dysregulation Mechanism Diseases

Genetic
Alterations

CHD1 Deletion

* Alter AR transcriptome
* Chromatin instability
* Defects in DNA damage repair
* Lineage Plasticity

Prostate cancer (14–20)

Missense/Truncating
Mutations of CHD1

* To be determined
Uterine, melanoma, colon,
and other cancers (55, 56)

Missense Mutations
of CHD1

* Dysregulated chromatin
* Neurodevelopmental disability

Pilarowski-Bjornsson
syndrome (51)

Epigenetic-
MicroRNA Targeting
CHD1

High expression of miR-34a,
miR-107, miR-212-3p

* Down-regulate CHD1 expression
* Mimic High-fat diet and aging-induced transcriptome
* Activation of transposons

Metabolic diseases
Aging (63)

Repressed expression of
miR-26

* Repression of miR-26 causes CHD1 up-regulation
* CHD1 is required for estrogen-induced cell growth upon miR-26 depletion

ER+ breast cancer (56)

Disrupted Post-
translational
Modification

Disrupted ubiquitination
and proteolysis of CHD1

* PTEN-AKT-GSK3b signaling promotes CHD1 proteolysis via the b-TrCP-
mediated ubiquitination-proteasome pathway
* Stabilization of CHD1 protein promotes tumor progression in PTEN-
deficient tumor

PTEN-deficient prostate and
breast cancer (25–27)

Hyper-SUMOylation of
CHD1 protein

* SUMO E2 ligase Ubc9 sustains the transformation growth of KRAS-mutated
colorectal cancer cells
* CHD1 is hyper-SUMOylated by UBC9 and mediates the KRAS-driven
transformation

KRAS-mutated colorectal
cancer (64, 65)

Increased SUMOylation of
CHD1

* Influenza virus induces SUMOylation of CHD1 and other proteins involved
in RNA polymerase II transcription and chromatin remodeling

Influenza virus infection (66)
A B

C

FIGURE 2

Genetic alterations of CHD1 cross various cancer types (A) Genetic alterations of CHD1 are frequent in human cancers (TCGA datasets). Different types
of genetic alterations are highlighted in different colors. Their alteration frequency is presented in each cancer type. (B) Somatic mutations in CHD1
amino acid sequence across human cancers (TCGA databases). The number of single amino acid mutations is shown. Mutation diagram circles are
colored with respect to the corresponding mutation types. The functional domains in the CHD1 protein are presented. (C) The co-occurrence and
mutual exclusivity of CHD1 deletion and genetic alterations of SPOP, PTEN, ERG, and MAP3K7 in primary prostate tumors are shown (TCGA dataset). The
Log2 Odds Ratio, p-value, q-value, and tendency between two genetic events are calculated (cBioportal).
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TrCP-mediated ubiquitination-proteasome pathway (25). b-TrCP is an

F-box protein that acts as the substrate-recognition subunit for the

SCFb-TrCP (Skp1–Cullin1–F-box protein) E3 ubiquitin ligases. We

found that b-TrCP E3 ligase directly interacts with CHD1 protein,

induces its poly-ubiquitination, and promotes the proteolysis of CHD1

(25). Through E3 ligase consensus-sequence scanning, we also

identified two evolutionarily conserved putative b-TrCP consensus-

binding motifs (DSGXXS) at the N terminus of CHD1 (25). Another

study also reported that the N-terminal serine-rich region (SRR) of

CHD1 is modified by phosphorylation and depletion of SRR impaired

differentiation of the ESCs (68). Systematic mass spectrometric analysis

and consensus site prediction also showed that PGK and GSK3 kinases

might be involved in the phosphorylation of CHD1 (69). Notably, b-
TrCP E3 ligase recognizes and interacts specifically with

phosphorylated substrates, and importantly, b-TrCP-binding motifs

in CHD1 protein contain GSK3b consensus sequences (SXXXS).

Further biochemical and molecular biological studies established that

GSK3b serves as a kinase of CHD1 and mediates its recognition and

interaction with b-TrCP E3 ligase, resulting in CHD1 protein

ubiquitination and degradation (25). In PTEN-deficient cancers,

AKT activation-induced GSK3b suppression results in the disruption

of CHD1 proteolysis and aberrant accumulation of the CHD1 protein

(25–27), which contributes to tumor development and tumor

microenvironment (TME) remodeling.

Like ubiquitination, SUMOylation is a post-translational

modification that regulates protein stability, activity, localization,

and interactome. SUMOylation involves various cellular processes,

such as transcription, chromatin remodeling, DNA damage repair,

cell cycle progression, ribosome biogenesis, and mitochondrial

dynamics (70–72). In KRAS-mutated colorectal cancer, CHD1

protein is hyper-SUMOylated by the SUMO E2 ligase UBC9, and

depletion of CHD1 impairs the KRAS-driven transformation (64, 65).

Besides, influenza virus infection was also found to induce the

SUMOylation of CHD1 and other proteins involved in RNA

polymerase II transcription and chromatin remodeling (66).

