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In addition to the rapid development of immune checkpoint inhibitors, there has

also been a surge in the development of self-assembly immunotherapy drugs.

Based on the immune target, traditional tumor immunotherapy drugs are

classified into five categories, namely immune checkpoint inhibitors, direct

immune modulators, adoptive cell therapy, oncolytic viruses, and cancer

vaccines. Additionally, the emergence of self-assembled drugs with improved

precision and environmental sensitivity offers a promising innovation approach

to tumor immunotherapy. Despite rapid advances in tumor immunotherapy drug

development, all candidate drugs require preclinical evaluation for safety and

efficacy, and conventional evaluations are primarily conducted using two-

dimensional cell lines and animal models, an approach that may be unsuitable

for immunotherapy drugs. The patient-derived xenograft and organoids models,

however, maintain the heterogeneity and immunity of the pathological

tumor heterogeneity.
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1 Introduction

Clinical sample sequencing and experiments using animal models have demonstrated

that the molecular mechanism of tumorigenesis is due to gene mutations induced by

oncogene and anti-oncogene. However, oncogene mutation is not the only factor that

eventually causes the development of cancer (1–3). Several preclinical and clinical studies

have reported that multiple factors exist between the occurrence of oncogene mutations in

cells and the tumors in situ, such as the tumor microenvironment (TME) (4–6).TME as a

concept was proposed by Ioannides in 1993 (7). Currently, TME is regarded as the

presentation of non-tumor cells and their components in tumors, including the protein

molecules produced and released by them(8). Furthermore, the metabolic disorders of

TME cells result in the consumption of nutrients, acidification of environmental pH,
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hypoxia, and the production of regulatory metabolites, thus

influencing the immune response to tumors as well as the

overexpression of immune checkpoint molecules and tumor

metastasis (9–11). The abortive phenomenon of various tumor

therapy drugs in previous preclinical and clinical trials has been

explained by the discovery of TME.

The concept of immunotherapy was first introduced by

William Coley in the 1890s(12). Later, Honjo discovered that

programmed death receptor 1 (PD-1) is an inducible gene on

activated T lymphocytes, which led to the discovery of cancer

immunotherapy through blocking PD-1 (13). Meanwhile, a

protein on the molecular surface of immune cells called cytotoxic

T lymphocyte-associated antigen 4 (CTLA-4) was discovered by

James P. Allison to act as a “molecular brake” that prevents the

immune system from responding. Inhibition of CTLA-4 can make

T cells proliferate and attack tumor cells (14). The Nobel Prize in

Physiology or Medicine was awarded to them in recognition of their

contribution to tumor immunotherapy in 2018. Currently, tumor

immunotherapy drugs can be mainly divided into five categories:

antibody drugs such as immune checkpoint inhibitors (ICIs) (15),

direct immune modulators (16–19), chimeric antigen receptor

(CAR) -T cells(20), oncolytic viruses (OVs) (21) and cancer

vaccines (22).Despite this progress, contributing to off-target

toxicity, tissue heterogeneity, poor immunogenicity and tumor

infiltration, the clinical use of tumor immunotherapy remains

limited to a small subset of cancers. The development of self-

assembly nanotechnology provides an opportunity for enhancing

the effectiveness and reducing the toxicity of traditional drugs, and a

series of nanomaterials were used in the preclinical study of cancer

(23). This technology assembles molecules with different functions

into highly ordered nanosystems with non-covalent bonds, which is

a strategy for building powerful drugs (24).

In recent years, the development of experimental models to

accurately replicate the pathophysiology of tumors has become one

of the main challenges in the development of new drugs.

Researchers emphasize patient-derived tumor xenografts (PDXs)

(25)and patient-derived organoids (PDOs) (26) as potential

solutions to these problems. PDX preserves the histological

structure, degree of differentiation, morphological features, and

molecular characteristics of most primary tumors and can better

mimic their response to treatment. PDO models and three-

dimensional (3D) culture can reproduce TME and biological

behavior of tumor cells in vitro by reconstructing 3D

communication networks of cell-cell and cell-extracellular matrix

(ECM) interactions (16–19). Drug research and development have

benefited greatly from the PDX and PDO models (27).

