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The interplay between platelets and tumors has long been studied. It has been

widely accepted that platelets could promote tumor metastasis. However, the

precise interactions between platelets and tumor cells have not been thoroughly

investigated. Although platelets may play complex roles in multiple steps of

tumor development, most studies focus on the platelets in the circulation of

tumor patients. Platelets in the primary tumor microenvironment, in addition to

platelets in the circulation during tumor cell dissemination, have recently been

studied. Their effects on tumor biology are gradually figured out. According to

updated cancer hallmarks, we reviewed the biological effects of platelets on

tumors, including regulating tumor proliferation and growth, promoting cancer

invasion andmetastasis, inducing vasculature, avoiding immune destruction, and

mediating tumor metabolism and inflammation.

KEYWORDS
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1 Introduction

As early as 1865, an association between cancer and thrombosis, closely linked to

platelets, was observed by Trousseau (1). Clinical evidence suggested that thrombocytosis

(elevated platelet counts) was correlated with increased cancer risk (2, 3), and high platelet-

to-lymphocyte ratio (PLR) or increased platelet count was revealed as an adverse

prognostic factor (4, 5). Technological advancement has made it possible to analyze

proteins and RNAs of platelets comprehensively, challenging the old understanding of

platelet transcriptome (6, 7). As a result, numerous studies have revealed that the proteins

and RNAs within platelets vary among individuals with or without cancer, as well as
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between different cancer types. Tumor-educated platelets (TEPs),

which are platelets isolated from the circulation of cancer patients

and have distinct RNA and protein profiles, have emerged as

potential indicators in liquid biopsies (8).

Platelets play a crucial role in invasive potential, intravasation,

and survival in the circulation, arrest, adhesion, and extravasation

into secondary sites during the hematogenous spread of tumor cells

(9, 10). Platelets probably affect other aspects of cancer other than

hematogenous metastasis. The hallmarks of cancer have evolved in

2022 as a result of further understanding of cancer (11). The initial

six hallmarks of cancer include sustaining proliferative signaling,

evading growth suppressors, resisting cell death, enabling

replicative immortality, inducing/accessing vasculature, and

activating invasion and metastasis (12). Two more “emerging

hallmarks” comprise reprogramming cellular metabolism and

avoiding immune destruction (13). Unlike the aforementioned

acquired capabilities, genome instability and tumor-promoting

inflammation were defined as “enabling characteristics”. With

increasing recognition of the tumor microenvironment (TME) in

cancer development and the rapid progress of both the breadth and

depth of cancer research, four new concepts comprising unlocking

phenotypic plasticity, non-mutational epigenetic reprogramming,

polymorphic microbiomes, and senescent cells were put forward

(11). Platelets might play complex roles in multiple steps of tumor

development and affects several hallmarks of cancer.

The tumor microenvironment is a complicated system

composed of various non-cancerous cells (e.g., endothelial cells,

fibroblasts, adipocytes, and immune cells) and non-cellular

components (e.g., extracellular matrix, cytokines, growth factors,

and extracellular vesicles). Platelets were engaged in tumor

development along with other components of the tumor

microenvironment through abundant tumor neovascularization
FIGURE 1

Platelets in the primary tumor microenvironment and hematogenous metast
dissemination of tumor cells. Furthermore, platelets extravasate into the tum
interactions can affect the biological behavior of tumor cells (cancer hallmar
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(14). Evidence showed that platelets probably existed in the TME,

but the underlying molecular mechanisms remain to be explored

(15). We speculated that except the direct contact with tumor cells

in the circulation, platelets could also adhere to highly permeable

blood vessels and extravasate into tumor stroma through vascular

leakage or other molecular pathways.