As a chromatin remodeler, CHD1 dysregulation is associated with

malignancies and other human diseases. Diverse mechanisms,

including genetic alterations, epigenetic regulations, and post-

translational modifications, lead to the dysregulation of CHD1 in

context-dependent manners (Table 1). It is equally important to

understand the biological functions of CHD1 in different contexts,

which will uncover the therapeutic vulnerabilities of diseases with

dysregulated CHD1.
Multifaceted roles of CHD1 in
prostate cancer

Genetic studies in yeast, fruit flies, zebrafish, and mice underscore

the roles of CHD family enzymes in regulating cellular fate and

identity, embryonic development, stem cell maintenance, and

neuronal development and pathologies. These studies have been

summarized and discussed in several comprehensive review articles

(2, 4, 5). The increasing evidence documented individual CHD

remodelers function as context-dependent oncogenes or tumor

suppressors in human malignancies. For instance, CHD4, as a
Frontiers in Oncology 05
crucial subunit of the NuRD complex, promotes tumorigenesis by

epigenetic silencing tumor suppressor genes or serving as a

coactivator of HIF in colorectal, breast, and endometrial cancers

(73–75). In contrast, CHD5 was identified as a tumor suppressor gene

in gliomas, breast, colon, lung, ovarian, and prostate cancers (76, 77).

Given the frequent alterations and dysregulation of CHD1 in prostate

tumors, in this section, we review CHD1’s biological functions in

prostate cancer with an emphasis on its crosstalk with different

genetic alterations and diverse signaling pathways.
Prostate tumorigenesis

As noted earlier, CHD1 is homozygously deleted in 8~18% of

prostate cancer, supporting the hypothesis that CHD1 is a tumor

suppressor in prostate cancer. Earlier in vitro studies using siRNA

showed that downregulation of CHD1 in nontumorigenic prostate

epithelial cells promoted cell invasiveness and enhanced cell

clonogenicity, but had no impact on cell growth (17, 18). To obtain

the genetic evidence, our and other independent groups established

prostate-specific Chd1 deletion genetically engineered mouse (GEM)

models, in which conditional Chd1 alleles deleted by a Probasin (Pb)

promoter-driven Cre recombinase (Pb-Cre; Chd1L/L) (21, 23, 27).

Homozygous deletion of Chd1 in prostate glands showed no observed

differences in cell proliferation, cell survival, androgen receptor (AR)

expression, or glandular structure (21, 23, 27). No invasive

adenocarcinoma was observed in mice up to 1 year of age, as

characterized by well-maintained smooth muscle actin structures

(21). This genetic evidence suggests that Chd1 loss alone is

insufficient to drive tumorigenesis in the prostate.

Notably, CHD1-depleted tumors often harbor additional genetic

alterations, including SPOPmutations andMAP3K7 deletion, but also

show mutual exclusivity with PTEN loss or ERG translocation

(Figure 2C) (14, 16, 17, 20, 25, 26, 62). CHD1 depletion reduced

cell proliferation, invasiveness, and tumor growth of PTEN-deficient

cancer cells (14, 20, 25, 26); while loss of MAP3K7 and CHD1

coordinates to promote aggressive prostate cancer (20, 61). These

observations seem paradoxical at first glance; however, they

established the context-dependent roles of CHD1 in prostate cancer

(Figure 3). Importantly, CHD1’s distinct roles in different contexts are

largely mediated by the crosstalk with diverse signaling pathways,

which will be introduced individually in the following subsections.
AR signaling

Prostate cancer is largely driven by androgen receptor (AR)

signaling. Androgen deprivation therapy (ADT) and AR inhibition

are the main strategies for prostate cancer treatment (78). Although

CHD1 protein does not directly bind to AR (14, 16, 23), loss of CHD1

caused the transcriptome reprogramming of AR signaling and is

strongly associated with the ERG translocation (14, 16, 22, 23). By

performing the chromatin-bound interactome analysis, Augello et al.

uncovered that CHD1 interacts with the cofactors of AR and other

nuclear receptors (23). Chromatin immunoprecipitation (ChIP)

sequencing showed that CHD1 colocalizes to gene enhancers
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https://doi.org/10.3389/fonc.2023.1123362
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1123362
enriched for AR and its cofactors, such as HOXB13, ETV1, and

FOXA1 (23). Specifically, they found that CHD1 localizes to

chromatin-containing canonical AR binding sites, but CHD1 loss

causes AR to redistribute to HOXB13-enriched sites, which drives a

unique AR transcriptome that contributes to the tumor

formation (23).

In prostate cancer, the most common genetic rearrangement

involves the fusion of the androgen-regulated gene TMPRSS2 with

the ETS transcription factor ERG (79). The fusion joins the 5′-UTR of

TMPRSS2 (21q22) with the 3′-end of ERG (21q22) and leads to the

TMPRSS2:ERG mRNA fusion transcript, which is induced by

androgen. Using whole exome sequencing, FISH, or confocal

microscopy, several groups showed the mutual exclusivity of CHD1

deletion with ERG fusion in human prostate tumors (14, 16, 62).

CHD1 deletion is also strongly associated with early PSA recurrence

(14, 59). Using a doxorubicin/dihydrotestosterone-induced DNA

double-strand breaks system, Burkhardt and colleagues showed that

CHD1 depletion prevents the formation of ERG rearrangements.

Mechanistically, they found that CHD1 is required to recruit AR to

responsive promoters and regulates the expression of AR-responsive

genes, such as NKX3-1, FOXO1, and PPARg (14). Given that AR-

dependent transcription is a prerequisite for ERG translocation, these

studies concluded that a functional CHD1 supports AR signaling

transcriptome and ERG fusion development in prostate cancer.