In this review, we discuss the latest advances of the technology

in PDX and PDO models for tumor immunotherapy research. We

emphasize the use of these preclinical setting to study tumor cell-

immune cell interactions and to explore immunotherapeutic drug

screens. We also investigate the application of these preclinical

models to novel self-assembling drug development and discuss the

challenges that need to be overcome to make possible a more

widespread and rationalized use of PDX and PDOmodels. A careful

consideration and evaluation must be given to the complexity of
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humanized PDX and PDO mice and their limitations. As a result,

there will be a greater chance of achieving effective research results.

In any case, we hope that the optimization of humanized PDX and

PDO mouse models will make significant contributions to tumor

immunotherapy and personalized medicine for improving the

outcome of cancer patients in the future.
2 PDXs and PDOs models

2.1 PDXs

Over the years, PDXs have been used to study several aspects of

oncological diseases, especially for individualized drug

development. It has been proposed that PDX models not only

recapitulate key characteristics of human tumors with high fidelity,

but also exhibit treatment responses that are concordant with

human responses(28–30). In recent years, breakthroughs in

tumor immunotherapy have placed increased demands on the

development of appropriate preclinical assessment models

to evaluate tumor immune responses. Therefore, humanized

PDX models have been developed to evaluate the efficacy

of immunotherapeutic approaches in cancer. The fundamentals of

the humanized PDX model are as follow. In summary, pieces of

solid tumors are obtained through surgery or biopsy procedures,

and these samples are implanted into the dorsal region or the same

organ of immunocompromised mice. To simulate a more realistic

state of functional human immune system (HIS), human peripheral

blood mononuclear cells (PBMC), CD34+ hematopoietic stem cells

(HSC), or other immune cells can be transplanted into

immunodeficient mice such as non-obese diabetes (NOD)- severe

combined immune deficiency (SCID) gamma(NSG)mice. After

human immune reconstruction, patient-derived tumor tissues can

be transplanted to create a dual immunogenic model with similar

heterogeneity and tumor immune microenvironment (TIME) as

patients. This model can not only simulate the growth process of

tumors in patients, but also simulate the interaction between a

cancer cell and the HIS. The construction process of humanized

PDX models is presented in Figure 1.

Humanized PDX models have provided a tremendous boost to

the study of tumor pathogenesis and drug development. However,

there are still limitations of humanized PDX models: 1) the time

period required to build PDX models from patients is long and may

take up to 6 months (or longer), 2) the high cost and low

throughput, 3) lack of maturation of innate immune cells,

coupled with insufficient ability to generate antigen-specific

antibodies, 4) limited education of T cells in absence of murine

thymus, 5)deficient HLA molecules, and 6) the difficulty in

generating lymph node structures and germinal centers(31).

These limitations have led to several ongoing efforts to develop

novel humanized preclinical models and platforms to develop

therapeutic strategies that enhance response to immunotherapy.

In general, it is believed that the robustness of drug-screening data

will increase when both human-derived immune reconstruction

and data analysis become more standardized.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1122322
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang and Zheng 10.3389/fonc.2023.1122322
2.2 PDOs

In 2009, Hans Clevers’ team successfully cultured mouse

intestinal organoids that self-renew and maintain the villous

structure of intestinal gland pits in vitro, bringing new starting for

development of cancer therapeutic approaches (32). As an in vitro

3D organ, PDO can not only mimic the cell composition and

structure in tumor growth, but also perform specific gene editing,

which can satisfy complex tumor microenvironment research and

potential drug screening. PDO and organoid-derived PDX(PDOX),

as an emerging field, have attracted much attention since they can

provide a cancer pre-clinical platform to recapitulate the patient’s

tumor and promote translating novel treatments from bench to

bedside (33–35). Over the past decades, several PDOs have been

successfully cultured, including gastric tumors (36), breast tumors

(37), bladder tumors (38), and ovarian tumors (39). The

establishment and subsequent screening of PDO/PDOX can

generally be completed in a shorter period than for PDX. The

model construction process for PDO and PDOX is depicted

in Figure 2.