As a particular cellular component, the role of platelets in the

TME has not been fully revealed, and the specific contributions of

platelets to cancer require constant exploration. Thus, in

conjunction with advances in cancer concepts, this review

provides a synopsis of the contributions of platelets to cancer

progression to provide a clear map for future research (Figure 1).
2 Platelets in the tumor
microenvironment

Recent studies associated with cancer biology no longer focused

solely on tumor cells but were based on the network of TME. To

better understand the biological significance of platelets in cancer

progression, the precise locations of platelet–tumor interactions

need to be figured out. Research found that platelets infiltrated into

the tumor stroma and had the predictive value in patients with

pancreatic and colorectal cancer (16–18). Platelets exist in the TME

of ovarian, melanoma, lung, and colorectal cancers (15, 19–22).

Through the injection of platelets labeled with yellow fluorescence

protein (YFP), extravascular platelets were found in the tumor bed,

and the platelets outside blood vessels were tumor-specific

compared with those in the peritonitis (20, 22). Therefore, like

tumor-associated fibroblasts, platelets in the primary tumor

microenvironment could be termed tumor-associated

platelets (TAPs).
asis. Platelets and tumors interact during the hematogenous
or microenvironment via neovascularization leakage. Platelet-tumor cell
ks) through platelet activation, surface receptors, and released factors.
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Not only platelet secretion but also the platelet itself can

regulate the network of TME through vascular leakage (14).

Platelet depletion by anti-platelet antibodies can significantly

reduce microvessel density (20). Moreover, platelets in the

primary TME can modulate the structure of tumor vessels by

inducing vascular permeability (21). Platelets participate in

vascular maturation and change the extracellular matrix (ECM),

which is connected to the capacity of tumor cells to extravasate from

the original site, indicating that platelet strongly affects the initial

invasion of tumor cells. Meanwhile, the process of platelet

extravasation has been explored. Platelet focal adhesion kinase

(FAK) protein regulates their migration into TME (22).

Platelets play multiple roles in cancer biology through platelet-

related molecules in the tumor microenvironment. The endocytic

mechanism of platelets can ingest and store proteins derived from a

tumor, thereby modulating the tumor microenvironment (23).

Otherwise, platelet-derived microparticles (PMPs) infiltrating

solid tumors can transfer RNAs to tumor cells (24). Micro-RNAs

(miRNAs) and microparticles derived from platelets have emerged

as novel research targets. Additionally, the bone and bone marrow

microenvironment, which are connected with cancer bone

metastasis, can facilitate the communication between cancer cells

and platelets (25, 26).
2.1 Effects of TAPs on tumor proliferation
and growth

Tumor cells have the fundamental hallmarks of sustaining

proliferative signaling, evading growth suppressors, and resisting

cell death. As has been demonstrated, platelets promote tumor

growth and proliferation in ovarian, breast, lung, glioma, and

hepatocellular carcinoma, as well as osteosarcoma (27–32).

Activation of platelets was reported to contribute to tumor

growth in vivo in pancreatic cancer (33). After the anti-

angiogenic therapy withdrawal, the platelet infiltration in TME

increases, and the tumor growth accelerates (22). However, another

study observed that the interactions between platelets and tumor

cells in colorectal cancer led to the release of different types of

microparticles which, although inducing epithelial-to-

mesenchymal transition of tumor cells, incurred the intratumoral

macrophages and reduced tumor growth (15).

Additionally, the glycoprotein (GP)VI on the platelet surface

aided in the growth of primary tumors in Lewis lung carcinoma or

melanoma (34). The latest study using a mouse model of

hepatocellular carcinoma (HCC) with non-alcoholic fatty liver

disease (NAFLD) also found an unexpected result that platelets

suppressed liver cancer growth via activating CD8+T cells (35).

Although most studies have suggested that platelets facilitate tumor

growth, the precise mechanisms behind these phenomena remain

unknown. It appears that different tumor types and different

platelet-derived receptors and secretions had distinct effects on

tumor proliferation and growth.
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2.2 Effects of TAPs on cancer invasion
and metastasis

The effects of tumor cells-TAPs interaction on invasion-

metastasis cascades have been confirmed, including promoting

epithelial-mesenchymal transition (EMT) of cancer cells,

protecting circulating tumor cells (CTCs) survival in the

bloodstream, enhancing adhesion to endothelial cells, and further

extravasating into distant sites (15). Growing evidence suggests that

anti-platelet agents are effective in hindering tumor metastasis.