Lysine-specific demethylase 1 (KDM1A/LSD1) removes the

mono- and di-methylation from H3K4 and H3K9, and plays an

important role in regulating AR-dependent gene expression in

prostate cancer (80, 81). A prior study by the Schule group

reported that the LSD1 protein is modified by di-methylation at

K114 (K114me2) (82). By solving the cocrystal structure, they

identified CHD1 as an LSD1-K114me2 reader and uncovered that

chromatin colocalization of CHD1 and LSD1-K114me2 drive AR-

dependent transcription and TMPRSS2-ERG translocation (82). This

structural study provides additional evidence and mechanistic insight
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into CHD1’s roles in modulating AR signaling and ERG fusions

during prostate cancer evolution.
Lineage plasticity

Transcriptomic and epigenetic profiling studies in ESCs and

cancer cells showed that CHD1 is required for sustaining the

opening of chromatin and the global transcription (10, 22, 23, 25,

27 , 83) . CHD1 deficiency causes the accumulat ion of

heterochromatin, diminishing the pluripotency of ESCs (10). In

prostate cancer, CHD1 co-localizes with H3K4me3 to the

promoters of actively transcribed genes, while CHD1 depletion

reduces H3K4me3 marked genes, alters the chromatin assembly

across the genome, and reprograms the global transcription (22, 23,

25). Lineage plasticity of cancer cells has been proposed as a source of

intratumoral heterogeneity and resistance to targeted anticancer

treatments (84). In prostate cancer, the histological transformation

from AR-dependent adenocarcinoma to AR-indifferent

neuroendocrine or small-cell carcinoma is a well-known pathway of

lineage plasticity, which might occur as a consequence of ADT (85,

86). In addition to the deregulation of AR signaling, CHD1 loss is

linked to lineage plasticity by inducing a lineage-specific

transcriptome (20, 22).

Cramer’s group initially proposed this hypothesis. They found

MAP3K7 and CHD1 were significantly co-deleted in localized

prostate tumors and combined loss correlated with poor disease-

free survival of patients (20, 61). CHD1 knockdown reduced cell

proliferation, impaired tumor growth, and prolonged the overall

survival of mice in PTEN-deficient LNCaP-derived xenograft

models. However, additional MAP3K7 loss completely rescued this

effect and promoted prostate cancer progression (20, 61). Co-

suppression of MAP3K7 and CHD1 induces androgen-independent

growth and causes resistance to AR inhibitors, such as enzalutamide

(61). Combining mouse prostate epithelial progenitor/stem cells

(PrP/SC) and tissue recombination model, they found that CHD1-

depleted PrP/SCs grafts are mostly benign, characterized by intact p63

+ basal layer (20). This is consistent with the phenotypes observed in

Pb-Cre; Chd1L/L GEM model (21, 23, 27). In contrast, MAP3K7-

depleted grafts displayed a mixture of benign, high-grade prostatic

intraepithelial neoplasia (PIN), and carcinoma phenotypes.

Strikingly, dual MAP3K7–CHD1 loss grafts displayed high-grade

PIN and invasive carcinoma phenotypes (20). Compared to

MAP3K7 or CHD1 depletion alone, dual depletion caused lineage

switching, characterized by loss of AR and epithelial markers (CK5,

p63, CK14, and CK18) along with the upregulation of neuroendocrine

differentiation markers (SYP and Nestin) and mucin production (20).

It remains unclear if MAP3K7/CHD1 double-depletion affects

metastatic progression. Nevertheless, better understanding their

interactions and underlying mechanisms might provide novel

therapeutic strategies for MAP3K7/CHD1 loss prostate cancer.

Recently, Zhang et al. showed that CHD1 loss renders prostate

cancer cells more resistant to AR inhibition via inducing lineage

plasticity (22). They showed that loss of CHD1 induces the

transcription factors of GR, BRN2, TBX2, and NR2F1, which are

required to promote tumor heterogeneity and resistance to AR

inhibitors in CHD1-deficient tumors (22). They also found that
FIGURE 3

CHD1’s multifaceted roles and crosstalk with signaling pathways in
prostate cancer. The CHD1-associated signaling pathways or genetic
alterations are presented in the middle circle. CHD1’s biological
functions and therapeutic implications in prostate cancers are listed in
the outer circle.
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enzalutamide-resistant xenograft tumors with CHD1 depletion and

high expression of those transcription factors, lost luminal lineage

identities (AR, CK8, and CK18), but displayed increased basal

markers (CK5 and p63) and epithelial to mesenchymal transition

genes (SNAI2, TWIST1, SNAI1, and ZEB1) (22). These non-luminal

lineage programs and plastic chromatin landscape induced by CHD1

loss may serve as mechanisms to enable heterogeneous subclones less

dependent on AR.
DNA damage repair

Endogenous cell metabolism and environmental factors often

cause DNA double-s t rand break (DSB) . Homologous

recombination (HR) and non-homologous end joining (NHEJ) are

two major repair mechanisms in response to DSB (87). Using prostate

cancer cell lines and GEMmodels, several studies reported that CHD1

loss causes defects in HR-mediated DNA damage repair (DDR) and

increases sensitivity to DNA-damaging therapies (21, 24, 88, 89).

