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3School of Computer Science and Technology, Shandong University of Technology, Zibo,
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Background: Chronic atrophic gastritis (CAG) is a precancerous condition. It is

not easy to detect CAG in endoscopy. Improving the detection rate of CAG under

endoscopy is essential to reduce or interrupt the occurrence of gastric cancer.

This study aimed to construct a deep learning (DL) model for CAG recognition

based on endoscopic images to improve the CAG detection rate during

endoscopy.

Methods: We collected 10,961 endoscopic images and 118 video clips from

4,050 patients. For model training and testing, we divided them into two groups

based on the pathological results: CAG and chronic non-atrophic gastritis

(CNAG). We compared the performance of four state-of-the-art (SOTA) DL

networks for CAG recognition and selected one of them for further

improvement. The improved network was called GAM-EfficientNet. Finally, we

compared GAM-EfficientNet with three endoscopists and analyzed the decision

basis of the network in the form of heatmaps.

Results: After fine-tuning and transfer learning, the sensitivity, specificity, and

accuracy of GAM-EfficientNet reached 93%, 94%, and 93.5% in the external test

set and 96.23%, 89.23%, and 92.37% in the video test set, respectively, which

were higher than those of the three endoscopists.

Conclusions: The CAG recognition model based on deep learning has high

sensitivity and accuracy, and its performance is higher than that of endoscopists.

KEYWORDS

endoscopy, gastric cancer, transfer learning, deep learning - artificial intelligence,
chronic atrophic gastritis (CAG)
Abbreviations: AI, Artificial intelligence; AUC, Area under the curve; CAG, Chronic atrophic gastritis; CAM,

Channel attention submodule; CNAG, Chronic non-atrophic gastritis; CNN, Convolutional neural networks;

DL, Deep learning; FN, False negative; FP, False positive; GAM, Global Attention Mechanism; ROC, Receiver

operating characteristic; SAM, Spatial attention submodule; TN, True negative; TP, True positive.
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1 Introduction

According to the latest World Cancer Report released by

International Agency for Research on Cancer (IARC), 1,089,103

new cases of gastric cancer and 768,793 deaths were reported

worldwide in 2020, accounting for 5.6% and 7.7% of total cancer

incidence and deaths, ranking fifth and fourth respectively (1). Most

gastric cancers are gastric adenocarcinomas and CAG is the most

common stage of progression to gastric adenocarcinoma (2, 3).

Studies have shown that the 5-year incidence of gastric cancer in

patients with CAG is 1.9% (3). Some studies in China and Japan

have shown that the prevalence of CAG is higher than 50% (4–6).

The collection of biopsies during gastroscopy and pathological

analysis is the “gold standard” for diagnosing CAG. This depends

significantly on the endoscopist’s ability to collect biopsies (7).

Studies have shown that CAG can be detected by white-light

endoscopy but with poor accuracy (3). The sensitivity of

endoscopic diagnosis of atrophic gastritis is 61.5% in the antrum

and 46.8% in the body of the stomach (8). The manual operation of

physicians to identify lesions with the naked eye renders it difficult

to exclude missed diagnoses owing to fatigue and inexperience.

Therefore, seeking an objective and accurate method to identify

CAG is very important to slow down or interrupt gastric cancer

progression and reduce endoscopists’ workload.

In recent years, artificial intelligence (AI) techniques,

represented by deep learning (DL), have been widely used in

various medical imaging fields. Examples include disease

detection (9, 10), disease prediction (11, 12), and organ detection

(13, 14). AI techniques have also shown excellent performance for

the diagnosis of digestive diseases. Ueyama et al. (15) constructed a

DL computer-aided diagnosis system based on narrow-band

imaging to diagnose early gastric cancer, and the accuracy and

sensitivity were 98.7% and 98%, respectively. Shichijo et al. (16)

constructed a convolutional neural network (CNN) (17, 18) and

evaluated its ability to diagnose Helicobacter pylori infection, and

the accuracy and sensitivity were 87.7% and 88.9%, respectively.