Upon tumor cells detaching from the primary tumor, invading

the surrounding site, and subsequently arriving in the bloodstream,

platelets are the first cells to contact with. Tumor cells initiate

platelet activation through various mechanisms for stable adhesion,

which allows platelets to protect CTCs from high shear stress and

immune surveillance (36). Coating with platelets, tumor cells have

increased adhesion to the vessel wall and be trapped within

capillaries. The secretion of bioactive molecules from platelets

assists tumor cells in vascular permeability and trans-endothelial

migration. Several molecular mechanisms have been reported in

this process, including Fcg receptor IIa (FcgRIIa), C-type lectin-like
receptor 2 (CLEC-2), glycoprotein VI (GPVI), transforming growth

factor-b (TGF-b), heat shock protein 47 (HSP47), integrin a2b1&
a6b1, adenosine triphosphate (ATP), and lysophosphatidic

acid (LPA).

The immunoreceptor tyrosine-based activation motif (ITAM)

containing receptors on platelets were rarely studied on the cross-

talk between platelets and tumor cells. FcgRIIa, CLEC-2, and GPVI

have been investigated as key members of these receptors for

mechanisms concerning thrombosis and metastasis. FcgRIIa is

required for prostate tumor cell-induced platelet activation

(TCIPA), which is dependent on adenosine 5′-diphosphate
(ADP) secretion from dense platelet granules, followed by platelet

aggregation (37). Downstream signals of the ITAM cascade are

potential mediators of tumor cell-induced platelet secretion

(TCIPS), such as Syk kinase, phospholipase C, and protein kinase

C. Pharmacologic antagonists of these signals as well as inhibitors of

FcgRIIa have a critical impact on TCIPS and TCIPA. It was

assumed that when platelets are exposed to prostate cancer cells,

integrin aIIbb3-FcgRIIa-P2Y12 cross-talk transduces the signal to

release ADP whose receptor P2Y12 amplifies the response, thereby

promoting platelet aggregation. Previously, the collaborative

signaling of integrin aIIbb3 and FcgRIIa was established during

thrombus formation (38). Furthermore, immunoglobulin G (IgG)

derived from cancer cells acts on platelet FcgRIIa, leading to platelet
activation (39). Taken together, integrin/ITAM pair, cancer cell

derived-IgG, FcgRIIa on platelets, and ADP secretion may be

potential targets to cut off signaling during cancer cell induced-

platelet activation.

CLEC-2, primarily expressed on platelets, is a receptor for

platelet-activating snake venom and contains a hemi-ITAM (40).

Podoplanin (PDPN), also known as aggrus, encodes a glycoprotein

associated with cell migration and adhesion and is over-expressed
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in a variety of tumor cells (41). As the key endogenous ligand for

CLEC-2, PDPN plays crucial roles in inducing platelet activation

and aggregation (42). The research showed that thrombus

formation was suppressed and experimental hematogenous

metastasis in lungs was decreased in CLEC-2-depleted mice (43).

Moreover, recombinant rhodocytin was generated by binding to

CLEC-2 to inhibit platelet aggregation and lung metastasis (44).

