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Metastasis is considered as the major cause of cancer death. Cancer cells can be

released from primary tumors into the circulation and then colonize in distant

organs. How cancer cells acquire the ability to colonize in distant organs has

always been the focus of tumor biology. To enable survival and growth in the

new environment, metastases commonly reprogram their metabolic states and

therefore display different metabolic properties and preferences compared with

the primary lesions. For different microenvironments in various colonization

sites, cancer cells must transfer to specific metabolic states to colonize in

different distant organs, which provides the possibility of evaluating metastasis

tendency by tumor metabolic states. Amino acids provide crucial precursors for

many biosynthesis and play an essential role in cancer metastasis. Evidence has

proved the hyperactivation of several amino acid biosynthetic pathways in

metastatic cancer cells, including glutamine, serine, glycine, branched chain

amino acids (BCAAs), proline, and asparagine metabolism. The reprogramming

of amino acid metabolism can orchestrate energy supply, redox homeostasis,

and other metabolism-associated pathways during cancer metastasis. Here, we

review the role and function of amino acid metabolic reprogramming in cancer

cells colonizing in common metastatic organs, including lung, liver, brain,

peritoneum, and bone. In addition, we summarize the current biomarker

identification and drug development of cancer metastasis under the amino

acid metabolism reprogramming, and discuss the possibility and prospect of

targeting organ-specific metastasis for cancer treatment.

KEYWORDS

amino acid metabolism, metabolic reprogramming, cancer metastasis, distant organ
colonization, metabolic targeting
1 Introduction

Metastasis is the main cause of cancer mortality, leading to more than 90% of cancer

deaths (1). The occurrence of metastasis depends not only on the invasiveness of cancer

cells, but also on the cells overcoming the obstacles caused by metabolic stress in the

microenvironment of distant organs. Only a few cancer cells can overcome hypoxia, avoid
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apoptosis, escape from immune clearance, and finally adapt to the

new microenvironment (2, 3). Therefore, metastasis is regarded as a

rare event, only very few cancer cells with appropriate evolution of

adaptability can successfully colonize at distant organs. Whether

cancer cells with acquired metastatic characteristics are selected

during invasion and colonization, or metastatic tendency has been

marked in most cancer cells, metastatic cancer cells appear specific

growth advantages of remote planting (4–6). The genetic factors

and microenvironment causing selective pressures seem to confer

these growth advantages. For example, several studies have shown

that cancer cells elevated their antioxidant capacity to avoid being

eliminated by the oxidative environment in the process of

metastasis (7–10).

However, the metabolic reprogramming patterns of different

metastatic cancers are not the same, indicating the metabolic

heterogeneity of tumor metastasis. The complexity of

microenvironment caused by different organ functions and needs

of metastatic organs also determines the occurrence of tumor

metastasis to some extent. Recently, growing evidence supports

that under different selective stresses, tumor cells with specific

metabolic advantages can selectively survive, even homologous

primary tumor cells also show evolution of different metabolic

phenotypes and vulnerabilities in various metastatic organs (11–

15). These findings support the tendency of metastasis, that is,

cancer will not metastasize randomly, but will spread to specific

organs depending on tumor types. The intrinsic features of tumor

and its interaction with host organ-specific microenvironment

together determine the organ-specific metastatic behaviors of

tumor cells (16). And this discrepancy of behaviors has been

proved to stem from a complex set of metabolic reprogramming

mediated by organ-specific gene expression (17–19). In addition to

energy production and biosynthesis (20, 21), metabolic

reprogramming also plays a central role in cell signal

transduction (22, 23), epigenetic regulation (24, 25) and

microenvironment adaptation (26–30).
Abbreviations: EAAs, essential amino acids; NEAAs, nonessential amino acids;

CRC, colorectal cancer; BCAAs, branched chain amino acids; GLS, glutaminase;

a-KG, a-ketoglutarate; GDH, glutamate dehydrogenase; OAA, oxaloacetate;

GOT, glutamic-oxaloacetic transaminase; GSH, glutathione; ROS, reactive

oxygen species; PC, pyruvate carboxylase; CRC, colorectal cancer; CAF, cancer-

activated fibroblasts; LLC, Lewis lung cancer; OvCa, ovarian cancer; GGC, Gln/

Glu cycle; SSP, serine synthesis pathway; 3-PG, 3-phosphoglycerate; PHGDH,

phosphoglycerate dehydrogenase; PSAT1, phosphoserine aminotransferase 1;

PSPH, phosphoserine phosphatase; 3-PHP, 3-phosphate hydroxypyruvate; 3-

PS, 3-phosphoserine; SHMT, serine-hydroxymethyltransferase; THF,

tetrahydrofolate; 5,10-meTHF, 5,10 methylene tetrahydrofolate; 1C, one

carbon; NSCLC, non-small cell lung cancer; PFK, phosphofructokinase; PKC-z,

kinase C zeta; BCKA, branched chain ketoacid; BCAT, BCAA transaminases;

PDAC, pancreatic ductal adenocarcinoma; GSAL, glutamate-g-semialdehyde;

P5CS, delta-1-pyrrol ine-5-carboxylate synthase ; OAT, ornithine

aminotransferase; P5C, delta-1-pyrroline-5-carboxylic acid; PYCR, pyrroline-5-

carboxylic acid reductase; PRODH/POX, proline dehydrogenase/oxidase;