Besides, recent studies in metastatic prostate cancer patients showed

that CHD1 deletion is associated with HR deficiency-related

mutational signatures (59, 90).

Mechanistically, CHD1 accumulates at the DNA damage sites,

maintains the open status of chromatin, and co-localizes with gH2AX

in response to DNA damage (24). CHD1 interacts with and recruits

DDR factors, such as CtIP, 53BP1, RIF1, and KU70, to the DNA

damage sites (21, 24). CtIP is a key player in HR by resecting DSB

ends. CHD1 loss impairs the recruitment of CtIP to DNA damage

sites and suppresses the initiation of HR (24, 88). As a key DDR

protein, 53BP1 maintains the balance of repair pathway choices and

genomic stability. Shenoy et al. found that CHD1 forms a complex

with NHEJ components and negatively regulates the protein stability

of 53BP1 (21). CHD1 loss stabilizes 53BP1 protein and causes the

switch from HR to NHEJ pathway for DSB repair. Although AR

signaling is known to regulate the expression of DDR-related genes

and promotes NHEJ repair, the role of CHD1 in modulating DDR is

independent of the AR pathway (21). CHD1 loss is also associated

with chromosomal and genomic instability in prostate cancers (21,

22), and DDR defects may serve as one of the mechanisms.
When CHD1 loss meets SPOP mutations

Recurrent missense mutations in SPOP (speckle-type BTB/POZ

protein) occur in 10-15% of localized prostate tumors and metastatic

CRPC (60, 91–93). In occurrence with CHD1 deletion (Figure 2C),

SPOP mutations define a distinct prostate cancer subtype,

characterized by genomic instability, increased AR transcriptional

activity, absence of ERG rearrangements, and increased DNA

methylation (60, 91, 92, 94). SPOP protein is a substrate adaptor

for the Cullin3-RING-based BCR E3 ligase complex (CUL3-SPOP),

which mediates the ubiquitination and proteasomal degradation of

target proteins. In prostate cancer, hotspot SPOP mutations are only

observed in the MATH domain that is responsible for substrate

recognition and recruitment. The mutant reduces the substrate-

binding affinity and results in the aberrant accumulation of

substrates (95).
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Several oncogenic proteins in AR signaling were identified as

substrates of CUL3-SPOP, such as AR (96), SRC3 (97), and ERG (98,

99). CUL3-SPOP complex mediates the ubiquitination-degradation

of AR by binding to the 645ASSTT649 Motif in the hinge domain of

AR. Prostate cancer-associated SPOP mutants (Y87C, Y87N, F102C,

S119N, F125V, W131G, F133L, and F133V) fail to bind AR protein,

thereby increasing the protein stability and activity of AR during

tumorigenesis (96, 100). By establishing a tissue-specific SPOP-F133V

overexpressing GEM model, Blattner and colleagues reported that

SPOP mutation promotes prostate tumorigenesis through coordinate

regulation of PI3K/mTOR and AR signaling (101). Clinical trials in

men with metastatic prostate cancer found that SPOP mutations are

associated with improved survival outcomes after ADT (93, 102, 103).

Although it remains unclear whether SPOP mutations crosstalk with

CHD1 loss when regulating AR signaling, a clinical study in

metastatic CRPC showed that SPOP mutations and CHD1 loss are

associated with a higher response rate to abiraterone (inhibitor of

androgen biosynthesis) and a longer time on the abiraterone

treatment (93).

In addition to modulating AR signaling, coordinate CHD1

deletion and SPOP mutations are also involved in DNA damage

response. Phenocopying CHD1 loss, SPOP mutations also cause

genomic instability and impaired HR DSB repair, as well as

promote the sensitivity of prostate tumors to DNA-damaging

therapeutic agents, such as PARP inhibitors (94, 104, 105).

Mechanistically, SPOP is accumulated at DNA double-strand break

sites, where it interacts with ATM kinase and plays an essential for

DDR (94, 105). Depletion or mutations of SPOP inhibits HR and

promotes NHEJ by downregulating DNA repair factors (RAD51,

BRCA2, CHK1, and ATR), reducing RAD51 foci formation, and

stabilizing 53BP1 (94, 106). Recent studies found that SPOP

mutations and CHD1 deletion sensitize prostate cancer cells to

DNA damage inducers and show synergistic effects on the DNA

damage repair (59, 89). By generating prostate-specific Chd1 and/or

Spop deletion GEM models, Zhu and colleagues found that co-

deletion of Chd1 and Spop in the prostate synergistically induces

the response to DNA DSBs, characterized by increased gH2AX

staining (89). Besides, they showed that the combination of CHD1

depletion and SPOP mutations significantly augmented the DNA

damage response and sensitized human prostate cells to DNA-

damaging agents (89). Another study in AA men revealed that,

compared to cases with either alteration alone, prostate tumors

with both CHD1 deletion and SPOP mutations showed significantly

higher levels of HR deficiency-associated signatures and large-scale

structural rearrangements (59). These studies demonstrated the

synergistic effects of CHD1 loss and SPOP mutations in modulating

AR signaling and DDR pathways, providing insights into the

molecular basis of their frequent co-occurrence in prostate cancers.
Essentiality in PTEN-deficient cancers