Mutant rhodocytin and anti-podoplanin antibodies also reversed

platelets promoting lung colonization in osteosarcoma (45). These

results suggest that the interactions between CLEC-2 and PDPN are

essential to TCIPA which is the protection of tumor cells in

hematogenous metastasis (46). CLEC-2-PDPN axis becomes

promising for antiplatelet and antitumor drugs. By blocking the

CLEC-2-PDPN interaction through a polysaccharide-containing

fraction from Artemisia argyi or cobalt hematoporphyrin (Co-

HP), TCIPA and, subsequently, tumor metastasis can be inhibited

(47, 48). Moreover, it has been speculated that CLEC-2 depletion

did not show severe bleeding tendency, so that to some extent

targeting platelet CLEC-2 is a safe treatment strategy (43, 46, 48). In

addition, PDPN is also expressed in tumor stroma, including

cancer-associated fibroblasts (CAFs) (49). PDPN-positive CAFs

exhibit poor clinical outcomes in cancers of the lung (50), breast

(51, 52), pancreas (53), and esophagus (54). PDPN-expressing

CAFs are tumor-promoting by constructing immunosuppressive

TME, which may be modulated by TGF-b production and CD204+

tumor-associated microphages infiltration (55, 56). PDPN-positive

CAFs generate tracks through Rho-ROCK pathway to assist with

cancer cell invasion in the extracellular matrix (57). Taken together,

platelets and CAFs are likely to mediate tumor cell activities in

tumor stroma jointly through CLEC-2 and PDPN, but the

underlying mechanisms have not yet been studied.

Glycoprotein VI (GPVI), an immunoglobulin superfamily

receptor, exerts multiple functions of platelets, particularly

collagen-induced platelet activation. GPVI is demonstrated to

promote colon and breast cancer cell metastasis by enhancing

vascular permeability in response to its counter receptor galectin-

3 on tumor cells. GPVI blockade using JAQ1 F(ab′)2 impairs

platelet–tumor cell interactions and metastasis with only minor

hemostatic side effects (58). Moreover, because GPVI is a critical

regulator of vascular integrity in growing tumors, it becomes a

promising target for antimetastatic therapies. Functional inhibition

of platelet GPVI induces intra-tumoral bleeding and increases the

efficacy of chemotherapeutic drugs (59). Although the involvement

of GPVI in metastasis has rarely been studied (60–62), a few studies

have reported that GPVI promotes experimental metastasis in

Lewis lung carcinoma and melanoma models (34), and that GPVI

inhibitor (revacept) and galectin-3 inhibitors prevent colon cancer

metastasis in animal models (63). Very recently, an organ-on-chip

platform called ovarian tumor microenvironment chip (OTME-

Chip) was developed to verify how platelets extravasate through the

endothelium into the tumor microenvironment, promoting tumor

cell proliferation, metastasis, and chemoresistance. Again, the

GPVI-galectin-3 interaction was identified to play a critical

regulatory role in platelet–tumor interactions (64). Collectively,

GPVI is exclusively expressed in platelets and megakaryocytes
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and hardly affects hemostasis as an antithrombotic target (65).

Hence, targeting GPVI is a safe and effective antimetastatic strategy.

Reversible phenotypic changes in epithelial-mesenchymal

transition of cancer cells involve loss of intercellular adhesion and

enhanced motility and invasiveness. Platelets aid in the EMT

process by enabling tumor cells to detach from the surrounding

tissue of the primary tumor and intravasate into the circulation

(66). TGF-b is one of the most important promoters in the EMT of

tumor cells. Mesenchymal CTC clusters attached to platelets show

high TGF-b signatures (67). It is pointed out that platelet-derived

TGF-b could synergistically activate the TGF-b/Smad signaling and

NF-kB pathways in tumor cells, and that abrogation of TGF-b
signaling was sufficient to inhibit metastasis and EMT (68).

Likewise, podoplanin-mediated EMT could be suppressed by a

TGF-b neutralizing antibody (69). As an essential signaling

molecule, TGF-b secreted from activated platelets is involved in

mul t ip le s teps of metas tas i s cascades cons i s t ing of

immunosurveillance, EMT, and invasiveness.

Interestingly, cancer cell-platelet interaction can be enhanced

by the EMT process. Heat shock protein 47 (HSP47), a collagen-

binding protein, has been found to be overexpressed in breast

cancer and glioblastoma multiforme (GBM). Expression of HSP47

is correlated with cancer metastasis and tumor grade (70, 71).