Zhao et al. (19) developed a DL-based assisted diagnostic system for

the localization of colon polyps, with a sensitivity of 98.4% in

prospective validation. AI also showed excellent ability in CAG

diagnosis. For example, Guimarães et al. (20) and Mu et al. (21)

automatically extracted endoscopic image features to identify CAG

by DL techniques with an accuracy of 93% and 95%, respectively.

CAG is endoscopically visible as a red-white mucosal,

predominantly white, exposed section of the mucosal blood

vessels, and it can be accompanied by mucosal granules or

nodules (22, 23). We aim to capture these visible or subvisible

image features for CAG recognition using a new DL model,

providing more evidence for the feasibility of AI-aided diagnosis

of CAG.

CNN is the mainstream algorithm used in the field of image

recognition. Since 2017, transformers (24) have shown powerful

capabilities in image classification (25, 26), semantic segmentation

(27, 28), and object detection (29, 30). In this study, we selected four

SOTA DL networks for comparison: two CNNs and two

transformers. A new CAG recognition model was constructed

based on one of them. The results showed that the model’s
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accuracy, sensitivity, and specificity were better than those of

endoscopic experts.
2 Materials and methods

2.1 Data collection and preprocessing

In this study, three datasets were collected: (1) an internal image

dataset from Zibo Central Hospital, which was used for the training

and internal testing of the model; (2) an external test set, an image

dataset from the Zhangdian Maternal and Child Health Care

Hospital; and (3) video test set, a video dataset from Zibo Central

Hospital. The pathology results support all images and videos.

Images and videos from Zibo Central Hospital were captured

using an Olympus GIF-HQ290 or GIF-H290Z (Olympus, Tokyo,

Japan). Images from Zhangdian Maternal and Child Health Care

Hospital were captured by Pentax EG29-i10 (Pentax, Tokyo, Japan).

All images and videos were captured in the normal white imaging

mode. The resolution of the original image was 1920 × 1080 pixels

and the format was BMP. The resolution of the original video was

1920 × 1080 pixels, the encoding method was MJPEG, and the

frame rate was 25 frames per second (fps). We labeled each image as

CAG or CNAG. For videos, one label per video was equivalent to

patient-specific labeling.

Internal image dataset: We reviewed the images of patients who

underwent gastroscopy at Zibo Central Hospital between June 2020

and June 2022 and had pathological results of chronic gastritis. To

reduce interference, we excluded images based on the following

conditions: poor quality, inadequate preparation of the digestive

tract, altered gastric anatomy because of gastric surgery, and other

diseases. The final dataset included 10,361 images from 3,718

patients. Based on the pathology results, we divided the dataset

into two categories, CAG and CNAG. The CAG dataset contained

images of 1933 patients with CAG, 1114 men and 819 women, with

a mean age of 57.15 (± 10.49), 921 with mild atrophy, 984 with

moderate atrophy, and 28 with severe atrophy. The CNAG dataset

contained images of 1,785 patients with CNAG, 883 men and 902

women, with a mean age of 43.9 (± 13.23). A total of 5219 CAG

images were obtained, including 3,826 images of the gastric sinuses,

1184 images of the gastric horns, and 209 images of the gastric body.

A total of 5,142 CNAG images were obtained, including 3,545

images of the gastric sinuses, 980 images of the gastric horns, and

617 images of the gastric body.

External test set: We reviewed images of patients who

underwent gastroscopy at Zhangdian Maternal and Child Health

Care Hospital between January 2022 and October 2022 and had

pathological results of chronic gastritis. The inclusion and exclusion

processes were identical for the internal image dataset. Finally, 300

images from 116 patients with CAG and 300 images from 98

patients with CNAG were included.

Video test set: We collected video clips of patients who

underwent gastroscopy at the Zibo Central Hospital between

September 2022 and October 2022. The videos were deliberate

scans of the entire gastric region performed by the endoscopist

during endoscopy. The exclusion criteria were the same as those
frontiersin.org

https://doi.org/10.3389/fonc.2023.1122247
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2023.1122247
used for the internal image dataset. Fifty-three patients with CAG

and 65 patients with CNAG were included in the study. The mean

duration of the 118 video clips was 50.16 ± 9.57 seconds.