Tumor suppressor PTEN is frequently altered in prostate and

other cancer types. As a dual lipid and protein phosphatase, PTEN

dephosphorylates PIP3 and suppresses the activation of AKT, leading

to a hyperactive PI3K signaling (107, 108). PTEN/AKT pathway is

critical for cellular processes, such as metabolism and cell
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proliferation (109). Genetic deletion and mutations of PTEN occur in

~20% of localized prostate tumors and are further enriched in ~40%

of CRPC with strong associations with metastatic disease and poor

overall outcome (60, 110). In prior studies, we found that CHD1

deletions show a mutually exclusive pattern with PTEN loss in

prostate tumors (Figure 2C), and CHD1 negatively correlates with

PTEN expression at protein levels (25). Mechanistically, PTEN loss

stabilizes CHD1 protein in cancer cells and prostate tumors by

disrupting CHD1’s ubiquitination and degradation (25–27), as

described above. Functionally, we identified CHD1 as a synthetic

essential gene in cancers containing PTEN deficiency (25–27). CHD1

depletion significantly suppressed tumor growth in PTEN-deficient

xenograft models (25), consistent with earlier observations in LNCaP

xenograft tumors (20). However, CHD1 knockdown showed little

effect on benign prostatic hyperplasia cells or PTEN-intact tumors

(25, 26).

In GEM models, Pb-Cre-driven Pten loss (Pb-Cre; PtenL/L) in the

prostate triggers non-lethal invasive tumors after a long latency (111).

By crossing a Chd1 conditional knockout allele into this GEM model,

Augello et al. reported that CHD1 loss promotes prostate tumor

progression (23). The limitations of this study include the small

animal cohort (n = 5), low frequency of tumor progression (1 in 5

mice), and lack of survival data. In contrast, we established prostate-

specific Chd1 deletion in two well-established PTEN-deficient GEM

models, Pb-Cre; PtenL/L and Pb-Cre; PtenL/L; Smad4L/L (112), and

then determined the impact of Chd1 deletion with much larger

cohorts (n = 22 or 18) (27). In both models, we found that CHD1

depletion significantly delayed the development and progression of

PTEN-deficient prostate tumors and prolonged the survival of mice,

providing genetic evidence supporting the essential roles of CHD1 in

the context of PTEN defects (27). Given that CHD1-null prostates are

phenotypically normal (21, 23, 27), these studies revealed the

therapeutic potential of targeting CHD1 in PTEN-deficient tumors

with an acceptable therapeutic window. Despite these encouraging

factors, it is worth noting that tumor progression was rarely observed

in some Pten/Chd1 double-knockout mice. Although these cases

appear to result from clonal expansion of prostate cancer cells

undergoing incomplete Chd1 deletion, future study is needed to

identify potential second-site suppression events that may underlie

CHD1 bypass. It will also provide rational combinatorial strategies

targeting CHD1 in PTEN-deficient tumors.
Tumor microenvironment remodeling

Tumor development and progression are largely driven by

interactions between cancer cells, extracellular matrix, stromal cells,

and immune cells in the tumor microenvironment (TME) (78).

Prostate cancer has a TME characterized in part by a relative

paucity of infiltrating T cells and a high proportion of

immunosuppressive myeloid cells, including myeloid-derived

suppressor cells (MDSCs) and tumor-associated macrophages

(TAMs) (78, 113). MDSCs are a heterogeneous group of myeloid

cells that play immunosuppressive roles via interaction with T and

NK cells (114). Our prior studies using multiple GEM models

demonstrated that CHD1 is involved in the inflammatory response

and plays a crucial role in modulating the TME via promoting MDSC
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infiltration and suppressing tumor-infiltrating lymphocytes (TILs)

(27). In PTEN-deficient prostate tumors, CHD1 deletion caused

reduced MDSC infiltration and increased CD8+ T cells (27).

Transcriptional and epigenetic profiling analyses revealed that

CHD1 cooperates with NF-kB, the central player of inflammation,

to regulate the transcription of inflammatory genes (25, 27). Besides,

we identified IL-6 as a direct target of CHD1 and mediates the

recruitment and activation of MDSC, which contributes to T cell

suppression in the prostate tumors (27). In addition to NF-kB and IL-

6/Stat3 signaling, CHD1 modulates several other TME-related

pathways, such as inflammatory response, interferon alpha and

gamma pathways, and angiogenesis (23, 27).

A recent immunogenicity study in localized prostate cancer

provides additional evidence. Using multiplex immunofluorescence,

Calagua and colleagues identified the genomic alterations associated

with immunogenic (PD-L1 ≥5% and extensive TILs) and

nonimmunogenic (PD-L1 negative and no TILs) tumor foci (115).

They found that deep deletions of CHD1 are strongly associated with

dendritic cell signatures and immunogenic phenotype, characterized

by enriched T cell infiltration (115). The regulatory axis of CHD1/IL-

6/MDSC may serve as one mechanism by which CHD1 loss drives

immunogenicity. Besides, immunogenic localized prostate cancer

shows high rates of genomic instability and variable tumor

mutational burden (TMB) (115), suggesting chromatin instability

and DDR defects induced by CHD1 loss may also contribute to

immunogenic features.
Therapeutic strategies targeting
CHD1 dysregulation

In the past decade, we have gained a better understanding of

CHD1 biology and how its dysregulation impacts cancer development

and progression. This knowledge lays an important foundation for

developing effective therapeutics targeting the dysregulated CHD1 in

cancers and using CHD1 as a biomarker for predicting the response

to therapies. In this section, we highlight the response of CHD1-

deficient tumors to DNA-damaging and antiandrogen therapies.

