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Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent

malignancy worldwide. Accumulating evidence suggests that persistent HPV

infection is closely related to a subset of HNSCC types, and the incidence of

human papillomavirus (HPV)-positive HNSCC has been annually increasing in

recent decades. Although the carcinogenesis of HPV-positive HNSCC has not

been completely elucidated, it has been well confirmed that E6 and E7, the main

viral oncoproteins are responsible for the maintenance of malignant

transformation, promotion of cell proliferation, and increase in tumor invasion.

Moreover, compared with HPV-negative HNSCC, HPV-positive HNSCC shows

some special clinical-pathological features, which are possibly related to HPV

infection and their specific regulatory mechanisms. Non-coding RNA (ncRNA) is

a class of RNA lacking the protein-coding function and playing a critical

regulatory role via multiple complex molecular mechanisms. NcRNA is an

important regulatory pattern of epigenetic modification, which can exert

significant effects on HPV-induced tumorigenesis and progression by

deregulating downstream genes. However, the knowledge of ncRNAs is still

limited, hence, a better understanding of ncRNAs could provide some insights for

exploring the carcinogenesis mechanism and identifying valuable biomarkers in

HPV-positive HNSCC. Therefore, in this review, we mainly focused on the

expression profile of ncRNAs (including lncRNA, miRNA, and circRNA) and

explored their regulatory role in HPV-positive HNSCC, aiming to clarify the

regulatory mechanism of ncRNAs and identify valuable biomarkers for HPV-

positive HNSCC.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a

malignancy originating from several anatomic sites, including the

oral cavity, pharynx, larynx, and nasopharynx (1). There are a

relatively high incidence and mortality of HNSCC worldwide (2),

with approximately 664,700 new cases and 406,800 deaths annually

(3, 4). The infection of high-risk HPV is an independent

carcinogenesis factor of HNSCC besides traditional carcinogenic

factors such as tobacco smoking and alcohol. Previous studies have

shown that the ratio of HNSCC cases with HPV infection was 40%-

80% in the United States, and 20%-90% in Europe (5, 6).

Although the pathogenesis of HPV-positive HNSCC has not yet

been fully elucidated, it has been well proven that E6 and E7 are the

main oncoproteins of high-risk HPVs, which play a crucial role in

tumorigenesis and progression of HPV-positive HNSCC (7). E6

and E7 can inactivate tumor suppressor protein p53 and

retinoblastoma protein (pRb) involved in the cell cycle, genome

stability, and epigenetic modifications (8), as well as affect the

mutation and epigenetic changes of the host genome (9).

Growing research has shown that epigenetic alterations also exert

significant effects on the molecular regulation of HPV-induced

tumorigenesis and progression (10, 11). The epigenetic regulation

includes histone post-translational covalent modifications and

effects of non-coding RNA (12).

In the generation of a malignant phenotype, cancer genetics and

epigenetics are inextricably linked (11, 13). Epigenetics generally

leads to changes in gene expression without changing DNA

sequence, such as DNA methylation and post-transcriptional gene
Frontiers in Oncology 02
modifications by ncRNAs, and epigenetic changes can induce

deregulation of oncogenes and/or tumor suppressor genes (12,

14). Numerous studies have indicated that ncRNAs are involved

in regulating the biological behaviors of HNSCC, such as the

proliferation, invasion, and therapeutic resistance (15–18).

NcRNAs are transcripts with nucleotide (nt) length less than

200, which are classified into long non-coding RNA (lncRNA),

circular RNA (circRNA), microRNA (miRNA), P-element-induced

wimpy testis interacting RNA (PIWI-Interacting RNA, piRNA),

small nucleolar RNA (snoRNA), small interfering RNA (siRNA),

ribosomal RNA, and tRNA depending on the nucleotide length

(18) (Figure 1).

Available literature shows that ncRNAs are an important player

in carcinogenesis (19, 20). MiRNAs generally bind to the 3′-
untranslated region (UTR) of mRNA transcripts to participate in

some biological processes (19). Some miRNAs can act as oncogenic

factors or tumor suppressors in HPV-positive HNSCC (20–22). The

function of miRNAs is biased by competing endogenous mutations

of miRNA-binding sites (23). Besides, miRNAs are well-known

downstream targets of lncRNAs. LncRNAs are primarily

characterized by a 7-methylguanosine cap at the 5′-end, and a

polyadenylated tail at the 3′-end (18). Although they do not encode

proteins, lncRNAs can regulate gene transcription via multiple

mechanisms, such as the competitive endogenous RNA (ceRNA)