Before training with the DL model, we processed the images

involved in the training. First, we removed the invalid parts of the

image and scaled the image to 512 × 512 pixels. We adopted image-

enhancement strategies during model training, such as random

rotation, flipping, and color dithering, to improve the model’s

generalisation ability. The processing method is illustrated

in Figure 1.

This study was approved by the ethics committees of the two

hospitals involved (No. 202201016, Zibo Central Hospital. No.

202210019, Zhangdian Maternal and Child Health Care

Hospital). The patients in the video test set provided written

informed consent prior to participation. The ethics committee

waived the requirement for informed consent for patients

involved in retrospective imaging.
2.2 Deep learning method

The experimental hardware environment included an Intel i9

12900 K CPU, an Nvidia GeForce GTX 3090 GPU, and 32 GB of

RAM. The experimental software environment included Ubuntu

22.04, CUDA 11.3, Anaconda 4.14, and PyTorch 1.12.1.

We selected four SOTA DL networks for inclusion in this study:

EfficientNetV2 (31), ConvNeXt (32), ViT (25), and Swin (26). Their

commonly used versions, EfficientNetV2-M (31), ConvNeXt-L

(32), ViT-B (25), and Swin-B (26), were selected based on the

computing power of GPU for training. EfficientNetV2 and

ConvNeXt are representative CNN. ViT and Swin are

representative transformer networks that have emerged in recent

years. We used a pretrained model on ImageNet (33, 34) for transfer

learning (35, 36). A significant problem in medical image analysis is

that the datasets are relatively small, resulting in less-accurate

trained models. Thus, transfer learning can effectively solve this

problem. In recent years, transfer learning has achieved good results

in medical image analysis (37, 38), which can improve the accuracy
Frontiers in Oncology 03
of models and accelerate training (39, 40). The training process for

the four networks is illustrated in Figure 2. The accuracy of each

network in the validation set increased with an increase in the

number of iterations. After 150 epochs, the accuracy of

EfficientNetV2-M, ConvNeXt-L, and ViT-B on the validation set

stabilized and Swin-B oscillated in an interval. In summary,

EfficientNetV2-M outperformed the other three networks;

therefore, we selected it for further optimization.

We introduced the global attention mechanism (GAM) (41)

module based on EfficientNetV2-M to enable the network to focus

more on the critical information in the CAG region. The improved

network is called GAM-EfficientNet and its structure is shown in

Figure 3. The GAM module mainly consists of a channel attention

submodule (CAM) and spatial attention submodule (SAM), and its

structure is shown in Figure 4. The CAM first performs dimensional

conversion for the input feature map. Following dimensional

conversion, the feature map is input into a two-layer multilayer

perceptron (MLP). MLP is an encoder-decoder structure that

magnifies cross-dimensional channel-spatial dependencies.

Subsequently, it is converted to the original dimension and

output by sigmoid processing. In SAM, two convolution kernels

of 7 × 7 are used for spatial information fusion. GAM amplifies the

global dimension-interactive features by adding an element-wise

multiplication operation between CAM and SAM.

With other fixed parameters, we selected the optimal

parameters of the network using four cross-validations. The

following were the final parameters: batch-size was 16, optimizer

was AdamW algorithm, initial learning rate was 0.001, learning rate

decay strategy was cosine decay (42), and weight decay coefficient

was 0.01. After the parameters were determined, the network was

retrained to obtain the final CAG recognition model.
2.3 Model evaluation

We invited three endoscopists with more than 10 years of

experience in endoscopic operations to participate in the test.

They diagnosed randomly ordered images/videos in the three test
B C

D E

A

FIGURE 1

Image preprocessing. (A) original image; (B) invalid area removed, resize to 512*512 pixels; (C) rotate 90°counterclockwise; (D) flip vertically; (E)
color random dither.
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sets without being aware of the pathological findings. The test

results were compared with those of GAM-EfficientNet.