Given that CHD1 is upregulated and plays an essential role in

PTEN-deficient cancers, we also discuss the therapeutic potential of

targeting CHD1 and its downstream effectors in tumors containing

PTEN deficiency.
DNA-damaging therapy

As noted above, CHD1 plays a key role in DNA damage response

and modulates the choice between HR and NHEJ DDR pathways.

Several preclinical studies using prostate cancer cell lines, PDX

models, and GEM models demonstrated that CHD1 loss leads to

hypersensitivity to ionizing radiation (IR), PARP inhibition, and

DNA-damaging agents, such as mitomycin C, carboplatin,

irinotecan, and camptothecin (21, 24, 88–90).

By comparing the response of wildtype and Chd1-null (Pb-Cre;

Chd1L/L) mice to a single dose of 10 Gy of IR, Shenoy and colleagues

found that Chd1 deleted prostate tissues and ESCs are more sensitive
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to IR, as evidenced by increased gH2AX and phosphorylation of H2A

and p53 (21). Similar phenotypes were also observed in CHD1-

depleted prostate cell lines (21, 24). PARP (Poly-ADP-ribose

polymerase) detects and initiates single-strand DNA breaks (SSB)

DNA damage repair. Prior studies uncovered that PARP inhibitors

have synthetic lethal effects in cells with HR defects, such as BRCA1

and BRCA2 loss (116). PARP inhibitors have been clinically tested in

CRPC, and genetic alterations in DDR pathways are associated with

better responses (117, 118). Preclinical studies showed that CHD1

loss-induced HR defects sensitize prostate tumors to PARP inhibitors,

Olaparib and Talazoparib, both in vitro and in vivo (21, 24, 59, 88),

suggesting CHD1 might be a predictive biomarker. The second-

generation platinum agent, carboplatin, also showed a good

response in a metastatic CRPC patient with homozygous CHD1

loss (21).

Notably, SPOP depletion also sensitizes cancer cells to IR and

PARP inhibitors (94, 104, 105). A recent study demonstrated that

SPOPmutations and CHD1 loss synergistically promote sensitivity to

camptothecin, an inducer of double-strand breaks (89). Given that co-

occurrence of SPOP mutations and CHD1 deletion define a distinct

molecular subtype of prostate cancer, further studies are needed to

assess if they have synergistic effects in response to DNA-damaging

therapies. Their potential as biomarkers for predicting the response to

radiotherapy, PARP inhibitors, and DNA-damaging agents in

advanced prostate cancers remains to be determined.
Antiandrogen therapy

In 1941, Huggins and Hodges reported that castration led to

tumor regression in prostate cancer patients, first recognizing

hormone responsiveness as a central feature of prostate cancer

(119). Androgen deprivation by castration or agents that block the

androgen pathway is the standard of care for prostate cancer.

Resistance to ADT facilitates the development of CRPC with high

rates of metastasis and mortality (120). Given the important role of

CHD1 in AR signaling, preclinical and clinical studies have been

conducted to determine the impact of CHD1 loss on response to

antiandrogen therapies using different model systems (14, 16, 22,

23, 61).

Using an androgen-driven regrowth model, Augello et al. showed

castrated Chd1-deficient mice (Pb-Cre; Chd1L/L) showed increased

proliferation in regenerated epithelium upon androgen re-

stimulation, suggesting Chd1 deletion may render the prostate

tissue more dependent to androgen (23). However, Zhang et al.

used AR-overexpressing LNCaP models and showed that CHD1

loss renders human prostate cancer cells more resistant to AR

inhibitors in vitro and in vivo in castrated mice (22). They also

found that low expression of CHD1 is associated with shorter clinical

response to next-generation antiandrogen therapies (enzalutamide or

abiraterone) in CRPC patients (22). Along the same line, Jillson and

colleagues showed that co-suppression of MAP3K7 and CHD1 causes

androgen-independent growth of prostate cancer cells and promotes

resistance to AR inhibitor enzalutamide (61).

In prostate cancer patients, CHD1 loss was associated with a

shorter time to PSA recurrence, suggesting its potential as a

prognostic biomarker (14, 59, 61, 121). However, recent clinical
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trials in men with metastatic prostate cancer found that SPOP

mutations are associated with improved survival outcomes after

ADT (93, 102, 103). When considered as an individual variable,

CHD1 loss is associated with a higher response rate to abiraterone

(OR, 7.30, P= 0.08) and a longer time on abiraterone (HR, 0.50, P =

0.06) in metastatic CRPC patients (93). Prospective clinical trials are

needed to validate the impact of CHD1 deletion on response to

castration, abiraterone, enzalutamide, and other antiandrogen drugs

in both hormone-sensitive and -resistant prostate cancers. Given the

context-dependent role of CHD1 in prostate tumors, genes showing

co-occurrence (SPOP or MAP3K7) or mutual exclusivity (ERG and

PTEN) should also be considered as influence factors in these

clinical studies.