mechanism (24). CircRNAs are a new category of closed-loop

ncRNAs and harbor several functional roles in the development

of HNSCC via diverse molecular mechanisms, which mainly act as

sponges that efficiently subtract miRNAs or proteins involved in

oncogenesis (25). Furthermore, viral oncoproteins E6 and E7 have
FIGURE 1

Classification of non-coding RNAs. Precursor miRNAs and siRNAs are transcribed and processed into mature miRNAs and siRNAs, respectively,
which exert their function in the nucleus and cytoplasm. Precursor piRNAs are processed into mature piRNAs that form piRNA-PIWI complexes by
combining them with PIWI proteins in the cytoplasm. TRNA intron splicing can lead to RNA cyclization, producing tricRNA. CircRNAs are divided
into three main categories: intron-derived circular intronicRNAs (ciRNAs), exon-derived exonic circRNAs (ecircRNAs), and exon-intron circRNAs
(EIcircRNAs). EIcircRNAs are mainly located in the nucleus, while ecircRNAs and tricRNAs are synthesized in the nucleus and will be exported to the
cytoplasm. Most lncRNAs are located in the nucleus, and rarely encode proteins, while some are located in the cytoplasm.
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been reported to deregulate some ncRNAs, thereby modulating

tumorigenesis and cancer progression. Thus, ncRNAs are valuable

potential prognostic biomarkers for HPV-positive HNSCC (26).

HPV-posit ive HNSCC shows some special cl inical

characteristics, such as rapid proliferation, strong invasion, early

lymph node metastasis, higher sensitivity to chemo- and radio-

therapy, thus, a relatively favorable prognosis (15, 23, 27–30), which

is related to the molecular regulation of ncRNAs (14, 31, 32). This

review mainly focused on the expression of ncRNAs and addressed

ncRNAs regulatory mechanisms in HPV-positive HNSCC,

excluding siRNA, rRNA, and tRNA, as their intracellular function

has already been validated. In addition, ncRNAs are promising

biomarkers for inchoate discovery and prognostic prediction, and

potential therapeutic targets in HNSCC.
2 MicroRNA

MiRNAs are endogenous ncRNAs of approximately 19-25nt in

length, that are processed into precursor miRNAs in the nucleus

and then transferred to the cytoplasm (19). MiRNAs can modulate

the expression of cellular proteins, which function by binding to the

5′-UTRs and 3′-UTRs of their target mRNAs (19, 33). MiRNAs

have been implicated predominantly in different stages of cell

malignant transformation at transcriptional and translational

levels (34). Specifically, the expression level of certain miRNAs

has been associated with HPV infection. As HPV integrates into the

host genome, the viral oncoproteins can modulate the expression of

host genes and may also perturb the level of miRNAs (23, 35). Some

miRNAs can induce abnormal cell cycle, affect cell apoptosis, or

even alter genomic stability, thereby affecting the radiotherapy

sensitivity (36). Moreover, miRNA expression level has been

correlated with tumor stage, lymph node metastasis, radiotherapy

resistance, and clinical prognosis of HNSCC (23, 37). Thus,

miRNAs are considered prognostic and diagnostic markers in

HPV-positive HNSCC.
2.1 Expression and significance of miRNAs
in HPV-positive HNSCC

By now, a few studies have explored specific miRNA expression

profiles in HPV-positive HNSCC tissues and cells (37–44), we

summarize the miRNAs expression profile in premalignant and

HNSCC tissues with HPV infection in Supplemental Table 1. The

expression level and modulation status of these miRNAs are

different between HPV-positive and HPV-negative samples.

Besides, the distinctively expressed miRNA in HPV-positive

HNSCC is significantly distinct from its counterpart in terms of

assuming roles in clinical characteristics modulation. Furthermore,

there are some differences in molecular mechanisms of miRNAs

function between HPV-positive HNSCC and HPV-negative cases.