The CAG identification in this study was a binary classification

problem. We evaluated the model’s performance by calculating the

sensitivity (recall), specificity, precision, accuracy, and F1-score, and

by plotting the receiver operating characteristic (ROC) curve. The

relevant formulas are as follows:

Sensitivity=Recall=
TP

TP+FN

Specificity=
TN

TN+FP

Precision=
TP

TP+FP

Accuracy=
TP+FN

TP+FP+FN+TN

F1−score=
2�Precision�Recall
Precision+Recall
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where TP, FP, FN and TN represent the numbers of true positives,

false positives, false negatives, and true negatives. All statistical

analyses were performed using GraphPad Prism 9.3.1 (GraphPad

Software, Inc., San Diego, CA, USA).

However, although AI has demonstrated excellent diagnostic

performance (43–45), it has a significant drawback that is difficult to

explain (46). Explainable AI is an important research direction in

medical AI (47). One effective method is to generate heatmaps of

the images. We used a gradient-weighted class activation map

(Grad-CAM) (46) to create heatmaps showing the regions in

which the model predicts the CAG. This can assess whether the

model identification process is correct and provide aid to the

endoscopist for diagnosis.
3 Results

3.1 Dataset

A total of 10,961 endoscopic images and 118 video clips from

4,050 patients were included in the study. To train the final model,

the internal image dataset was randomly divided into training,

validation, and internal test sets at a ratio of 3:1:1. The training and

validation sets were used to train the model. The internal test set

was not involved in the training and was only used to evaluate the

diagnostic capability of the model. The details of the internal image

dataset, external test dataset, and video test set are listed in Table 1.
3.2 Model comparison

We tested five DL models on our internal test set, and the test

results are listed in Table 2. The main performance metrics of the

GAM-EfficientNet are higher than those of the other four networks.

The combined performance metric F-Score of GAM-EfficientNet is

94.26%, higher than the second-best performer, EfficientNetV2-M,

by 1.4 percentage points. Supplementary File 1 contains complete

training and testing process data for the models.
FIGURE 3

GAM-EfficientNet architecture. Conv represents convolution; Pooling is average pooling layer; FC is full connection layer; Ä represents element-wise
multiplication; ×n is repeat times.
FIGURE 2

Training process of the four networks.
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3.3 Performance evaluation

Three endoscopists tested the internal and external test sets

without being aware of the pathology results. The test results of

GAM-EfficientNet and endoscopists are listed in Table 3. The ROC

curves are shown in Figure 5. The area under the curve (AUC) of

the GAM-EfficientNet was 98.79% (95% CI: 0.98 to 0.99) for the

internal test set and 99.46% (95% CI: 0.99- 1.00) for the external test

set. No overlap occurred between GAM-EfficientNet and the

endoscopists. This indicated that AUC was statistically

significantly different between GAM-EfficientNet and the

endoscopists. The performance of GAM-EfficientNet in

diagnosing CAG was significantly higher than that of

the endoscopists.

We attempted to determine the reasons for these model

prediction errors. In the internal test set, 120 images were

incorrectly predicted, including 59 FN images from 48 patients

and 61 FP images from 51 patients. Three endoscopists

collaboratively diagnosed the 120 misidentified images. If
Frontiers in Oncology 05
endoscopists disagree on the diagnosis, they resolved through

discussion. Of the 59 FN images, only four were diagnosed

correctly. Nine of the 61 FP images were correctly identified. We

found that it was difficult for experienced endoscopists to evaluate

the images that the model incorrectly predicted. We analyzed the

causes of these prediction errors. This study used pathology results

as the gold standard and endoscopists selected the images in the

dataset. However, the following two cases cannot be excluded: the

endoscopist did not take the atrophy site when taking the

pathology, and the image did not contain the area of pathology.

In addition, different light intensities and angles could also affect the

judgment of the model.

The Grad-CAM heatmap highlights the regions of interest of

the GAM-EfficientNet in red, yellow, and green. As shown in

Figure 6, the endoscopists labeled some of the images with

atrophied regions and compared them with the heatmaps

generated by the model. The endoscopists’ annotations were

generally consistent with the areas of concern for the model. In

summary, GAM-EfficientNet can focus on meaningful regions in
TABLE 1 Details of the three datasets.