Numerous studies in the past decades have demonstrated how

using organoids enhances the accuracy of the drug screening system

(37, 40). These PDOs have been widely employed in the research of

anti-tumor drugs. There are many advantages associated with

organoids, primarily in the realization of individualized precision

medicine, the reduction of modeling time, high throughput

screening, genomic screening, and drug screening(41, 42).

Unfortunately, no single mouse model can capture every aspect of

the parent tumor and immune landscape. Some major drawbacks

should be considered. Organoids cannot perfectly replicate the

microenvironment in vivo, they lack tumor blood vessels and
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immune cells, and the co-culture system with other cell types is

not yet well established. There are difficulties in studying the role of

other systems and organs within the body. A global standard for

organoids establishment and quality control does not yet exist.

Despite its limitations, it still provides an extremely valuable

contribution to the research and development of cancer drugs

(43). In any case, to maximize the potential for translational

research, it is imperative to select the most suitable humanized

mouse model (44).
3 PDX and PDO models in the
discovery of traditional tumor
immunotherapy drugs

3.1 Immune checkpoint inhibitors

Immune surveillance is a vital tool for inhibiting tumorigenesis

and maintaining the body’s internal environment’s homeostasis. A

tumor cell can self-modify or release factors that influence TIME,

such as engaging immune checkpoint pathways, to evade immune

surveillance. Several immune checkpoints have been identified,

including PD-1 and its ligand (PD-L1), which regulate the activity

of T cells and cancer growth (45). Since the development and

clinical application of ICIs, cancer immunotherapy has significantly

expanded our toolkit for fighting the disease. At present, ICIs

primarily consist of antibodies against CTLA-4 (ipilimumab),

PD-1 (nivolumab, pembrolizumab, cemiplimab) and PD-L1

(atezolizumab, durvalumab, avelumab) (15, 46, 47).

Researchers recently established a humanized mouse NPC-PDX

model by engrafting nasopharyngeal carcinoma (NPC) biopsies in
FIGURE 1

Protocols of humanized patient-derived tumor xenografts (PDX) model construction. In the first step, humanized mice were established by
transplanting isolated human peripheral blood mononuclear cells (PBMC) or CD34+ human hematopoietic stem cells (HSC), etc. into severely
combined immunodeficient mice. After the human immune system is successfully implanted, a novel humanized PDX model is established by
inoculating patient-derived tumor tissues into humanized mice. These types of models not only mimic the phenotypic and molecular characteristics
of the original tumor in the patient, but also reproduce the cross-talk between the tumor and the immune system. This is of critical significance for
individualized drug marker screening and drug development for tumor immunotherapy.
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NSGmice. This model was used to investigate the anti-tumor efficacy

of nivolumab and ipilimumab (48). A study published in 2019

evaluated the efficacy of nivolumab against colorectal cancer (CRC)

in a hematopoietic humanized PDX mouse model (hu-CB-BRGS). It

was observed that PD-1 blockade therapy induced the immune

system to kill tumors in this mode of action (49). Kleinmanns et al.

established a HIS-PDX model of ovarian carcinoma in situ of NSG

mice, which were injected with CD34+HSC via the vein beforehand.

They further investigated the change in immune cells by flow
Frontiers in Oncology 04
cytometry after the animal was treated with nivolumab. The results

indicated that the overall response to monotherapy was modest, and

the combination therapy might be more effective (50). Here, we

summarized the conditions in which PDX models were used in the

preclinical evaluation of immune checkpoint mAb drugs that are

currently available, to better understand the utilization of the PDX

model in drug development (Table 1).