HSP47 is exposed on the surface of the platelet. It contributes to

thrombosis and hemostasis, and its inhibitor, Col003, prevents the

contact between platelet and collagen by inhibiting GPVI and

mitogen-activated protein kinase (MAPK) signaling (72, 73).

Furthermore, HSP47 expression in glioma vessels promotes

glioma angiogenesis via HIF1a-VEGFR2 signaling (74). More

importantly, the HSP47/collagen axis, which is crucial for cancer

cell-platelet interaction, has been shown to promote cancer

colonization and metastasis (75). During EMT, increased

expression of HSP47 and collagen induces platelet recruitment

and subsequently enhances CTCs clustering and extravasation. In

the experiment, knockdown and silencing of HSP47, as well as the

antibodies of collagen receptors in platelets (e.g., integrin a2b1
antibody and GPVI antibody (jAQ1)) are used to inhibit collagen-

platelet interaction. However, targeting the interaction between

HSP47 and collagen may depend on the small-molecule

compound Col003 (76). Another study suggests that HSP47 could

induce tumor cell stemness through the TGF-b pathway, implying a

positive feedback loop between cancer cell–platelet interaction and

EMT induction.

Among the three b1 integrin family members expressed on

platelets, a2b1 and a6b1 are involved in direct interaction between

tumor cells and platelets. According to recent research, integrin

a2b1 is involved in platelet contact with the human breast cancer

cell line MCF-7 and promotes EMT of tumor cells by activating the

Wnt-b-catenin pathway. The activated Wnt-b-catenin pathway

promotes the secretion of TGF-b1 in tumor cells and, in

conjunction with TGF-b1/pSmad3 pathways, enhances the

transcription of Snail and Slug, which are correlated with EMT

(77). Both knockout of integrin a6 in the megakaryocytic lineage

and pharmacological blocking of integrin a6 by GoH3 diminished

experimental lung metastasis in mice. The study also identified
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ADAM9, which is expressed on tumor cells, as the counter receptor

of a6b1. Their direct binding benefits platelet recruitment to CTCs

and their subsequent activation and granule secretion. The interplay

between platelet a6b1 and tumor ADAM9 facilitates tumor cell

intravasation and extravasation, as evaluated by the trans-

endothelial migration in vitro and in vivo (78). The potential role

of the platelet b1 integrin family in tumor metastasis needs more

experimental evidence and clinical studies (79).

The establishment of metastasis is inseparable from tumor cell

arrest, adhesion, and extravasation in a distant site. ATP plays a

vital role in the disruption of endothelial junctions. ATP secreted by

tumor cell-activated platelet dense granules was identified to act on

P2Y2 receptor on endothelial cells and induce tumor cell

extravasation and metastasis, especially tumor cell endothelial

transmigration (80). Later studies also showed that ATP from the

tumor microenvironment was involved in cell invasion or

metastasis in breast, prostate, and gastric cancer via the P2Y2

receptor expressed in tumor cells (81–83).

Numerous studies have shown that platelet-derived

lysophosphatidic acid (LPA) supports metastasis in breast cancer,

ovarian cancer, osteosarcoma, and glioblastoma (84–86). The

mechanism by which platelets contribute to cancer metastasis

through LPA depends on autotaxin (ATX) which is overexpressed

in multiple types of cancers and stored in a-granules of resting

platelets. When tumor cells initiate platelet activation, ATX is

released and mediates the production of LPA through its

lysophospholipase D activity (87–89). Platelets are major sources

of LPA, which regulates a variety of pleiotropic activities, such as

proliferation, survival, motility, and autophagy (90). LPA receptor 1

(LPAR1) expressed in cancer cells is considered as an important

response to LPA, and the absence of LPAR1 may affect vascular leak

(84, 86, 88, 91). Tumor CD97, an adhesion G protein-coupled

receptor (GPCR), stimulates platelet activation and mediates CD97-

LPAR signaling (92). LPA is regarded as a significant bioactive

molecule in tumor cell proliferation, invasion, and migration,

especially trans-endothelial migration through vascular

permeability. Therefore, the ATX-LPA signaling pathways give a

new prospect, and LPAR1 and CD97 become promising therapeutic

targets in the fight against cancer metastasis (93, 94). Interestingly,

LPA and sphingosine 1-phosphate (S1P) also take part in

angiogenesis by acting on endothelial cells (95).
2.3 Effects of TAPs on inducing or
accessing the vasculature