P5CDH, pyrrolidine-5-carboxylate dehydrogenase; P4HA, prolyl-4-

hydroxylases; ECM, extracellular matrix; ASNS, asparagine synthetase; ALL,

acute lymphoblastic leukemia.
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As the building blocks of many biosynthesis, amino acids are

involved in regulating many cellular processes such as biosynthesis

of metabolic intermediating (31), energy production (32),

epigenetic regulation (33) and cell signaling (34). There are nine

out of twenty amino acids that cannot be synthesized, or the

synthesis speed is far from meeting the needs in human beings

and consequently must be supplied from food protein, called

essential amino acids (EAAs, including lysine, tryptophan,

phenylalanine, methionine, threonine, isoleucine, leucine, valine,

and histidine). By contrast, the amino acids that can be synthesized

de novo are called nonessential amino acids (NEAAs, including

glycine, alanine, proline, tyrosine, serine, cysteine, asparagine,

glutamine, aspartate, and glutamate). During cancer metastasis,

amino acid metabolic reprogramming is commonly characterized

as increased uptake of amino acids and augmented de novo

synthesis of NEAAs. For example, cystine antiporter xCT (also

known as SLC7A11) can potentiate secretion of glutamate to

promote the invasive behavior of colorectal cancer (CRC) and

breast cancer (35, 36). Although all amino acids are likely to

contribute to the formation of metastasis, there are several amino

acids emerged as main contributors and studied most, including

glutamine, serine, glycine, branched chain amino acids (BCAAs),

proline and asparagine. The metabolic reprogramming of these

amino acids supports the metabolic dependence and vulnerability

of cancer cells to adapt to the microenvironment of metastases.
2 Glutamine metabolism in tumor
metastatic colonization

Glutamine is the most depleted amino acid in tumor cells (37).

As an important metabolic fuel, glutamine meets the heavy demand

of metastatic cells for ATP (38), biosynthetic precursors (39) and

reductant (40). Therefore, the increased accessibility of glutamine

strengthens the invasiveness of cancer cells and leads to distant

metastasis. In addition, glutamine is the main source of carbon and

nitrogen in cells. Catalyzed by a series of transaminases, glutamine

is transformed to glutamate and provides amidogen for the

synthesis of other nonessential amino acids. Therefore, as an

important link in amino acid metabolism, glutamine metabolism

can influence the synthesis of other amino acids. The first step of

glutamine metabolism is the conversion of glutamine to glutamate.

This deamination process is catalyzed by glutaminase (GLS1/2) in

mitochondria. After that, glutamate is further catalyzed to a-
ketoglutarate (a-KG) by glutamate dehydrogenase (GDH) with

GDH1-catalyzed production of NADH and GDH2-catalyzed

production of NADPH, concurrently. In glutamine-consuming

cells, glutamate is the major source of a-KG. a-KG can feed the

oxidative TCA cycle (41), and enable a-KG-dependent reactions as
a co-factor (42). GDH1 can control the levels of a-KG to maintain

the redox homeostasis of cancer cells (43). In addition, glutamate

and oxaloacetate (OAA) can also be converted to aspartate and a-
KG through the transamination of glutamic-oxaloacetic

transaminase 2 (GOT2) in mitochondria. Whereas aspartate and

a-KG can be converted back to glutamate and OAA by GOT1 in

cytoplasm. Furthermore, glutamate can be secreted by cystine
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antiporter xCT to take in cystine. Glutamate and cystine can

generate to glutathione (GSH) (Figure 1), an important

antioxidant which protects cancer cells from the accumulation of

reactive oxygen species (ROS) (44). Moderate ROS level can

support tumor survival and proliferation in stressful

microenvironment by activating related signal pathways. ROS

accumulation will lead to serious damage to biomolecules,

triggering cell death (45). Because of the dual roles of ROS in

cancer progression, the effect of GSH in metastases is also

complicated (45).

Because of the large demand for energy in metastatic cells and

the insufficient efficiency of energy production in aerobic glycolysis,

metastatic cells need energy supplement through other ways,

especially the TCA cycle. As glutamate is the major source of a-
KG, cancer cells rely on glutamine metabolism to produce a-KG to
Frontiers in Oncology 03
replenish TCA cycle (46). This process is called glutamine

anaplerosis. Another TCA supplement way is that pyruvate,

produced by aerobic glycolysis, generates OAA under the catalysis

of pyruvate carboxylase (PC). Some studies have shown that, the

differences in glutamine availability in the organ-specific

microenvironment determine whether cancer cells prefer to PC-

dependent anaplerosis or glutamine anaplerosis (28, 47). It has also

been reported that breast cancer tends to rely on glutamine

anaplerosis (48, 49), whereas lung cancer is more likely to show

PC-dependent anaplerosis (47, 50, 51). Furthermore, this metabolic

plasticity dominated by the availability of glutamine in organ-

specific microenvironment has also been observed between

metastatic and primary tissue samples in mouse models (52),

supporting the function of glutamine metabolism reprogramming

in metastasis.
FIGURE 1

Overview of amino acid metabolic pathways. Cells absorb glutamine through the glutamine transporter ASCT, then glutamine is converted into
glutamate through deamination catalyzed by glutaminase (GLS1/2) in mitochondria. Glutamate is further converted into a-ketoglutarate (a-KG) by
glutamate dehydrogenase (GDH) in mitochondria. a-KG can promote oxidative TCA cycle and participate a-KG dependent reactions as cofactor.
Another TCA supplement way is that pyruvate carboxylase (PC) catalyzes pyruvate into oxaloacetate (OAA). In addition, glutamate and OAA can be
reversibly converted into asparagine and a-KG by glutamic-oxaloacetic transaminase (GOT1/2). Furthermore, glutamate can be secreted by cystine
antiporter xCT to transport cystine into cells. Glutamate and cystine can produce glutathione (GSH) to rescue cancer cells from oxidative stress.
Glutamine is also involved in serine metabolism. 3-phosphoglycerate (3-PG) is oxidized to 3-phosphate hydroxypyruvate (3-PHP) under the catalysis
of phosphoglycerate dehydrogenase (PHGDH), and 3-PHP is catalyzed to 3-phosphoserine (3-PS) by phosphoserine aminotransferase 1(PSAT1),
accompanied by the conversion of glutamate to a-KG. 3-PS is then dephosphorylated to serine by phosphoserine phosphatase (PSPH). Serine is
reversibly catalyzed by serine-hydroxymethyltransferase 1 (SHMT1) to glycine in cytoplasm, or by SHMT2 in mitochondria. This reaction
simultaneously converts tetrahydrofolate (THF) into 5,10-methylenetetrahydrofolate (5,10 methylene tetrahydrofolate), which is an important source
of one carbon (1C) unit. Glutamine is involved in branched chain amino acids (BCAAs) metabolism as well. BCAAs can be catalyzed by BCAA
transaminases (BCAT) to reversibly transfer nitrogen to a-KG to generate glutamate and branched chain ketoacid (BCKAs). Glutamine is also involved
in proline synthesis. glutamate-g-Semialdehyde (GSAL) can be synthesized from glutamate by Delta-1-pyrroline-5-carboxylate synthase (P5CS) or
ornithine by ornithine aminotransferase (OAT), and then generates proline by pyrroline-5-carboxylic acid reductase (PYCR). PYCR can be converted
back to Delta-1-pyrroline-5-carboxylic acid (P5C) by proline dehydrogenase/oxidase (PRODH/POX) in mitochondria. P5C can be metabolized to
glutamic acid by pyrrolidine-5-carboxylate dehydrogenase (P5CDH) or ornithine by OAT. Glutamine can also be used as a nitrogen donor to
participate in the reaction of aspartate to produce endogenous asparagine under the catalysis of asparagine synthetase (ASNS).
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2.1 Targeting glutamine metabolism
in tumors