To enable PDOs reproduce the TIME, researchers have

developed a number of novel platforms to evaluate the efficacy of
TABLE 1 Patient-derived tumor xenografts (PDX) models in preclinical evaluation of immune checkpoint monoclonal antibody drugs.

Target Name of drug Type of tumor Model and Strain Reference

PD-1 Pembrolizumab and Nivolumab TNBC Hu-HSC-PDX (NSG mice) (51)

PD-1 Pembrolizumab and Nivolumab NSCLC Hu-HSC-PDX (NSG mice) (52)

PD-1 Pembrolizumab NSCLC Hu-PBMC-PDX (NSG mice) (53)

PD-1 Pembrolizumab HCC Hu-HSC-PDX (NSG mice) (54)

PD-1 Nivolumab NSCLC Hu-HSC-PDX (NSG mice) (55)

PD-1 Nivolumab MRCC Hu-HSC-PDX (NSG mice) (56)

PD-1 Nivolumab CCA Hu-PBMC-PDX (NSG mice) (57)

PD-1 Pembrolizumab Liposarcoma Hu-HSC-PDX (NSG mice) (58)

CTLA-4 Ipilimumab and Nivolumab NPC Hu-HSC-PDX (NSG mice) (48)

PD-L1 Atezolizumab NSCLC Hu-PBL-PDX (NSG mice) (59)

PD-L1 Durvalumab NMIBC Hu-PBMC-PDX (NOG mice) (59)

PD-L1 Durvalumab NMIBC Hu-PBMC-PDX (NOG mice) (60)
f

NSCLC, Non-small cell lung cancer; HCC, Hepatic cell carcinoma; TNBC, Triple-negative breast cancer; MRCCMetastatic renal cell carcinoma; CCA, Clear cell adenocarcinoma; Squamous cell
carcinoma; NPC, Nasopharyngeal carcinoma; NMIBC, Non-muscle invasive bladder cancer; BC, Breast cancer; Hu, Human; HSC, Human stem cell; PBL, Peripheral blood lymphocyte.
FIGURE 2

The flow chart of the establishment of patient-derived tumor organoid (PDO) models and the application of PDO in personalized treatment. It is
commonly used to obtain primary tumor samples from surgical resections, puncture samples, or circulating tumor cells (CTCs) isolated from blood
samples. Patient-derived cancer cells can be propagated in vitro on an enriched Matrigel matrix and cultured into three-dimensional tumor-like
organs for in vitro and in vivo applications. These tumor models can be used for drug screening, gene analysis, immunotherapy, and other studies to
accurately detect drug efficacy and toxicity. Furthermore, we are able to develop effective individualized treatment strategies for patients.
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tumor immunotherapy in recent years. For example, researchers

have constructed a complex air-liquid interface approach PDO

from different cancer types, allowing in vitro preservation of the

tumor epithelium and its stromal microenvironment, and even

immunologically active CD8+ T cells, NK cells, etc. Using this

model, it is possible to simulate the biological behavior and

therapeutic response of tumors during anti-PD-1 therapy (61). By

combining PDO and humanized mouse techniques, the

investigators constructed a new model of spontaneous multi-

organ metastasis from microsatellite instability-H CRC and also

provided empirical evidence for a key role of B cells in generating

site-dependent anti-tumor immunity after anti-CTLA-4 treatment

(62). Researchers also demonstrated using a patient-derived

organotypic tumor spheroids (PDOTS) and a matched PDO drug

screening platform that inhibition of innate immune kinase TANK-

binding kinase 1 coupled with PD-1 blockade was an effective

strategy for overcoming tumor immunotherapy resistance (63). In

addition, the investigators established a glioblastoma (GBO)-related

organoid biobank for individualized therapeutic screening. This is a

PDO model with significant clinical translational potential to

simulate tumor response to CAR-T cell immunotherapy (64).