Category
Internal image dataset vExternal validation set Video validation set

Patients Trian Set Validation Set Test Set Patients Image Patients

CAG 1,933 3,131 1,044 1,044 116 300 53

CNAG 1,785 3,085 1,028 1,029 98 300 65

Total 3,718 6,216 2,072 2,073 214 600 118
TABLE 2 Diagnostic performance of five models on the internal test set (n%).

Diagnosed by Sensitivity Specificity Precision Accuracy F1-score

ConvNeXt-L 92.91 90.09 90.49 91.50 91.68

ViT-B 93.40 90.38 90.78 91.90 92.07

Swin-B 92.53 89.12 89.61 90.83 91.05

EfficientNetV2-M 92.91 92.71 92.82 92.81 92.87

GAM-EfficientNet 94.35 94.07 94.17 94.21 94.26
fro
FIGURE 4

Channel attention and spatial attention submodule. MPL represents multi-layer perceptron; r represents reduction ratio; W, H, and C represent the
feature map’s width, height, and number of channels.
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endoscopic images for CAG predictions. Heatmaps can also provide

endoscopists with a visual basis for diagnosis.
3.4 Video verification

As the images used for model training, internal testing, and

external testing were selected by the endoscopist, GAM-

EfficientNet’s adaptation to more complex real-time endoscopic

environments need further validation. To test the model, we

collected video clips of 118 patients who underwent real-time

endoscopy. A separate model was trained to recognize blurred

frames in the videos. Blurred frames were ignored during the

GAM-EfficientNet diagnosis. To prevent the model from

misdiagnosis owing to one frame, we specified that five

consecutive frames were diagnosed as CAG. Otherwise, the

patient was diagnosed as having CNAG. Three endoscopists
Frontiers in Oncology 06
independently diagnosed the videos based on their experience.

The diagnostic results of the model and endoscopists are listed in

Table 3. Supplementary Video 1 shows an example video of the

model diagnostic process, which was converted to 10 fps to provide

a better view of the diagnostic process. In the video test set, the F1-

score and AUC of GAM-EfficientNet were 91.89% and 92.73%,

respectively, still higher than those of the endoscopist.
4 Discussion

Gastric cancer is the fifth most prevalent type of cancer and the

fourth most common cause of cancer-related deaths worldwide (1).

Gastric mucosal atrophy is a critical stage in gastric cancer

progression; the higher the degree of mucosal atrophy, the higher

the risk of cancer (3). If we can improve the recognition of CAG and

timely intervention, the incidence of gastric cancer and the
TABLE 3 Diagnostic performance of GAM-EfficientNet and three endoscopists (n%).

DataSet Diagnosed by Sensitivity Specificity Precision Accuracy F1-score AUC(95%CI)

Internal test set

Endoscopist1 88.70 85.33 85.98 87.02 87.32 87.01(95% CI:0.85-0.89)

Endoscopist2 87.84 86.59 86.92 87.22 87.37 87.21(95% CI:0.86-0.89)

Endoscopist3 89.85 87.66 88.08 88.76 88.95 88.75(95% CI:0.87-0.90)

Endoscopists All 88.8 ± 0.82 86.53 ± 0.95 87 ± 0.86 87.67 ± 0.78 87.88 ± 0.76 87.66 ± 0.78

GAM-EfficientNet 94.35 94.07 94.17 94.21 94.26 98.79(95% CI:0.98-0.99)

External test set

Endoscopist1 88.70 85.33 85.98 87.02 87.32 87.17(95% CI:0.84-0.90)

Endoscopist2 87.84 86.59 86.92 87.22 87.37 85.67(95% CI:0.82-0.89)

Endoscopist3 89.85 87.66 88.08 88.76 88.95 86.17(95% CI:0.83-0.9)

Endoscopists All 87.22 ± 1.1 90.44 ± 0.42 90.12 ± 0.47 88.83 ± 0.72 88.65 ± 0.77 88.83 ± 0.72

GAM-EfficientNet 93 94 93.94 93.5 93.47 99.46(95% CI:0.99-1.00)

Video test set

Endoscopist1 90.57 89.23 87.27 89.83 88.89 89.90(95% CI:0.84-0.96)