MiRNAs are distinctly expressed in HPV-positive HNSCC,

which has been identified by various detection methods (40, 42,

45, 46). Lajer (42, 46) has first reported different miRNAs

expressions in 51 patients with oral squamous cell carcinoma
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(OSCC) and pharyngeal squamous cell carcinoma (PSCC) by

using microarray analysis. The researchers have then further

revealed that the infection of HPV influenced 21 miRNAs, which

might induce distinct clinical characteristics. Thereafter, many

researchers have focused on miRNAs expression profiles in HPV-

positive HNSCC, Gougousis et al. (45) have reported that miR-15,

miR-16, miR-143, miR-145, and the miR106-363 cluster were

overexpressed in HPV-positive oropharyngeal squamous cell

carcinoma (OPSCC), Vojtechova and co-workers (40) have

analyzed the differential expression by TaqMan real-time

quantitative PCR (RT-PCR) array in HPV-positive and HPV-

negative tonsillar tumors, in which 30 miRNAs were expressed in

HPV-positive samples and 38 miRNAs were expressed in HPV-

negative samples (Supplemental Table 1).

Next-generation sequencing (NGS) technology has been used

for performing discrepant sequence alignment of genomes, which

was developed based on RT-PCR and gene chips technology (47).

The Cancer Genome Atlas (TCGA) data covers miRNA profiles and

clinical details of HNSCC. MiRNA profiles obtained from TCGA

data through NGS could screen differentially expressed miRNAs in

HPV-positive and HPV-negative HNSCC tissues. Nunvar et al. (35)

have reported that 70 and 116 specific miRNAs were differently

expressed in HPV-positive and HPV-negative HNSCC, as identified

by NGS.

The main significance of differently expressed miRNAs is that

they are considered valuable biomarkers in HNSCC (48). Generally,

miRNAs may represent novel biomarkers in HPV-positive HNSCC.

House et al. (49) andWeiss et al. (50) have reported that miR-205-5p,

miR-182-5p, and miR-133a-3p were overexpressed in HPV-positive

OPSCC, and could be adapted as prognostic markers (49–51). Bersani

et al. and Gougousis et al. (45, 51) have reported that miRNAs were

correlated with distant tumor metastasis, invasion, and migration,

even could discriminate tumor stages (2-4 of T stages) in HPV-

positive Tongue squamous cell carcinoma (TSCC) and OPSCC.

Moreover, miR-106a, miR-27a, and miR-9 have been intimately

correlated with radiotherapy sensitivity in HPV-positive HNSCC,

while miR-139-3p has been related to chemotherapy sensitivity in

HPV-positive HNSCC (23, 52–54) (Supplemental Table 2).
2.2 Molecular regulation roles of miRNAs in
HPV-positive HNSCC

As mentioned above, miRNAs have been associated with

biological behaviors, thus, many researchers have begun to focus

on the regulatory roles of miRNAs in HPV-positive HNSCC (15,

20). For example, Casarotto et al. (15) have identified that miR-375

and miR-139 could emerge as key players in modulating the

occurrence of HPV-positive HNSCC. Luo et al. (55) have

reported that miR-518a-5p and miR-605-5p could act as essential

regulators in cell proliferation, apoptosis, tumor growth, and

metastasis in HPV-positive HNSCC. Specifically, miRNAs act as

essential regulators in biological processes by regulating target genes

and key pathways involved in cell proliferation, apoptosis, tumor

growth, epithelial-to-mesenchymal transition (EMT), and

metastasis processes.
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Moreover, miRNAs may perform a vital role in oncogenesis by

acting as oncomiRNAs or tumor suppressor factors (18, 38, 43, 45,

52). Up to the present, miR-22, miR-27, miR-92a, miR-195, and

miR-211 have been identified as oncogenic promotion miRNAs in

HPV-positive HNSCC (18, 52, 56, 57), being involved in the

occurrence of HNSCC through regulation of their target genes

(22, 46, 54, 56, 58). For example, miR-21 and miR-155 can promote

the proliferation and invasion of OPSCC cells via suppressing

downstream target genes, such as phosphatase tensin homolog

(PTEN) and signal transducer and activator of transcription

(STAT) (54, 59, 60). On the other side, many miRNAs, including

miR-16 and miR-17 (42, 43), have been identified as tumor

suppressors in HPV-positive HNSCC (Supplemental Table 3).

These miRNAs can revive the major tumor suppressor proteins

p53, p21, and p16 (61), and transcription factors, such as E2F, and

downregulate other multiple oncogenes, resulting in tumor

suppression (62).

Recently, it has been proven that cell autophagy and immune

response could influence the prognosis of HNSCC (63–65). Aranda

et al. (66). have reported that miRNAs could regulate cell autophagy

and immune response, thus, affecting the prognosis of HPV-

positive HNSCC. Luo et al. (55) have identified that miR-380-5p,

miR-338-5p, miR-16-1-3p, and miR-378a-3p could modulate

favorable prognosis by activating an immune response in HPV-

positive HNSCC. To better understand the regulatory role of

miRNAs in HPV-positive HNSCC, the more in-depth research is

in need.