These studies demonstrate that immuno-oncology studies can be

successfully conducted using organoid models that may facilitate

personalized immunotherapy testing. In order to better understand

the advantages and disadvantages of the PDOs model. We also

summarize the studies with the PDO model to evaluate ICIs drugs

briefly (Table 2).
3.2 Direct immune modulators

Immunosuppressive cells (such as myeloid-derived suppressor

cells and regulatory T cells) can release inhibitory cytokines in the

TME to evade the immune system (71). Cytokines, such as

interferon (INF)-alpha and interleukin (IL)-2, also play a crucial

role in tumor immunotherapy. In 1986, the FDA approved INF-a
as a cancer therapy drug for the treatment of leukemia. Currently,

IFN-a and IL-2 have become the most widely used drugs in tumor

immunotherapy strategies, however, several other cytokines are

currently under clinical investigation (72, 73). Aside from

cytokines, non-specific immune drugs also include target natural

killer (NK) cells, macrophages, and immunomodulators.

Pexidartinib, the first macrophage-targeting medicine approved

by the FDA, is recommended for adult patients with symptomatic
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giant cell tumors of tenosynovitis because it restricts macrophage

proliferation by blocking CSF cytokines (74). In a recent study on

pexidartinib, researchers evaluated its impact on PDX and observed

that pexidartinib can significantly inhibit osteosarcoma tumor

growth (75). Immunotherapy with IL-2 and GM-CSF has

significantly improved survival in children with high-risk

neuroblastoma (76). Treatment failure and IL2-related toxicity,

however, pose significant challenges to the treatment of one third

of these patients. There has been evidence in recent clinical trials

that NK cells hyperproliferate and acquire an activated phenotype

in patients receiving recombinant human IL-15, resulting in NK cell

expansion in vivo and tumor shrinkage in two patients. As a result,

scholars validated the tumor suppressive effect of IL-15 on PDX

models, and they demonstrated that the replacement of IL-2 with

IL-15 was associated with significant tumor regression in vivo,

supporting clinical trials of IL-15 for pediatric neuroblastoma

(77). Additionally, related study has also demonstrated that IL-15

enhanced the anti-tumor activity of gd T cells, and effectively

suppressed tumor growth, and prolonged the survival of renal

cancer-bearing PDX mice (78). Taking these results into

consideration, it appears that cytokines might be able to have

significant clinical implications in the future.
3.3 CAR-T/NK

CAR- T cell therapy, as a novel approach in anticancer therapy,

in which T cells are retargeted against the tumor cell following the

engineered expression of CARs (79). Currently, two CAR-T cell

products have been used for the treatment of lymphoblastic

leukemia and lymphoma (80). Besides, it has been reported that

CAR-T cells engineered to simultaneously produce interleukin (IL)-

7 and chemokine (C–C motif) ligand 19 (CCL19) were effective

against solid tumors in pancreatic cancer (PC) PDX model (81).

Additionally, other researchers have also verified CAR-T cells anti-

tumor immunotherapy effects on triple-negative breast cancer

(TNBC) (82). Other studies have found that in a patient with

late-stage HCC, anti-GPC3 IL-7/CCL19 CAR-T therapy resulted in

complete tumor disappearance 30 days post-intra-tumor injection.

And in a patient with advanced PC, anti-MSLN-IL-7/CCL19 CAR-

T cellular therapy resulted in almost complete tumor disappearance

240 days post-intravenous infusion (83). Both preclinical and

clinical studies suggest that novel CAR-T cells have significant

potential for the treatment of solid tumors.
TABLE 2 Patient-derived organoids (PDOs) models in preclinical evaluation of immune checkpoint monoclonal antibody drugs.