In view of the dependence and vulnerability of tumor cells on

glutamine metabolism, several drugs have been developed to

interfere with intracellular glutamine catabolism. For example. the

GLS1 inhibitor BPTES, could decreased the proliferation and

migration of colorectal cancer (CRC) cells (53). And the

glutaminase inhibitor CB839 could inhibit the proliferation of

triple negative breast cancer cells, which is related to the

significant reduction of glutamine consumption, glutamate

production, and GSH levels (54). In addition, some studies have

found that tumor cells could promote the glutamine synthesis and

metabolism in cancer-related fibroblasts (CAFs), while CAF-

generated glutamine could support the metabolism and invasion

of cancer cells in a symbiotic manner (55). Furthermore,

simultaneous targeting of glutamine anabolism in CAFs and

glutamine catabolism in cancer cells could inhibit the growth and

metastasis of ovarian tumors in an orthotopic intra-ovarian mouse

model (56). Additionally, targeting glutamine metabolism could

inhibit the generation and recruitment of myeloid-derived

suppressor cells, leading to an increase of tumor-associated

macrophages, thereby inhibiting the occurrence and development

of tumors. This study suggests that targeting glutamine metabolism

makes tumors susceptible to immunotherapy (57).
2.2 Lung metastasis

Lung is a common site for metastases formation of various

malignant tumors. Because glutamine is largely depleted for energy

supply and biosynthesis in metastatic cancer cells, the glutamine

level is generally low in the microenvironment of metastases, with

no exception in lung metastases. For example, in a mouse model of

spontaneous metastasis of Lewis lung cancer (LLC), the content of

glutamine in lung metastases was reduced by ~ 60% compared with

the primary tumor (58). It was also reported that the suppression of

glutamine transporter ASCT2 (also known as SLC1A5) decreased

glutamine uptake in vitro and significantly inhibited tumor growth

and metastasis in vivo (59). Moreover, when cultured in low

glutamine conditions, CAFs migrated towards glutamine driven

by glutamine dependence, and in turn facilitated the migration of

tumor epithelial cells (55). These findings point the rapidly

depletion and heavily dependence on glutamine of metastatic

cancer cells.

In addition to glutamine itself, glutamine metabolic pathway

can also regulate multiple cellular signals to promote the formation

of lung metastases. GLS1 is the key enzyme hydrolyzing glutamine

into glutamate. The upregulated level of GLS1 in CRC cells could

promote hypoxia-induced migration and invasion, leading to

metastatic colonization in lung (60). Another key enzyme is

GDH1, which converts the glutamate to a-KG. It was found that

the a-KG produced by GDH1 could bind to CamKK2 and activate

AMPK, which contributes to anoikis resistance and pro-metastatic

signals in LKB1-deficient lung metastasis (61).
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As the main organ of human respiration, lung is not only exposed

to high levels of oxygen, but also filter the toxic waste in the systemic

circulation. High levels of oxygen and toxic compounds lead to

increased oxidative stress, which is a unique microenvironment for

the colonization of lungmetastatic cells. Lungmetastatic cells must find

ways to resist oxidative damage. Therefore, metastatic cancer cells

require the enhanced uptake of cystine and glutamate to generate to

GSH as a reductant to control ROS levels. Evidence indicates that

cystine antiporter xCT could enhance the invasiveness of breast cancer

cells by promoting cystine uptake (Figure 2). Immunotargeting xCT

delayed established subcutaneous tumor growth of breast cancer in

mice, and anti-xCT antibody severely impaired the formation of lung

metastases (36).
2.3 Liver metastasis

Interestingly, although glutamine metabolism supports the

occurrence of liver metastases, it was reported that knockdown of

GOT2 promoted migration and invasion of HCC cells, as well as

hematogenous and intrahepatic metastasis in HCC mouse models.

Mechanistically, loss of GOT2 expression could reprogram glutamine

metabolism to enhance glutamine decomposition, nucleotide synthesis,

and glutathione synthesis (62). Oxidative stress is also considered to be

a possible cause of chronic liver injury and cancer development (63).

Therefore, in liver metastases, oxidative stress is ubiquitous and affect

the invasiveness of cancer cells. It was reported that in melanoma cells,

GSH content and metastatic activity showed a significantly positive

correlation (64). However, targeting GLS1 significantly attenuated the

stemness properties in HCC by promoting ROS accumulation and

inhibiting Wnt/b-catenin pathway (65) (Figure 2). Indeed, the effect of

GSH on liver metastases depends on whether the generation of GSH

causes ROS accumulation. For example, the increased GSH level could

promote metastasis of MHCC-97H cells (TP53, R249S), but inhibit

metastasis of SMMC-7721 cells (TP53 wildtype) (66).
2.4 Peritoneum metastasis

Peritoneal metastasis is usually from intraperitoneal organs.