Radiotherapy is one of the effective treatment strategies for

patients with HNSCC. Nevertheless, increasing evidence shows that
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miRNAs are involved in the regulation of radiation response via

their target genes (33, 67–71). According to the research of Fu et al.

(72), genomic signatures of DNA repair can influence HPV-positive

tumor radiation sensitivity, and miRNAs are probably involved in

the regulation of DNA damages by modulating downstream genes.

Zhang et al. (53, 69) have identified that miR-106a and miR-27a

enhanced radiotherapy sensitivity in HPV-positive HNSCC by

targeting RUNX3 and SMG1 levels, respectively. On the contrary,

the overexpression of miR-125b can weaken the radiation

sensitivity in HPV-negative cells via the reduction of ICAM2

(a molecule related to enhanced radio-sensitivity) (70).
2.3 The correlation between viral
oncoproteins E6/E7 and miRNAs in
HPV-positive HNSCC

Some miRNAs are distinctively expressed in HPV-positive

HNSCC, which is regulated by HPV oncoproteins (18, 69, 73). The

expression of miR-9, miR-20, miR-27a, miR-34a, miR-106a, and miR-

363 have been related to E6/E7 in HNSCC tissues, and the expression

change by these miRNAs is possibly induced by the modulation of E6

and E7 (18, 22, 29, 33, 53) (Supplemental Table 3).

Research has illustrated the regulatory mechanism of viral

oncoproteins in regulating miRNAs in HPV-positive HNSCC (16,

69, 74, 75). E6 and E7 regulate the expression level of miRNAs

mainly by binding or releasing the transcription factors of miRNAs,

such as c-Myc, p53, and E2F (76) (Figure 2). MiRNAs can activate or

suppress downstream genes and key signal pathways involved in
FIGURE 2

Main mechanisms involved in the malignant transformation and biological behaviors induced by viral oncoproteins E6/E7 in HPV-positive HNSCC.
Oncoproteins E6 and E7 can inactivate tumor suppressor proteins p53 and pRb involved in the cell cycle, genome stability, and epigenetic
modifications, as well as affect mutation and epigenetic changes of the host genome. E6 and E7 regulated the levels of miRNAs mainly by releasing
p53 and E2F, thus, affecting miRNA expression, while miRNAs can activate or suppress downstream genes and key signal pathways involved in
biological behaviors.
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regulating biological behaviors (61, 77). However, most miRNAs

regulated by E6 or E7 have been demonstrated in cervical cancer

(Figure 3), and rarely in HNSCC. For instance, miR-363 is

upregulated by E6, which deceases the expression level of MYO1B,

thereby suppressing tumor progression in HPV-positive HNSCC

cells (29, 74). E7 targets integrin b8 by upregulating miR-20a,

thereby promoting migration and invasion of HPV-positive OSCC

cells (75). Zhang et al. (53, 69) have revealed that viral oncoproteins

affected radiation sensitivity by regulating miR-106a and miR-27a-

3p levels and their downstream target genes RUNX3 and SMG-1 in

HPV-positive HNSCC cells. According to Božinović et al. (28) and

Nowek et al. (78), miR-9 level appeared to be upregulated by E6, and

probably affects prognosis by promoting cancer‐associated fibroblast

infiltration in HPV-positive OSCC. Nevertheless, the regulatory

mechanism has not been elucidated completely, hence, further

studies are necessary to explore the relationship between viral

oncoproteins and miRNA signatures in HPV-positive HNSCC.
3 LncRNA

LncRNAs constitute a heterogenous group of RNA molecules

exceeding 200nt in length without protein-coding function, which

have been implicated in multiple biological processes by interacting

with downstream RNAs, proteins, miRNAs, or circRNAs and even

pseudogenes at transcriptional, and translation levels (24, 79).