Notably, the upregulation of transcription factors of GR, BRN2,

TBX2, and NR2F1 was found to mediate the resistance to

enzalutamide in CHD1-deficient prostate cancer, since inhibition of

each factor re-sensitizes CHD1 loss prostate tumors to AR inhibitor

(22). This offers new insights into synthetic lethal interactions with

CHD1 and potential therapeutic vulnerabilities in prostate cancers

containing CHD1 deficiency. Given that GR (Glucocorticoid

Receptor) inhibition has been tested in clinical studies of CRPC

(NCT02012296), future biomarker studies are needed to assess if

GR inhibition is more effective in CRPC patients harboring

CHD1 loss.
Targeting CHD1 in PTEN-deficient cancers

Our prior studies in xenograft and GEMM models established

CHD1 as a synthetic essential gene and potential therapeutic target in

prostate cancers containing PTEN defects (25–27). Several

independent groups are dedicated to developing small-molecule

inhibitors targeting CHD1, and the efficacies of top hits will be

tested in cancer cell lines and diverse preclinical models. We expect

that these drugs have better therapeutic effects on PTEN-deficient

tumors but may have modest effects on PTEN-intact tumors. When

some of them enter the early clinical phase, it is important to use

PTEN as a biomarker for patient selection. Given that CHD1

inhibition sensitizes tumor cells to DNA-damaging agents, the

combination of CHD1 inhibitors and DNA-damaging therapies

should be tested in preclinical and clinical studies as well. It is also

worth determining if CHD1 inhibitors synergize with AR or GR

inhibitors in suppressing CRPC tumor growth and progression.

However, caution should be taken when pharmacologically

inhibiting CHD1 in prostate cancer with SPOP or MAP3K7

deletions, reasoning that CHD1 inhibition may play tumor-

promoting roles in these contexts.
Aurora kinase inhibitors

Combining high-throughput epigenetic screening and pan-cancer

drug sensitivity analyses, we reported that CHD1 promotes the

susceptibility of cancer cells to inhibitors targeting Aurora kinases

(26). Aurora kinases are key players in mitotic control. Among three

mammalian paralogues, Aurora A is required for centrosome

maturation and mitotic spindle assembly (122–124). Several small-
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molecule inhibitors targeting Aurora kinases have been tested in

clinical trials, and subsets of patients showed significant clinical

benefits from the single agent or in combination with other agents

(125–131).

In our recent study, we uncovered that CHD1 loss impaired the in

vitro and in vivo efficacy of Aurora kinase inhibitors, while high

expression of CHD1 is associated with increased sensitivity in a pan-

cancer manner (26). Prior studies demonstrated that the activity of

Aurora A is largely modulated by the autophosphorylation and

interaction with the co-activator TPX2 (132–135). Mechanistic

studies revealed that the regulatory axis of CHD1-KPNA2

suppressed the interaction between Aurora A and TPX2, thereby

rendering cancer cells more vulnerable to Aurora A inhibition (26).

Furthermore, our studies in GEM models, patient-derived organoids,

and patient samples showed that PTEN defects are associated with a

better response to Aurora A inhibition in advanced prostate cancer by

inducing CHD1 protein stabilization (26). This study establishes the

important role of CHD1 in modulating Aurora kinases and provides

insights for using PTEN and CHD1 as predictive biomarkers to

improve patient selections in clinical trials of Aurora A inhibitors.
Checkpoint immunotherapy

Immunotherapy has shown only modest activity in advanced

prostate cancer, partially due to low tumor mutation burden (TMB),

lack of infiltrating T cells, and immunosuppressive TME (78, 113).

Immune checkpoint inhibitors that target cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4), programmed death 1 (PD-1), and its

ligand (PD-L1) display minimal or no activity as single agents or in

combination with AR inhibitors in advanced prostate cancers (136–

141). As noted above, CHD1 contributes to immunosuppressive TME

by promoting MDSCs and suppressing tumor-killing T cells (27). Our

recent studies in GEM and syngeneic models revealed that depletion

of CHD1 reverses the immunosuppressive TME and sensitizes

prostate tumors to the checkpoint immunotherapy (27). As a direct

target gene of CHD1, IL-6 mediates the recruitment and activation of

MDSCs in prostate tumors. Phenocopying CHD1 depletion,

pharmacological inhibition of IL-6 and dual blockade of PD-1/

CTLA-4 showed synergistic effects in preclinical models of PTEN-

deficient prostate cancer (27). Notably, IL-6 inhibition was found to

reduce immune-related adverse events in patients by de-coupling

autoimmunity from antitumor immunity induced by immune

checkpoint blockade (142). Further clinical studies are needed to

test the above combinations in CRPC patients, particularly in PTEN-

loss/CHD1-high tumors.
Conclusion and perspective

CHD1 was discovered over two decades ago, and significant

progress has been made in understanding CHD1 biology. However,

many questions remain to be answered, regarding CHD1’s context-

dependent roles and the molecular basis in human diseases, as well as

the modeling systems for studying CHD1 biology and

therapeutics development.
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It remains a debate on whether CHD1 is a tumor suppressor or an

oncogene during tumorigenesis and cancer progression. Prior studies

in cell lines and GEM models showed that CHD1 deletion alone is

insufficient to drive prostate tumorigenesis (21, 23, 27). Functionally,

CHD1 is required for conventional AR signaling and transcriptome

(14, 16, 22, 23), which plays a key role in prostate cancer development

and progression. However, CHD1 loss causes chromatin instability

and lineage plasticity, resulting in the androgen-independent growth

of prostate tumors and less sensitivity to antiandrogen therapy (14,

16, 22, 23, 61). As discussed above, the impact of CHD1 loss may vary

when combined with different genetic alterations in prostate cancer.