The metastases are always accompanied by nutritional deficit,

characterized by increased resting energy expenditure, muscle

mass loss and protein catabolism (67). After cancer cells falling

into the peritoneal cavity, reprogramming of glutamine metabolism

is required to compensate ineffective oxidative phosphorylation in

mitochondria to resist anoikis (67). Upregulated GLS1 expression

was observed in high-invasive ovarian cancer (OvCa) cells, which

are more dependent on glutamine than the low-invasive cells. In

addition, glutamine deprivation suppressed the invasiveness of

OvCa cells through activating STAT3, which could be restored by

a-KG supplementation (68). Moreover, OvCa could evade immune

control by perturbing T cell glutamine metabolism and effector

function (Figure 2). It has been reported that malignant ascites fluid

obtained from OvCa patients could regulate the abundance of

glutamine carriers to limit the glutamine influx, resulting in

reduced mitochondrial activity in XBP1-deficient T cells (69).
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2.5 Bone metastasis

Bone metastasis can come from a variety of malignant tumors

originating outside bone tissues, among which breast cancer is the most

likely cancer type to have bone metastasis. Bone metastasis also showed

different metabolic characteristics from the primary sites. A previous

study demonstrates that bone metastatic breast cancer cells were more

dependent on glutamine than parental cells. Interestingly, even in the

environment of high glucose level, breast cancer cells still showed

dependence on glutamine to enable their survival (70). This study

supports a unique glutamine metabolic pattern of bone metastases in

breast cancer compared with primary sites.
2.6 Brain metastasis

As the organ with the highest energy demand, the brain

consumes one fifth of the energy produced by glucose (71). At

the same time, in order to avoid energy deficiency, the brain has

metabolic plasticity and can use other nutrients as energy sources.

For example, the brain can use acetate, ketone bodies or short and
Frontiers in Oncology 05
medium chain fatty acids to supplement energy supply when

glucose becomes limiting, such as low blood glucose (72). Brain

metastatic tumor cells have also shown the ability to obtain energy

from non-glucose sources. Some studies have observed that brain

metastases exhibit metabolic plasticity and flexibility by using

glutamine and branched chain amino acids as alternative fuels

(73, 74).

Besides, glutamate also acts as a synaptic excitatory

neurotransmitter in the brain. Glutamate is released into the

synaptic space through exocytosis, and is absorbed into astrocytes

by g lu tamate t r anspor te r s a f t e r the comple t ion o f

neurotransmission. Glutamate is metabolized by glutamine

synthetase (a glia-specific enzyme) to synthesize glutamine (75,

76). Then glutamine is converted back to glutamate by the neuron-

specific glutaminase in neurons, and continues to circulate in

synaptic transmission, called Gln/Glu cycle (GGC) (77–79).

Anyhow, brain metastases demonstrate significant dependence

on glutamine metabolism. Actually, brain cancer cells always show

stronger competitiveness for glutamate than normal cells by

upregulating the expression of glutamate importers. There are

studies showing that the expression of ASCT2 was upregulated in
FIGURE 2

Glutamine metabolism in tumor metastases. (A) In lung, the expression of ASCT2 can maintain the intracellular glutamine level by seizing in the
microenvironment. Upregulation of GLS1 in CRC cells can enhance glutamine metabolism to promote the formation of lung metastases. The
expression of GDH1 contributes to anoikis resistance and pro-metastatic signals in LKB1-deficient lung metastasis. xCT can promote cystine uptake
to increase the generation of GSH to constrain ROS levels, and enhance the invasiveness of breast cancer cells. (B) In liver, the expression of GLS1
can generate GSH to attenuate ROS accumulation. However, knockdown of GOT2 can promote hematogenous and intrahepatic metastasis of HCC
cells. (C) In peritoneum, upregulated GLS1 expression is closely related to high invasiveness of OvCa cells. Moreover, glutamine metabolism can
perturb T cell mitochondrial respiration to induce immune evasion of OvCa cells. (D) In brain, glutamine can be used as an alternative fuel to avoid
energy deficiency in metastatic cells. In addition, the expression of ASCT2 is upregulated in human glioma cells, and overexpression of xCT can
resist oxidative stress to promote metabolic adaptation of brain metastasis in breast cancer cells.
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human glioma cells (80, 81). In addition, the overexpression of xCT

could promote the formation of brain metastases through

promoting cystine uptake and glutamine oxidation (Figure 2),

indicating that glutamine metabolism contributes to the metabolic

adaptation of brain metastasis regulating redox homeostasis (52).
3 Serine and glycine metabolism

Serine and glycine are another two amino acids required in large

quantities during metastasis to feed up biosynthesis such as

glycolysis, glutathione and nucleotide production (82). In

addition to exogenous uptake of serine and glycine, the serine

synthesis pathway (SSP) is commonly hyperactivated in metastatic

cancer cells (83–85). The SSP includes two processes: the de novo

synthesis of serine from the glycolysis branch, and the conversion of

glycine to serine. Serine is converted from 3-phosphoglycerate (3-

PG, an intermediate product of glycolysis) continuously catalyzed

by phosphoglycerate dehydrogenase (PHGDH), phosphoserine

aminotransferase 1 (PSAT1), and phosphoserine phosphatase

(PSPH) . F i r s t l y , 3-PG is conver ted to 3-phospha te

hydroxypyruvate (3-PHP) by the catalysis of PHGDH. Secondly,

3-PHP is catalyzed to 3-phosphoserine (3-PS) by PSAT1,

accompanied by the conversion of glutamate to a-KG. Thereafter,
3-PS is dephosphorylated by PSPH to produce serine. After

exogenous uptake or de novo serine synthesis, serine is facilitated

into glycine by serine-hydroxymethyltransferase (SHMT1/2), with

SHMT1 reversibly catalyzing the reaction in the cytoplasm or

SHMT2 in the mitochondria (86). This reaction converts

tetrahydrofolate (THF) to 5,10 methylene tetrahydrofolate (5,10-

meTHF) at the same time, providing a carbon unit for the

nucleotide synthesis (Figure 1). The flow direction of the

reversible reaction depends on the supply and demand of one

carbon (1C) units in each compartment. In massively and rapidly

synthesized metastatic cancer cells, 1C units are mainly derived

from mitochondria. Therefore, SHMT2 was associated with tumor

invasiveness in multiple cancer types and could predict the

prognosis of patients with lung metastases from breast cancer

(87–92). However, the specific role of SHMT1 in metastasis

seems to depend on the type of cancer (93, 94).
3.1 Targeting serine and glycine
metabolism in tumors