Many reports have indicated that lncRNAs could participate in

cell proliferation, migration, and invasion, playing a key role in the
Frontiers in Oncology 05
tumor progression of HNSCC (15, 80). Moreover, lncRNAs can act

as ceRNA, which sponges various RNAs to alter the expression level

of target genes (81) (Figure 4), and then impacts various tumor

behaviors (81, 82). HPV infection can lead to lncRNA aberrant

expressions in host cells (83, 84), and deregulation of downstream

molecules of some key signal pathways. Also, lncRNAs can serve as

valuable biomarkers of HPV-positive HNSCC.
3.1 Expression and significance of lncRNAs
in HPV-positive HNSCC

Emerging evidence demonstrates that discrepant lncRNAs are

identified in clinical samples by RNA-sequencing, RT-PCR, and

bioinformatics analysis tools (e.g., Cluster profiler package in R)

(85–88). Thus, the aberrant expression of lncRNAs in HPV-positive

HNSCC is summarized in Supplemental Table 4. For example,

Wang et al. (86) have identified 131 distinctively expressed

lncRNAs in the TCGA HPV-negative HNSCC dataset. Nohata

et al. (85) have revealed 140 lncRNA transcripts alignment data

generated from TCGA between HPV-positive and HPV-negative

HNSCC via RNA-sequencing. Yang et al. (87) have reported 102

lncRNAs which were specifically expressed in HPV-positive

HNSCC by using RNAs tools package in R. Furthermore, HPV

infection has been associated with lncRNA expression (83, 85, 87,

89), Kopczyńska et al. (83) and Haque et al. (88) have demonstrated

an array of differentially expressed lncRNAs in HPV-positive vs.

HPV-negative HNSCC (Supplemental Table 4).
FIGURE 3

Main mechanisms of miRNAs expression regulation by E6/E7 in HPV-positive HNSCC and cervical cancer. E6 and E7 regulate the levels of miRNAs
mainly by binding or releasing the transcription factors of miRNAs, such as c-Myc, p53, and E2F. The degradation of cellular transcription factor p53
is induced by E6, which can bind the promoter region of miRNAs. HPV E6 oncoprotein destabilizes p53, which contributes to the deregulated
miRNAs. The degradation of pRb induced by E7 leads to the release of E2F from the pRB-E2F complex, and E2F binds to its binding site in miRNA
promoter region, thus, affecting miRNA expression.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1122982
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guo et al. 10.3389/fonc.2023.1122982
LncRNAs have been closely associated with some clinical

characteristics. Kolenda et al. (90) have confirmed that the

expression level of EGOT was related to age, N-stage, and the

malignant phenotype in HPV-positive pharyngeal cancer. Guo et al.

(91) and Kopczyńska et al. (83) have reported that PRINS and

TTTY15 were upregulated and positively associated with a

favorable prognosis of HPV-positive HNSCC (Supplemental

Table 5). Moreover, aberrant lncRNA expression has been related

to chemoradiotherapy resistance in HNSCC (92–94). As illustrated

by Song et al. (92), lnc-IL17RA-11 exhibited a strong correlation

with radiotherapy efficacy in HPV-positive HNSCC. Additionally,

Fang et al. (93) and Zhang et al. (94) have demonstrated that

lncUCA1 and lncWISP1 were related to radiation resistance in

HPV-negative HNSCC (Supplemental Table 5).
3.2 Molecular regulation roles of lncRNAs
in HPV-positive HNSCC

Some lncRNAs have been proven to play a role in the

development and progression of HPV-positive HNSCC (18, 82).

For instance, Ma et al. (82) and Dias et al. (95) have revealed that

lincRNA-p21, HOTAIR, PROM1, and CCAT1 probably played a

critical role in the development, invasion, and metastasis of HPV-

related tumors. Further study has shown that lncRNAs could

interact with miRNAs and regulate mRNAs expression (16, 80,

96). For example, lncRNA BLACAT1 promoted proliferation and

invasion by sponging miR-142-5p in OSCC (80). However, there is

little information about the tumor-suppressive effects of lncRNAs in

HPV-positive HNSCC. Sannigrahi et al. (18) have reported that
Frontiers in Oncology 06
MEG3 performed a role of tumor suppression, probably through

the promotion of cellular apoptosis by upregulating their target

genes GRP78 and IRE1 (97).

Aberrant expression of lncRNAs also influences the survival

prognosis of HPV-positive HNSCC (85, 91, 98, 99). Research has

indicated that clinical prognosis is affected by autophagy and tumor

immune response (99, 100), and lncRNAs influence prognosis by

modulating the genes or signaling pathways involved in autophagy

and immune activities. According to Guo et al. (99), TTTY15

affected the prognosis probably by upregulating autophagy-related

protein (BECN1 and LC3) or activated autophagy-related pathway

(STAT3-BRCA1 pathway) in HPV-positive HNSCC. Another study

has reported that lncRNAs expression could regulate tumor immune

infiltration, and a lower expression level of lncIRLPS might trigger a

stronger immune response, leding to a better prognosis (98).