Target Name of drug Organoids Reference

PD-1 Nivolumab Patient-derived gastric cancer organoids (65)

PD-1 Pembrolizumab and Nivolumab Patient-derived lung cancer organoids (66)

PD-1 Nivolumab Patient-derived chordoma organoids (67)

PD-1 Nivolumab Patient-derived renal cell carcinoma organoids (68)

PD-1 Pembrolizumab and Cabozantinib Patient-derived renal cell carcinoma clusters (69)

PD-L1 Atezolizumab Patient-derived renal cell carcinoma organoids (70)
f
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In 2010, Zhao Y et al., reported that they developed a PDX

model to evaluate CAR-T therapy (84). Jiang Z et al., reported that

CAR T cells demonstrated a positive therapeutic effect on liver

cancer in a PDX mouse model. They concluded that the growth of

the tumor in the PDX model could be inhibited following CAR-T

cells therapy (85). The investigators developed a highly specific

SynNotch-CAR-T cells, which was validated using the PDX model

to target gliomas and exert anti-tumor effects with reduced off-

target toxicity (86).The emergence of adaptive therapy has

stimulated the development of new CAR-NK cells therapy

techniques (20). In 2021, Cao B and his team developed

mesothelin (MSLN)-CAR NK cells, which were evaluated using

PDX (NSG mice). According to the findings, these cells

demonstrated strong anti-tumor properties and offer a promising

treatment for gastric cancer (87). Although CAR-NK cells have

obvious advantages in tumor therapy, the short life cycle of NK cells

in vivo and the immunosuppression of the TME limit the clinical

transformation of CAR-NK cells.

Ding S et al., generated thousands of micro-organ spheres from

patient tissues and assessed tumor drug response (88). The

establishment of an organoid biobank, as mentioned earlier, is a

valuable platform for evaluating tumor treatment strategies such as

CAR-T cell therapy (89). In addition, combining organoid and 3D

imaging technologies, the investigators have provided a platform to

reveal the mode of action of cellular anti-cancer immunotherapies

in a patient-specific manner and apply them to develop multiple

engineered T cell products(90). PDOs are ideal for short drug

screening cycles and convenient sampling of the model, which

can be achieved through several methods, including surgery, biopsy,

urine, and lung lavage fluid (88, 91). The development of PDOs will

great ly shorten precl inica l s tudy t ime and faci l i tate

drug development.
3.4 Oncolytic viruses

More than a century ago, a phenomenon was observed in

clinical therapy, that is some patients with cancer experience the

cancer regression if they were infected with certain viruses (92).

Based on this case, OVs therapy was further developed to advance

cancer biological therapy. OVs possess excellent safety in clinical

trials, which greatly promotes their research and development. A

novel OV (OAd-MUC16-BiTE) with better anti-tumor

characteristics was developed for treating ovarian cancer in PDX

mice models (93). Other study evaluated the anticancer efficacy of

VG161, a herpes virus type 1 (HSV-1), in HLA-matched CD34+

humanized PDX model. It was found that VG161 significantly

inhibited tumor growth and would realize enhancement of OV-

induced antitumor immunity for long-term maintenance treatment

(94). In research by Quinn CH et al., oncolytic herpes simplex

viruses (oHSVs) were demonstrated to be effective in treating high-

risk neuroblastoma in PDX mice (NOD-SCID) (95). OVs therapy

has the advantages of excellent replication efficiency, a potent killing

effect, fewer adverse reactions, and inexpensive cost, making it one

of the most promising tumor immunotherapy methods in the

future (21, 33). In addition, exploring the anticancer activity of
Frontiers in Oncology 06
OVs based on pancreatic PDOs proved to be an effective predictive

tool (96). However, the delivery of OVs was by intertumoral

injection, which limited its clinical use. Therefore, how to deliver

these OVs to the tumor tissue more effectively and how to improve

the potential of these viruses to disseminate within the tumor tissue

site may be the future focus of this therapy.
4 PDXs and PDOs in the discovery
of self-assembled drugs for
tumor immunotherapy

Tumor immunotherapy has changed the treatment of advanced

tumors, however, the proportion of patients responding to

immunotherapies remains low. In recent years, supramolecular

chemistry and self-assembled systems have been extensively

investigated in the field of cancer therapy and hold great promise

for improving immunotherapeutic outcomes in tumor patients (97,

98). Unlike conventional cancer immunotherapy, rationally

designed nano-self-assembled drugs can trigger specific

tumoricidal effects, thereby improving infiltration of TIME such

as killer immune T lymphocytes, optimizing antigen presentation,

and inducing durable immune responses (23). The development of

nanotechnology provides an opportunity for enhancing the

effectiveness and reducing the toxicity of traditional drugs, and a

series of nanomaterials were used in the preclinical study of cancer

(24). In conclusion, self-assembled drugs have a broad potential for

application in tumor immunotherapy, especially in refractory and

recurrent cancers.