In view of the importance of serine and glycine metabolism for

the occurrence and development of tumors, key enzymes in the

serine and glycine metabolism may become powerful clinical

markers and therapeutic targets for cancer. It has been reported

that serine and glycine metabolism can regulate metabolic flux to

influence tumor heterogeneity and drug resistance (95).

Furthermore, intervention in the metabolism of serine and

glycine was found to be an effective and less toxic method to

improve the prognosis of patients with MYCN-amplified

neuroblastoma (96, 97). A recent clinical trial demonstrated that

high CDK12 status could indicate a significant reduction in the
Frontiers in Oncology 06
distant metastasis rate of chemotherapy group and non-

chemotherapy group, and integrative transcriptomic and

metabolomic analysis revealed that the hyperactivation of serine-

glycine-carbon network is an inherent metabolic feature of CDK12-

induced tumors (98). Targeting the key enzymes in serine and

glycine metabolism may be an effective treatment strategy. It was

reported that PHGDH inhibitors could reduce brain metastasis

(99). In addition, treatment of triple-negative breast cancer with

adriamycinin could activate SSP, resulting in an increased

production of antioxidant GSH, and then resist adriamycinin-

induced ROS. However, the PHGDH specific inhibitor NCT-503

significantly debilitated the adriamycinin resistance of triple-

negative breast cancer, suggesting that the synergistic treatment

on inhibition of key enzymes in serine and glycine metabolism

could be a more effective treatment strategy for drug

resistance (100).
3.2 Lung metastasis

It has been widely studied that exogenous serine uptake and

endogenous serine synthesis both functionally support the

progression of various cancers (90, 99, 101). In lung metastases,

the specific oxidative pressure in the microenvironment and the

demand for synthetic materials result in the dependence on SSP (31,

102). Increasing evidence shows that the expression of enzymes

involved in SSP is related to lung metastasis in various cancers. For

example, the overexpression of PSAT1 promoted the invasion of

lung cancer cells in vitro and the metastatic lung colonization

capacity in vivo (103). Recent work shows that in lung

adenocarcinoma, PSAT1 overexpression could contribute to

erlotinib resistance and tumor metastasis. Mechanistically, the

activation of metabolic activity of PSAT1 could inhibit ROS-

dependent JNK/c-Jun pathway to inhibit apoptosis. PSAT1 could

also interact with IQGAP1 and then activate STAT3 to promote

migration independent of its metabolic activity (104). Another

essential enzyme is PSPH, which was also observed to be

upregulated in lung metastases. It was reported that increased

expression of PSPH promoted the invasiveness and metastatic

potential of non-small cell lung cancer (NSCLC) cells by

activating MAPK signaling pathways (105). Moreover, PSPH

could induce a decrease of 2-hydroxyglutarate level and then

enhance histone methylation modification to promote tumor

growth and lung metastasis of melanoma cells (106). An

interesting point is the heterogeneity of PHGDH in primary and

metastatic tumors in breast cancer. Although the high expression of

PHGDH supported the proliferation of primary tumors by its

catalytic activity, PHGDH at low protein level non-catalytically

enhanced the formation of metastases. Mechanistically, the loss of

PHGDH released the glycolytic enzyme phosphofructokinase

(PFK) and activated the hexosamine-sialic acid pathway, leading

to aberrant protein glycosylation, thereby potentiating cell

migration and invasion (107) (Figure 3). It was also found that

the silencing of PHGDH under hypoxia conditions could lead to the

decrease of NADPH level, disturb mitochondrial redox

homeostasis, and promote apoptosis, resulting in the abrogation
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of breast cancer stem cells enrichment and lung metastases

formation (108). Interestingly, although SHMT2 was observed as

an oncogenic protein in various cancers, a study showed that

SHMT1 inhibited the lung metastasis of HCC cells by

suppressing the production of ROS (109).
3.3 Brain metastasis

In the microenvironment of brain metastases, the content of

serine and glycine is significantly lower than that of plasma (110,

111), which might be caused by the huge demand for serine and

glycine of brain metastasis tissues (112). It has been demonstrated

that PHGDH could promote nucleotide synthesis and cell growth in

highly aggressive brain metastatic cells by promoting SSP

(Figure 3). Genetic silencing or pharmacological inhibition of

PHGDH alleviated brain metastasis as well as prolonged the

overall survival time of mice, but did not inhibit the growth of

extracranial tumors. These results indicate that the availability of

amino acids in the brain metastasis microenvironment determines

the dependence of serine synthesis pathway (99).
3.4 Bone metastasis

As previously mentioned, bone metastasis of breast cancer

shows glutamine-dependent metabolic transformation. This

dependence is related to the promotion of glutamine utilization

by SSP. As previously stated, regardless of the glucose

concentration, glutamine is critical to the proliferation of bone

metastasis cells from breast cancer. In terms of mechanism, the
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decreased expression of kinase C zeta (PKC-z) in bone-derived