However, additional clinical data are required to confirm the

prognostic value of these lncRNAs in HPV-positive HNSCC.

Comparable to miRNAs, lncRNAs probably function as

molecular sponges to attenuate downstream genes involved in gene

stability in HPV-positive HNSCC (92, 94, 101). Thus, lncRNAs can

significantly enhance radiation sensitivity, lnc-IL17RA-11 can

enhance the radiosensitivity of HPV-positive HNSCC by inducing

estrogen receptor a transcription (92). On the other hand, as listed

above, the expression of lncUCA1 (101) and lncWISP1 (94) probably

exerts a regulatory role in radiation resistance. Sannigrahi et al. (18)

have identified that lncWISP1 could activate DNA damage repair and

trigger radiation resistance of HPV-negative HNSCC by inhibiting

apoptosis-associated protein Bcl-xl and upregulating PI3K kinase.

Generally, lncRNAs represent potential targets to overcome chemo-

and radiotherapy resistance in HNSCC.
FIGURE 4

Competing endogenous RNAs (CeRNAs) networks and mechanisms. CeRNAs link the function of protein-coding mRNAs with miRNAs, lncRNAs,
circRNAs, and pseudogenic RNAs. CeRNAs target binding (sponge) MREs (pseudogene transcripts, lncRNA, miRNAs, and circRNA) to revive the
inhibition of downstream target genes, and this regulatory mode constitutes the ceRNA mechanism.
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3.3 The correlation between E6/E7 and
lncRNAs in HPV-positive HNSCC

As previously demonstrated, some lncRNAs have been related

to E6 or/and E7 (16, 95). Currently, the regulatory modalities

between oncoproteins and lncRNAs have been mainly elucidated

in HPV-positive cervical cancer. These mechanisms remain a great

enigma and deserve deep exploration in HPV-positive HNSCC.

Barr et al. (102) have confirmed that the expression of GAS5, H19,

and FAM83H-AS1 was modulated by E6 in cervical cancer. Liu

et al. (103) and Zhang et al. (104) have identified that lnc-FANCI-2,

HOTAIR, lncPVT1, MALAT1, SNHG12, lnc-CCDST, LINC01101,

and LINC00277 were induced by E7, and MALAT1, CCEPR, and

TMPOP2 were reciprocally regulated by E6 and E7. Moreover,

Jeffers et al. (105) and Ghafouri et al. (16) have reported that

MALAT1 and HOTAIR were modulated by E6 and E7 in HPV-

positive tumors, respectively.

Sharma et al. (106) have reported the regulatory mechanism of

viral oncoproteins on lncRNAs, in which E6/E7 might bind

lncRNAs directly or indirectly, thereby impeding their interaction

with downstream miRNAs or molecules, involved in biological

processes. For example, E7 has been reported to downregulate

HOTAIR thereby impeding the repression of HOXD10, which is

involved in tumorigenesis and metastasis in SiHa and Caski cells

(107). Liu et al. (108) have identified that MALT1 was upregulated

by E6, which could act as a molecular sponge for miRNA-124 in the

progression of SiHa and Hela cells. Tornesello et al. (109) and

Sharma et al. (106) have revealed that the expression of MALAT1

and HOTAIR was related to E7, and the overexpression of

MALAT1 contributed to cell proliferation and invasion in HPV-

positive HNSCC cells (95). This mechanism has been reported in

cervical cancer, showing that E7 upregulated HOTAIR by

upregulating miR-214-3p, resulting in the activation of Wnt/b-
catenin signaling pathway (110). MALAT1 is upregulated by E7,

which promotes the expression of SP1, thereby enhancing the

ability of cervical cancer to metastasize (111). The mechanism is

possibly similar in HPV-positive HNSCC. However, it has not been

proven yet. Further research should be conducted to clarify the

regulatory mechanism between viral oncoproteins and lncRNAs.
4 The expression and function of
circRNA in HPV-positive HNSCC

CircRNA is a kind of circular closed ncRNA lacking 5’-cap and

3’-poly(A) tails, which derived from exons and/or introns of

precursor messenger RNA (pre-messenger RNA) (112). The

predominant function of circRNAs is acting as molecular

sponges, competing with miRNAs or RNAs to regulate biological

processes (113). Aberrant expression of circRNAs is responsible for

tumor formation, invasion, and metastasis (114, 115). Tornesello

et al. (109) have confirmed that the expression of circRNAs was

possibly related to oncoproteins expression, which induced the

development of HPV-positive tumors. Jun et al. (116), and Chen

et al. (117) have confirmed that circRNAs (circ0001971 and
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circ0001874) were distinctively expressed in OSCC (Supplemental

Table 6), which had a relatively higher prevalence of HPV infection

compared with tumors of other anatomic sites. Zhao et al. (118)

have suggested that circRNA expression might have broader

relevance to viral oncoproteins. Bonelli et al. (119) have

confirmed that circRNAs were involved in tumorigenesis, cancer

progression, and chemotherapy resistance, and some of them were

related to the TNM stage, which could serve as useful diagnostic and

prognostic markers in OSCC.