The self-assembled peptides can respond to various

environmental conditions, such as pH, temperature, and

molecu la r in t e rac t ions , whi l e a l so posse s s ing h igh

biocompatibility and drug loading capabilities(99, 100).

According to current research, self-assembly peptides can be

classified into two main categories for tumor immunotherapy

research: 1) Self-assembly into nanodrugs using their drug

loading capacity, delivering molecules such as peptides or siRNA,

inhibiting specific proteins or genes in tumor cells to enhance tumor

immunotherapy response. 2) Using peptide self-assembly to

simulate tumor antigens as tumor vaccines to stimulate the body

to produce anti-tumor antibodies(101, 102). In short, self-

assembling peptide drugs may improve the treatment of tumors

immune therapy significantly in future.

Self-assembled nanomedicines have received significant

attention due to their excellent biocompatibility, high

modification versatility and ease of synthesis, controllable and

adaptive nanostructures(103). Recently, a study pointed out that

through targeted inhibition of MDM2, p53 can be activated, the

tumor immune microenvironment can be reprogramed, and

immunotherapy resistance can be overcome (104). Researchers

created TPA, a combined targeted peptide that inhibited the PD-

1/PD-L1 axis, activated p53, and showed tumor killing and

immunotherapeutic sensitization effects on a humanized PBMC-

engrafted PDX model. There is now a potential pathway for the

development of self-assembled peptide drugs for cancer therapy
frontiersin.org
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(105). For tumor targeting, the researchers synthesized size-tunable

nanostructures with a spherical morphology by combining partially

reductive HSA with hydrophobic Fluvastatin, known as AB-Flu.

According to the study, these nanodrugs effectively enhanced the

potency of Anti-PD1 antibodies against colon cancer in a

humanized CRC-PDX mouse model while maintaining acceptable

levels of safety (100). Generally, self-assembled drugs have unique

anti-tumor effects and are low in toxicity. Through blocking the

supply of tumor nutrients, improving drug targeting, and even

recruiting multiple immune cells, they can achieve tumor therapy.

Therefore, development and research into self-assembled drugs is

warranted. Anti-tumor potential of self-assembled drugs creates

new hope for tumor treatment, and the PDX and PDO models

facilitate clinical transformation as well.
5 Perspective and conclusion

The rapid development of immunotherapy drugs brings hope to

clinical patients with cancer (100, 106–108). However, the

preclinical evaluation of drugs still restricts the development of

drug research. Although the drug evaluation system has advanced

from a 2D cell line evaluation system to PDX/PDO system and even

developed a PDX model with human immune cells to more

accurately simulate the immune environment in vivo (109, 110),

there are still limitations. The establishing cycle of PDX/humanized

PDX is long, the technology is challenging, and it cannot completely

simulate the TME. Although the modeling cycle of PDOs is short,

but it is still necessary to investigate whether the medium possesses

antigenicity because the composition of the medium is unknown. In

addition, despite the extensive genetic heterogeneity of tumors in

vivo, it is unknown whether tumor organoids can capture the entire
Frontiers in Oncology 07
range of heterogeneity that originates from the primary tumor

(111). Despite the complexity of cancer, there are still several

unresolved issues, including those related to its pathogenesis,

mechanism of metastasis, patient response to treatment, or

mechanism of drug resistance. Further studies are required to

constantly improve the simulation of TME to create PDX/PDO

that is more similar to the primary tumor characteristics, to better

serve drug development.
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