breast cancer cells led to the upregulation of PHGDH, PSAT1 and

PSPH, consequently promoted the utilization of glutamine through

serine biosynthesis (70). It has also been reported that the

expression of PSPH, PSAT1, PHGDH, and serine transporter

SLC1A4 was unregulated in bone metastasis by comparing the

genome-wide gene expression profile between the highly bone

metastatic variant MDA-MB-231 (SA) and its parental cell line

MDA-MB-231 in mice models (Figure 3). And in primary breast

cancer, the upregulation of PHGDH and PSAT1 is also significantly

related to the shortening of overall survival time and the malignancy

of breast cancer (113). Mechanistically, serine is an essential factor

for differentiation of mesenchymal bone marrow precursors into

osteoclasts (114), which may lead to a vicious circle of osteolytic

bone metastasis (113).
4 Branched chain amino
acids metabolism

Leucine, isoleucine, and valine are three branched chain amino

acids (BCAAs), which have similar chemical and metabolic

properties. As essential amino acids for human, BCAAs cannot be

synthesized in vivo, so the metastases must obtain them from the

circulation or surrounding tissues. However, their catabolism is

highly reversible. BCAA catabolism means that compartment

specific BCAA transaminases (BCAT1/BCAT2) transfer nitrogen

from free BCAAs to a-KG to generate glutamate and its

corresponding branched chain ketoacid (BCKA). BCAT1

catalyzes the reaction in the cytoplasm, while BCAT2 in the

mitochondria (Figure 1) (115). BCAA catabolism can meet
FIGURE 3

Serine and glycine metabolism in metastases. (A) In lung, the enhanced expression of PSAT1 was widely observed in various cancer tissues. In
addition, PSPH is also observed to be upregulated in lung metastasis of NSCLC cells and melanoma cells. However, the low expression of PHGDH
can enhance cell migration and invasion in breast cancer by activating hexosamine sialic acid pathway. (B) In brain, PHGDH can promote formation
of brain metastases by enhancing serine synthesis. (C) In bone, PSPH, PSAT1 and PHGDH are all upregulated in bone metastases of breast cancer,
resulting in osteolytic destruction.
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several important requirements for cancer cells. Firstly, the

decomposition of BCAAs can provide carbon for the synthesis of

other molecules. The catabolism of BCAAs can provide energy for

cells by promoting TCA cycle and oxidative phosphorylation.

Secondly, BCAAs can provide nitrogen for de novo synthesis of

nucleotide and amino acid as well. Thirdly, BCAA metabolism can

influence the levels of metabolite-derived cofactors which is

important for epigenic modification. Finally, BCAAs can affect

protein synthesis by acting as raw materials for synthesis or

signaling molecules for uncovering nutritional status of cells

(116). For example, it was observed that in breast cancer, BCAA

catabolism was specifically activated in high metastatic potential cell

lines (117). Previous studies have also shown that BCAT could

support cell invasion in various cancers, such as lung cancer and

breast cancer (118, 119).

Because BCAAs must be ingested by diet, the gastrointestinal

tract is the main source of BCAA. The gastrointestinal tract can

hydrolyze the complex polypeptide containing BCAAs to the

dipeptide/tripeptide of BCAAs. BCAAs are mainly absorbed in

the small intestine and transported to the liver through the portal

vein (120), which may be the reason why few studies have reported

that liver metastasis is dependent on BCAAs compared with other

metastasis sites.
4.1 Targeting BCAA metabolism in tumors

In 2013, Tonjes et al. (121) reported the overexpression of

BCAT1 in glioma, which attracted the cancer research field to start

the in-depth study of BCAA metabolism in cancer. In the following

years, BCAT1 was gradually identified as an important prognostic

cancer marker. It was found that BCAT1 was overexpressed in

metastatic tissues of cancer patients (118), supporting the

dependence of metastasis on BCAA metabolism

It was reported that although the pancreatic ductal

adenocarcinoma (PDAC) and NSCLC are both driven by Kras

activation and Trp53 deletion, they showed different BCAAs

dependence. The BCAA catabolic enzyme expression in NSCLC

tumors was higher than the PDAC tumors both in in mouse models

and human tissues. The BCAT deletion could inhibit the formation of

NSCLC tumors, but not PDAC tumors (122), suggesting that cancer

metabolic dependence depends on the origin tissue. However, another

study demonstrated that BCAT2 knockout in ME2-deficient PDAC

cell lines inhibited cloning, which could be rescued by nucleotide

supplementation (123), suggesting that gene mutation also affects the

effect of BCAA metabolism on cancer progression. Therefore, cancer

cells show heterogeneous dependence on BCAA metabolites. In order

to successfully develop therapeutic strategies targeting BCAA

metabolism, it is necessary to clarify the driving mechanism of

BCAA metabolism on cancer cells in future research.
4.2 Lung metastasis

Although BCAA catabolism is essential in supporting the

proliferation and growth of various cancers, high BCAAs levels
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seem to activate the immunosurveillance in lung metastases at the

same time, and eventually result in suppression on lung metastasis.

It was reported that in breast cancer mouse models, less lung

metastases were observed in the high BCAAs diet-fed mice. The

mechanism is that high levels of BCAAs activated tumor-infiltrating

NK cells in lung metastases (124). This study indicates that high

BCAA may not promote the proliferation of cancer cells in lung

metastases, but conversely inhibit lung metastasis by promoting the

activity of tumor-infiltrating NK cells in lung metastases (Figure 4).
4.3 Brain metastasis

Because of the high demand of brain for glutamate, cells need an

amino group donor that is readily transaminated to maintain the

high anabolism of glutamate. Actually, at least two thirds of brain

glutamate are generated from BCAAs (125). Consequently, a large

number of neutral amino acid transporters is highly expressed in

cerebral vascular endothelial cells to support the continuous and

large-scale uptake of BCAAs (126). It was reported that, using

glucose analogue tracer 18FDG and 11C-BCAA tracer for brain

metastasis imaging, 11C-BCAA was found to exhibit higher

sensitivity (127–130). In addition, increased BCAAs oxidation

was observed in two kinds of brain metastatic cancer cells (MDA-

MB-231Br3 and MDA-MB-361) that are different in origin (73). All

above studies support the dependence of brain metastasis

on BCAAs.
4.4 Bone metastasis

Enhanced BCAA catabolism is important for bone metastasis.