Aberrant expression of circRNAs is responsible for the clinical

behavior of OSCC. Zhao et al. (120) have confirmed that among 32

distinctively expressed circRNAs in OSCC, circ0001874 was

correlated with tumor grade, and circ0001971 was correlated with

the TNM stage. The researchers have identified that circ0001874

and circ0001971 served as biomarkers of prognosis. Cristóbal et al.

(121) have also confirmed that the expression of circUHRF1 and

circ0059655 was associated with malignant proliferation, and that

of circUHRF1 and circ0001742 was related to migration. However,

the expression of circ0001971 (122, 123), circ0005379, and

circ0007059 was associated with cisplatin and cetuximab

resistance in OSCC (124, 125). These findings indicate that

circRNAs could be useful predictors of clinical outcomes in HPV-

positive OSCC.

Furthermore, circRNAs may play a regulatory role in

tumorigenesis. Zhao et al. (123) have reported that some

circRNAs, including circ0002185 and circ0001821, promoted

oncogenesis, while other circRNAs, including circ0002203 and

circ0004491 suppressed tumorigenesis (126, 127) (Supplemental

Table 6). CircRNAs play a regulatory role by sponging miRNAs,

which concurs with the deregulation of target genes. According to

Bonelli et al. (119), circPVT1 repress the expression of miR-497-5p,

leading to cell proliferation in HPV-negative OSCC. Furthermore,

the high expression of circ0055538 inhibits the cell migration and

invasion by regulating the p53/Bcl2/caspase signaling pathway in

HPV-negative OSCC (128), indicating that circRNAs could act as

targets to intervene in tumorigenesis.

Discrepantly expressed circRNAs have been related to the

expression of viral oncoproteins, Zhao et al. (118) and Yu et al.

(129) have identified that the expression of circE7 was positively

related to E7 in Caski cells, but the regulatory relationship was not

verified. Also, a few studies are available on the regulatory

relationship of circRNA and viral oncoproteins. The regulatory

role research of circRNAs is in a nascent stage in HPV-positive

HNSCC, therefore, relevant research is urgently required. It is

significant to screen diagnostic and prognostic biomarkers and

provide novel insight into biological features of HNSCC from the

perspective of circRNA-miRNA-mRNA.
5 PiRNAs and HPV-positive HNSCC

PiRNA is a new class of ncRNAs with a length of 26-30nt (130),

which generally appears in clusters, but its generating mechanism is

still inconclusive (131). PiRNAs can interact with PIWI protein to

form piRNA/PIWI protein complexes that silence downstream

molecules, which participate in cellular biological activities.
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Aberrant expression of piRNAs is responsible for the occurrence of

malignancy. According to Firmino et al. (132), HPV status might

affect the expression of piRNAs, among which 30 piRNAs and 11

piRNAs were confirmed to be distinctively expressed in HPV-

positive (n=83) and HPV−negative HNSCC tissues (n=370),

respectively. Krishnan et al. (133) have also identified a total of 30

differently expressed piRNAs in HPV-positive HNSCC samples

compared with their counterparts.

The significance of discrepantly expressed piRNAs is that they

can act as prognostic biomarkers (133, 134). Krishnan et al. (133)

have found that the level of NONHSAT077364, NONHSAT144936,

and NONHSAT054230 displayed a close relationship with

pathologic stage and nodal metastasis in HPV-positive HNSCC.

Discrepant expression of piRNAs play a regulatory role in

oncogenesis in HPV-positive HNSCC. Researchers have observed

that NONHSAT059231 and NONHSAT077463 are correlated with

oncogenesis in HNSCC (132) (Supplemental Table 7). Additionally,

NONHSAT069719 inhibited the tumorigenesis of HPV-positive

HNSCC, other piRNAs, including NONHSAT077364,

NONHSAT102574, and NONHSAT128479 promoted tumor

pathogenesis and progression in HPV-positive HNSCC (133).