Endoscopist2 90.57 87.69 85.71 88.98 88.07 89.72(95% CI:0.83-0.96)

Endoscopist3 88.68 90.77 88.68 89.83 88.68 89.13(95% CI:0.83-0.96)

Endoscopists All 89.94 ± 1.09 89.23 ± 1.54 87.22 ± 1.48 89.55 ± 0.49 88.55 ± 0.42 89.58 ± 0.4

GAM-EfficientNet 96.23 89.23 87.93 92.37 91.89 92.73(95% CI:0.87-0.98)
B CA

FIGURE 5

ROC Curve of GAM-EfficientNet and endoscopists. (A) Internal test set; (B) External Test Set; (C) Video Test Set.
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mortality rate will be reduced. In recent years, DL technology has

achieved considerable success in image recognition, and its

application in assisted gastroscopy diagnosis is of great

significance in improving disease recognition rates.

In this study, we created a new DL network, GAM-EfficientNet,

based on EfficientNetV2-M by adding a GAM module. GAM

introduces spatial and channel attention mechanisms that allow

the network to focus more on valuable regions in the image. GAM-

EfficientNet outperforms the other networks mentioned in the

paper in terms of recognition ability, with sensitivity, specificity,

and accuracy of 93%, 94%, and 93.5%, respectively, on the external

test set. CAG is a precancerous disease that requires a high recall

rate to reduce the number of missed diagnoses. The precision and

recall rates of the GAM-EfficientNet were 93.94% and 93%,

respectively, on the external test set, which suggests that the

model has high precision and a low probability of missing

diagnosis. The comprehensive evaluation indices F1-score and

AUC were 93.47% and 99.46%, respectively, indicating the high

value of the model as an aid to diagnosis. It provides a visual

diagnostic basis for the endoscopist by generating a heatmap

showing the areas of attention where the GAM-EfficientNet

makes decisions.

To further validate the model’s performance, we tested it on a

video test set and compared it with that of the three endoscopists.

The results showed that the F1-score and AUC of GAM-

EfficientNet were 91.89% and 92.73%, respectively, 1.58 and 6.73

percentage points lower than those on the external test set,

respectively. The performance of all three endoscopists on the

video test set improved, but remained lower than that of

GAM-EfficientNet.

The model has limitations and scope for further improvement,

notably the following: (1) Multi-center study. The training set
Frontiers in Oncology 07
images used in this study were obtained from one hospital, and

they were high-quality images screened by endoscopists. However,

the images may require more diversity. In a real environment,

different devices and parameter settings can affect endoscopic image

imaging, and factors such as the angle, light, food residue, and

digestive fluid can affect the evaluation of the model. In the future,

we will include multiple centers to collect more images of different

models of endoscopic devices for training, to improve the

generalization ability of the model. (2) The classification was

further refined according to the severity of atrophy. In this study,

we identified only CAG and did not distinguish its severity. The

degree of atrophy may differ from the pathological findings at

different positions in the same patient. In the future, we will collect

endoscopic images strictly according to the locations where the

pathological biopsy was conducted, and classify and train according

to the pathological results showing the degree of atrophy, to

improve the recognition effect of the model. (3) Labeling of

atrophy sites. Our classification model only provides diagnostic

results for the image, although the heatmap can provide some

indications of the atrophy site. Ideally, the area of atrophy should be

outlined precisely in the image, providing a more visual aid to the

endoscopists. However, this is a challenging task. (4) The

performance of AI may have been overestimated. All images in

the experiment were selected by the endoscopists, which may have

led to overfitting of the model. Although we used videos to simulate

a real environment, the videos did not include other lesions. With

the inclusion of other lesions, the recognition ability of the model

requires further validation, which is one of our future works.

In this study, we constructed a deep learning-based CAG

recognition model with higher diagnostic performance than that

of endoscopists. This can provide an objective and reliable

diagnostic basis for endoscopists.
FIGURE 6

Feature heatmaps of the GAM-EfficientNet. To improve the quality of the heatmaps, we cropped the original endoscopic image and did not
compress it.
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