Previous studies have shown that increased BCAT1 transcription is

associated with a-KG depletion and high expression of SOX2,

promoting bone metastasis of lung cancer cells, while knockdown

of BCAT1 could reduce cell migration in vitro and metastasis in vivo

(Figure 4) (118). This result supports that enhanced BCAA

catabolism can promote metastasis by maintaining energy supply

and activating stemness-related pathways of metastatic cells.
5 Proline metabolism

The reprogramming of proline metabolism plays a crucial role

in the development of cancer. Proline metabolism is involved in

ATP production, biological synthesis of macromolecules (including

protein and nucleotide synthesis), and redox homeostasis in tumor

cells (131–134). Proline metabolic pathways consist of proline

synthesis and catabolism. As for proline synthesis, the immediate

precursor glutamate-g-semialdehyde (GSAL) can be generated from

ornithine by ornithine aminotransferase (OAT) in cytoplasm, or

from glutamate by delta-1-pyrroline-5-carboxylate synthase (P5CS)

in mitochondria. Then, newly produced GSAL can automatically

transform to delta-1-pyrroline-5-carboxylic acid (P5C). Finally,

pyrroline-5-carboxylic acid reductase (PYCR) catalyzes P5C to

proline with the concurrent oxidation of NADH in mitochondria
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or NADPH in cytoplasm, while proline can be converted back to

P5C by proline dehydrogenase/oxidase (PRODH/POX) in

mitochondria (135). P5C can also be catalyzed to glutamate by

pyrrolidine-5-carboxylate dehydrogenase (P5CDH) or ornithine by

OAT (Figure 1) (136–138).

Because of the dependence of metastases on energy supply and

biosynthesis, proline metabolism, which is closely related to

glutamine metabolism, is also extremely essential in the formation

of metastases. It was reported that PRODH, the key enzyme for

proline degradation, could support growth of breast cancer cells in

3D culture, and promote the formation of lung metastasis in mice

models. In particular, compared with primary breast cancer in

patients and mice, the expression of PRODH and proline

catabolism in metastatic tumors were increased (139). In several

mouse models of metastatic breast cancer, inhibition of PRODH

could inhibit the formation of metastases without adverse effects on

normal cells (139). Furthermore, it was observed that chromatin
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remodeling factor LSH activated PRODH to decrease proline level

to induce EMT in NSCLC (140), proving that PRODH could rescue

the metastatic cancer cells from the nutrient stress through

enhanced proline catabolism. Additionally, PYCR1 expression in

human breast cancer has also been found to be associated with

invasion (141). In short, the inhibition of proline metabolism by

targeting key enzymes has become a potential strategy to interfere

with metastasis formation.

Another important flow direction of synthetic proline is to produce

collagen, the major component of extracellular matrix (ECM), by

prolyl-4-hydroxylases (P4HA) in the endoplasmic reticulum (134).

ECM mediates the interaction between cancer cells and stromal cells

and promotes the colonization of metastatic cells (142). For example,

ECM density has also been proved to be the main barrier for T cells

infiltrating tumor beds in human NSCLC (143). Moreover, cancer cells

could reshape the extracellular matrix of the metastatic niche to

promote the colonization of their own metastases through
FIGURE 4

BCAAs metabolism in metastases. (A) In lung, although BCAAs are essential in supporting the proliferation and growth of various cancer, high level of
BCAA may not promote formation of lung metastases, but on the contrary, high BCAA can inhibit lung metastasis of breast cancer by activating the
tumor infiltrating-NK cells. (B) In bone, increased BCAT1 transcription can enhance BCAA catabolism to promote bone metastasis through remedy
of a-KG depletion in lung cancer cells. (C) In brain, BCAAs are ingested in large quantities, and then transaminated to glutamate or oxidated for
energy supply.
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hydroxylation of collagen, which is activated by elevated P4HA (144).

In addition, a research showed that HIF-1 can promote the expression

of P4HA to promote cancer cell alignment along collagen fibers, and

consequently enhance invasion and metastasis to lymph nodes and

lungs (145). These studies support that collagen synthesis could

promote tumor invasion and metastasis by regulating cell adhesion

and migration, biological signal transduction, and the growth of tissues

and organs. Although proline metabolism has been proved to support

tumor metastasis, the correlation between proline metabolism

reprogramming and organ-specific metastasis remains to be

further studied.
6 Asparagine metabolism

Asparagine is a NEAA. However, due to the interaction between

asparagine and glutamine metabolism, the limited availability of

glutamine makes asparagine a conditional essential amino acid.

Asparagine can rescue cell proliferation without catabolism in the

absence of glutamine. In fact, under the culture condition lacking

glutamine, the asparaginase in cells can inhibit the growth and

survival of cells, and seriously affect the growth of tumor xenografts

in vivo. Therefore, in mammals, asparaginase expression is absent in

cancer cell lines, which means that mammalian cells generally lack

the ability to decompose asparagine into aspartate and free

ammonia. This evolutionary adaptability makes cancer cells only

use asparagine for protein synthesis, rather than other amino acids

or biosynthetic intermediates, making uptake of exogenous

asparagine crucial for cancer cell survival and growth (146). In

addition to exogenous uptake, endogenous asparagine can be

generated from aspartate by asparagine synthetase (ASNS), which

is widely expressed in mammalian cells. This ATP-dependent

reaction employs glutamine as the nitrogen donor (Figure 1) (147).

Aspartate metabolism has been proved to induce tumormetastasis.