Further research has shown that piRNAs executed their

functionality by associating with PIWI proteins (PIWIL1-

PIWIL4), which could enhance cell proliferation (133, 135). As

mentioned above, some piRNAs are distinctively expressed in

HPV-positive HNSCC, which is probably induced by HPV

infection. However, rigorous studies on the regulatory

relationship between piRNA and viral oncoproteins are lacking,

thus, requiring additional exploration.
6 SnoRNAs and HPV-positive HNSCC

SnoRNA is a category of ncRNA with a length of 60-300nt that

mainly exists in nucleosomes, and is generally used for the synthesis

and modification of ribosomal RNA and mRNA (136). SnoRNAs are

also involved in the proliferation and apoptosis of tumor cells (137).

Xing et al. (138) have identified that the expression of snoRNAs was

associated with clinical features of HNSCC, and distinctive expression

of snoRNAs in HNSCC was associated with histological grade and

tumor progression. For example, SNORD114‐17 was involved in the

regulation of cell adhesion, invasion, andmetastasis, and U3 (chr2) was

related to RNA editing (138). Furthermore, according to Xing et al.

(138), the expression of SNORD114-17 (ENSG00000201569),

SNORA36B (ENSG00000222370), SNORD78 (ENSG00000212378),

ENSG00000212182, and ENSG00000212195 was related to clinical

stages, histological grade, T classification, lymph node metastasis and

anatomic subdivisions, indicating that snoRNAs could serve as

biomarkers of HNSCC. However, there are only several related

reports of snoRNAs in HNSCC. Hence, the relationship between

snoRNAs and HPV infection remains unexplored. Moreover, their

expression and regulatory role have not been reported in HPV-positive

HNSCC. It is possible that the expression and regulatory mechanisms

of snoRNAs could pave the way to tumorigenesis and clinical

characteristics of HPV-positive HNSCC.
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NcRNAs include miRNAs, lncRNAs, circRNAs, and piRNAs

(139). Deregulated ncRNAs in HNSCC have been related to HPV

infection, which probably exerts regulatory role in the clinical-

pathological features of the tumor (Supplemental Table 8).

Besides, the discrepant expression of ncRNAs can be

distinguished in HPV-positive and HPV-negative HNSCC.

Specifically, miRNAs and lncRNAs are different in sample sources

(tumor tissues/cell lines), regulation oncoproteins (E6/E7),

regulation status (upregulated/downregulated), and effects

(biological process/clinical characteristics) in HPV-positive

HNSCC. Furthermore, these miRNAs/lncRNAs are involved in

different modulation mechanisms, some of them can serve as early

molecular markers for the diagnosis and prognosis (17). Also,

ncRNAs may become effective targets for tumor suppressor drugs.

Currently, the main treatment for HNSCC is surgery combined

with chemoradiotherapy, suggesting that ncRNAs could be the

targets for improving the sensitivity of HPV-positive HNSCC to

chemoradiotherapy. NcRNAs with oncogenic effects may become

effective targets for tumor intervention drugs. However, up to now,

only a part of the biological functions and regulatory roles

of ncRNAs has been clarified. NcRNAs can regulate the

characteristics of HPV-positive HNSCC through joint action (140,

141). The interaction network of ncRNAs should be constructed to

further reveal the interaction among different types of ncRNAs, thus,

providing diagnostic and therapeutic targets for HPV-positive

HNSCC. In summary, we mainly focusd on the expression profile

of ncRNAs (including lncRNA, miRNA, and circRNA) and explored

their regulatory role and interconnection in HPV-positive HNSCC,

aiming to clarify the regulatory mechanism of ncRNAs in HPV-

positive HNSCC. However, the research on the modulation

mechanism of E6/E7 on miRNAs, lncRNAs, and circRNAs is still

in its infancy in HPV-positive HNSCC. Further investigation is

required to elucidate the biological functions and regulatory roles of

ncRNA in HPV-positive HNSCC. Nevertheless, ncRNAs seem to

possess therapeutic prospects, therefore, more preclinical studies in

vitro and in vivo are necessary to explore effective targeted therapies

with a view to improving the prognosis of HPV-positive HNSCC.
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27. Araldi RP, Sant'Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de
Cassia Stocco R, et al. The human papillomavirus (HPV)-related cancer biology: An
overview. BioMed Pharmacother (2018) 106:1537–56. doi: 10.1016/j.biopha.
2018.06.149
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