The contribution of platelets to tumor angiogenesis has long

been recognized. Multiple molecules secreted from platelet a-
granules exhibit pro- and anti-angiogenic properties. However,

the precise mechanisms of platelet granule secretion by different

stimulations have not been fully understood. Pro-angiogenic factors

contain vascular endothelial growth factor (VEGF), platelet-derived

growth factor (PDGF), basic fibroblast growth factor (bFGF, also

known a s FGF2) , ep ide rma l g rowth fac to r (EGF) ,

metalloproteinases (MMPs), etc. Anti-angiogenic factors include

thrombospondin-1 (TSP-1), sphingosine 1 -phosphate (S1P),
Frontiers in Oncology 05
endostatin, platelet factor 4 (PF4/CXCL4), and so on. Previous

studies showed that pro- and anti-angiogenic factors in separate

platelet a-granules are released differently. Proteinase-activated

receptors (PARs) counter-regulate the release of pro- and anti-

angiogenic factors. To be specific, PAR1-activating peptide (PAR1-

AP), ADP (via P2Y1/P2Y12), and GPVI-targeting collagen-related

peptide induce the expressions of stromal cell-derived factor-1a
(SDF-1a/CXCL12) and VEGF, but not endostatin. In contrast,

PAR4 activation stimulates endostatin and platelet factor 4 release

but suppresses the release of VEGF and SDF-1a (96–98). Similarly,

adenosine diphosphate (ADP) and thromboxane A2 (TXA2) also

counter-regulate platelet release and have the opposite effect on

angiogenesis. ADP stimulates the release of VEGF and promotes the

migration and formation of capillary structures. Conversely, the

release of endostatin stimulated by TXA2 has an inhibitory

effect (99).

Pro-angiogenic platelets, which are the drivers for the tumor’s

angiogenic switch to break dormancy, can mediate the primary

tumor’s effect on the systemic macroenvironment (26). Platelet a-
granules are required for bone marrow-derived cell (BMDC)

recruitment which is also important for the angiogenic process

(100). Platelet-derived growth factor B (PDGFB) in platelet

maintains tumor vessel integrity in the TME, which is dependent

on the recruitment of pericytes (101). Chemotherapy targeting

tumor vasculature also utilizes platelet biomimetic technology to

achieve intra-tumoral vascular destruction (102).
2.4 Effects of TAPs on avoiding
immune destruction

The most essential aspect of tumor immunosurveillance has

been the engagement of natural killer (NK) cells through

cytotoxicity and IFN-g production (103–106). Platelets may

directly protect tumor cells from NK tumor-lytic activity. Apart

from surface shielding by platelet aggregates, numerous

investigations showed that the interaction between platelet and

fibrin (or fibrinogen) plays a crucial role in immune evasion (107,

108). Salih and colleagues explored various mechanisms, including

the down-regulation of NKG2D on NK cells by platelet-derived

TGF-b, platelet-derived MHC class I transfer onto the tumor cell

surface, and forward signals from platelet-expressed glucocorticoid-

induced TNF-related ligand (GITRL) to GITR on NK cells that

result in the impaired anti-tumor reactivity of NK cells (109–111).

These findings shed light on how platelets impact tumor-NK cell

interactions. Overexpression of a hypoxia-inducible factor (HIF)-

target gene in renal cancer cells may also enhance platelet binding,

protecting cancer cells from NK cell-mediated cytotoxicity (112).

Platelets have also been proven to impact adaptive immunity.

TGF-b and lactate are major immunomodulators of T cell activity

from platelet releases. Platelet-intrinsic glycoprotein A repetitions

predominant (GARP) that dominantly contributes to TGF-b
activation subsequently suppresses CD4+ and CD8+ T cells.