The aspartate synthetase ASNS is a focus of clinical attention, because

the imbalance of the expression of ASNS in children’s acute

lymphoblastic leukemia (ALL) cells is considered to offset the impact

of a first-line therapy for ALL that depletes asparagine (148–150). It

was reported that knocking down ASNS, or limiting asparagine uptake

could reduce the bioavailability of asparagine of cancer cells to prevent

the induction of mesenchymal gene expressionmode, thereby reducing

lung metastasis with no obvious effect on the growth of primary breast

tumors in mice (151). Moreover, in CRC cells, decreased aspartate

biosynthesis could lead to apoptosis of KRAS mutant CRC cells, and

reduce cell proliferation and lung metastasis (152). In addition,

overexpression of SOX12 promoted asparagine synthesis by

transactivating GLS, GOT2, ASNS, thereby promoting proliferation

and metastasis of CRC cells (153). These findings support that ASNS

has the potential to become a novel tumor biomarker and

therapeutic target.
7 Discussion

Various studies have provided evidence that adaptive regulation

of amino acid metabolism plays an important role in the survival
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and proliferation of metastatic cancer cells under the metabolic

pressure of metastatic microenvironment. The demand for

increased energy and biosynthesis usually leads to an increase in

the dependence of metastatic tumors on amino acids and related

enzymes in their metabolic pathways compared with the primary

site. In the microenvironment of metastases, amino acid depletion

caused by rapid synthesis, especially glutamine depletion, is one of

the main metabolic pressures of the metastatic cells (154).

Therefore, the increase of amino acids uptake and NEAAs

synthesis can be generally observed in the metastatic cells, which

determines the metabolic reprogramming tendency of the

metastatic cells compared with the primary site.

It is worth noting that the metabolic reprogramming of

metastatic cells is not completely determined by the types of

primary tumors, but also depends to some extent on the

microenvironment of the metastatic sites, such as the supply of

biosynthetic materials or cell signals (155). The microenvironment

of different metastatic sites selects cancer cells with specific

metabolic advantages, indicating the metabolic heterogeneity of

tumor metastasis. Actually, since Stephen Page’s hypothesis of

metastasis with the analogy of “seeds” and “soil” in 1889 (156),

researchers have found many biomarkers of organ-specific

metastasis. For example, studies have shown that exosomes from

lung, liver and brain cancer cells in mice and humans fuse with cells

in the target organ and participate in the establishment of the pre-

metastatic niche, and the exosome integrin can be used to predict

organ-specific metastasis (157). Furthermore, the high expression of

GABA-related proteins, including GABA receptor, GABA

transporter, GABA aminotransferase and glutamic acid

decarboxylase, was found in brain metastatic tumor samples of

HER2+ and triple-negative breast cancer (158). On this basis, many

biomarkers have also been found according to the metabolic

characteristics of the metastatic site, such as serine metabolism in

the formation of osteoclasts. Compared to breast cancer cells with

low bone metastatic activity, the expression of serine metabolic

enzymes (including PHGDH, PSAT1 and PSPH) was increased in

breast cancer cells with high bone metastatic activity (113). In

addition, because lung metastasis is exposed to oxidative stress, the

expression of the cystine transporter xCT was observed to be

upregulated in lung metastatic breast cancer cells to increase GSH

synthesis (36). As more and more studies demonstrate the

relationship between organ-specific metastasis and metabolic

reprogramming induced by the organ-specific microenvironment,

the development of biomarkers and therapeutic targets for organ-

specific metastasis has also become a promising direction in tumor

research. Although there have been many studies on the driving role

of amino acid metabolic reprogramming in organ-specific

metastasis, its specific and systematic mechanism still needs

further investigation.

Metastasis is the final stage of cancer development. In many kinds

of tumors, for patients who have progressed to the stage of metastasis,

the current treatment strategy cannot achieve good treatment effect in

most cases, which is often related to the drug resistance of the tumor.

At the same time, some drug resistancemechanismsmay also make the

tumor more capable of metastasis (159). For example, in lung

adenocarcinoma, overexpression of PSAT1 may lead to tumor
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metastasis and erlotinib resistance (104, 104). In addition, because the

current treatment strategy for tumor metastasis does not make

adjustments for the different occurrence of metastasis, but adopts an

identical strategy, which may be an important factor leading to drug

resistance. For example, some researchers found that disseminated

tumor cells remains static in bone marrow, which explains why

cytotoxic therapy cannot treat breast cancer patients, and 15-20% of

patients may have residual tumor cells after completing auxiliary

cytotoxic and endocrine therapy (160, 161). Therefore, the study of

metabolic heterogeneity of tumor metastases in different organs can

help us to identify clinically available metastasis-related markers and

therapeutic targets driven by organ specific microenvironment. In

addition, the study of tumor metabolic characteristics can also help

us refine the molecular typing of tumors, put forward higher and more

refined requirements for tumor treatment strategies, and promote the

development of clinical oncology towards personalized

cancer medicine.

As previously stated, glutamine is the largest consumed amino

acid in rapidly synthesized cells. Glutamine participates in a variety

of cellular processes, such as biosynthesis, energy supply, and redox

homeostasis as a common nitrogen source. In addition, the

transamination of glutamate is also an essential link in the

metabolism of amino acids due to its participation in the

biosynthesis of nonessential amino acids. The high level of

glutamine maintained in plasma can support the metabolic needs

of somatic cells, but it is far from enough for metastatic cells. In

order to maintain the level of glutamine in the metastatic cells, the

glutamine transporters in the metastatic cells are often highly

expressed , support ing to grab the glutamine in the

microenvironment with the surrounding cells. At the same time,

the activation of enzymes in the glutamine metabolism pathway has

also been proved to be closely related to the metastasis, not only

enhancing the intracellular biosynthesis, but also affecting the cell

signal of the metastatic process. For example, GDH1 promotes

anoikis resistance and metastasis formation of tumor cells by

activating AMPK pathway (61). Because of the close relationship

among amino acid metabolism, this specific metabolic advantage is

often manifested as a cascade effect of demand. For example,

metastatic cancer cells consume a large amount of glutamine to

maintain the loss of TCA cycle, and then the dependence of cells on

asparagine increases, making inhibition of ASNS sufficient to

induce rapid apoptosis of metastatic cancer cells (162). Metabolic
Frontiers in Oncology 11
demand of amino acids eventuates the metastatic tendency of

tumor, reflects metabolic vulnerability and metabolic dependence

of metastatic sites, which may provide potential treatments to arrest

metastatic seeding and growth.
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