In the context of PTEN deficiency, CHD1 is essential for tumor

growth and the immunosuppressive TME (25, 27); in contrast, CHD1

deletion augments the tumor-promoting role of MAP3K7 loss (20,

61). Hence, through interacting with different genetic events and

altering the transcription of distinct pathways, CHD1 possesses the

capability to exert both oncogenic and tumor-suppressive functions

in context-dependent manners.

Most CHD family members are components of large multi-

subuni t complexes , however , CHD1 remode ler ex i s t s

predominantly as a monomer or dimer (9, 143). The epigenetic

machinery and interactome of CHD1 have been reported in

different species. The yeast Chd1 was identified as a component of

SAGA (Spt-Ada-Gcn5 acetyltransferase) and SLIK (SAGA-like)

complexes, two highly homologous and conserved histone

acetyltransferase complexes (144). Besides, yeast Chd1 forms

complexes with RNA polymerase II and elongation factors Spt5 and

Pob3 for the gene transcription (49, 145). Drosophila Chd1 was found

to interact with SSRP1, a nuclear protein involved in the transcription

regulation (36). Despite no direct binding to AR, mouse and human

CHD1 proteins form complexes with AR cofactors, such as NCoR

(146), HOXB13, ETV1, and FOXA1 (23), which mediate AR

transcriptome changes upon CHD1 loss. In addition, both mouse

and human CHD1 proteins interact with NF-kB, resulting in the

activation of inflammatory pathways (25, 27). Given the context-

dependent role of CHD1, it is crucial to identify the interactome of

CHD1 in different genetic and molecular subsets of prostate cancer.

Combined with high-throughput transcriptome and epigenetic

profiling, these studies will uncover the molecular basis of CHD1

during cancer development, progression, and response to therapies.

Last but not least, better cancer model systems are needed for

studying CHD1’s biology and its impact on drug responsiveness.

Unlike other common cancer types, only a small number of human

prostate cancer cell lines are available for preclinical studies. They are

insufficient to recapitulate the diversity of molecular subtypes and

genetic features in human disease. Although CHD1 loss are frequently

found in primary or castration-resistant prostate tumors, none of

those prostate cancer cell lines contains homogeneous deletions of

CHD1. In the past decade, hundreds of patient-derived organoids and

xenograft (PDX) models have been generated by multiple institutes

and widely used in the prostate cancer research (147, 148). With high

fidelity of histopathologic, genomic, and molecular characteristics,

they capture the diverse molecular landscape of naïve prostate cancer

or CRPC and enable the development and evaluation of biomarker-

driven therapy. However, CHD1 loss or SPOP mutations rarely exist

in prostate cancer PDX models. De Sarkar et al. recently identified

two PDX models, LuCaP78 and LuCaP78CR, lack transcript and
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protein of CHD1 (90). Both lines, originating from the same patient,

contain a combination of monoallelic genomic loss and epigenetic

silencing of the remaining allele, show homology-directed DNA

repair deficiency features, and are sensitive to IR and carboplatin

treatment (90). It remains unclear why prostate tumors with CHD1

loss and/or SPOP mutation have a lower engraftment rate when

generating PDX lines, but it is important to establish additional PDX

models to mimic this distinct molecular subtype for biology studies

and the development of effective therapeutics.

Several GEMmodels containing prostate-specific Chd1 deletion have

been generated, and provide important tools for investigating CHD1

biology. However, none of them fully recapitulate the genetic and

molecular features of prostate cancers with CHD1 deletion.

Conditional knockout of Pten is the most used allele when generating

GEM models of prostate cancer, and that’s why most CHD1 loss GEM

models contain PTEN co-deletion (23, 27). These models provide good

tools to study the roles of CHD1 in PTEN-deficient tumors, but they

showed benign or less aggressive phenotypes due to CHD1’s essentiality

in this context. Given the mutual exclusivity between CHD1 deletion and

PTEN loss in prostate cancer patients, the co-deletion GEM models

couldn’t represent genetic features in human diseases. Efforts have been

made to generate GEMmodels to mimic the molecular subtype of CHD1

deletion and SPOPmutations, but the Chd1/Spop double-knockout mice

displayed prostatic intraepithelial neoplasia at 12 months of age and

failed to generate prostate adenocarcinoma (89). Using mouse prostate

epithelial progenitor/stem cells (PrP/SC) graft model, Cramer’s group

showed that co-suppression of CHD1 and MAP3K7 led to high-grade

PIN and invasive carcinoma phenotypes (20). It is worth testing whether

this combination drives tumorigenesis and progression in Pb-Cre-driven

GEM models. Nevertheless, combining the next-generation CHD1

deletion GEM models with cutting-edge single-cell transcriptome

profiling will help us fully understand the impact of CHD1 on disease

progression, lineage plasticity, response to therapy, and the crosstalk

between cancer cells and diverse immune components in the TME.

Importantly, the knowledge obtained in prostate cancer will also inform

the studies of CHD1 and other CHD remodelers in other cancer types.
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