Platelet-specific deletion of GARP by gp96, a molecular chaperone

of GARP and GPIb-IX-V, leads to enhanced tumor-specific T-cell

immunity (113). The authors then discovered that platelet GARP
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cleavage, which is required for TGF-b maturation, is thrombin

dependent. Thrombin inhibition reduces activated TGF-b and

hence avoids immune tolerance (114). Therefore, the GARP-TGF-b
axis may be the molecular mechanism of combination therapy of

immunotherapy and anti-platelet agents in cancer (113, 115).
2.5 Effects of TAPs on tumor-promoting
inflammation

Platelets participate in the inflammatory process, including

interactions with leukocytes and endothelial cells, in addition to

their vital functions in hemostasis and thrombosis. Platelets recruit

and activate various immune cells and promote the secretion of

cytokines through surface proteins and the release of pro-

inflammatory or regulatory inflammatory factors (10).

Granulocytes can be recruited to form early metastatic niches

through CXCL5/7 chemokines derived from platelets (116).

Immune responses to tumors, like infections, are large and

complex, involving various cellular components and molecular

pathways. The interactions between platelets and host immune

cells potentially influence tumor-promoting inflammation (66).

Neutrophils, the main component of the innate immune

system, respond to infection and are involved in tumors.

Platelets–neutrophils cross-talk in infection and tumor is

inseparable from neutrophil extracellular traps (NETs), a web-like

structure composed of extracellular DNA decorated by histones and

granular proteases. Platelets induce NET formation and bind to

them, while NETs act as a scaffold for platelet adhesion and

aggregation and facilitate platelet activation (117–119). A recent

study demonstrated that surgical stress-activated platelets facilitated

NETs-mediated capture of CTCs and synergized with the enhanced

aggregation of platelet–tumor cells, contributing to distant

metastasis via the Toll-like receptor 4 (TLR4)-ERK5-integrin

GPIIb/IIIa axis (120). The high affinity between NETs and

platelet-coated-CTCs created favorable conditions for tumor cell

dissemination after surgical inflammation.

Furthermore, TLR4 is a mediator in microbial and sterile

inflammation, as well as an important component of the

lipopolysaccharide (LPS) receptor signaling complex expressed on

platelets (121). The TLR4 pathway can activate platelets in response

to high-mobility group box1 (HMGB1) released from dying tumor

cells destroyed by NK cells and shear stress (122). These studies

indicated that TLR4 on platelets is a potential target for reversing

tumor-promoting inflammation and restrain tumor dissemination.
2.6 Effects of TAPs on deregulating
cellular metabolism

Metabolic changes affect tumor growth, survival, and

metastasis. Platelet metabolism is dependent on mitochondrial

functions for energy requirements and even the lifespan of

platelets (123). Intratumoral hypoxia triggers the release of

chemokines and growth factors in platelet granules, while

oxidative stress alters mitochondrial function of platelets (124).
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Platelets are metabolically active and can utilize glycolysis instead of

oxidative phosphorylation (OXPHOS). Although no studies have

shown that platelets can affect tumor cell mitochondria functions,

platelets are thought to be biomarkers of mitochondrial dysfunction

in cancers (125). Platelets can release mitochondria into circulation

and transfer mitochondria to other cells, such as mesenchymal stem

cells, under certain circumstances including wound healing,

inflammation, and cancer, thereby building bridges for cell

communications and promoting specific properties (126–129). In

addition, tumor cells can concentrate mitochondria in the most

active areas of the platelet–tumor cell process (130). As a result, we

can speculate that platelet–tumor cell interplays may affect the

mitochondria location and function of tumor cells. Platelets

promote the aggressive phenotype of tumor cells, and tumor cells

undergo metabolic reprogramming during EMT (131). The

metabolic advantages of CTCs that platelets may provide in

circulation include increased glucose uptake and lactate

production (132).
3 Perspectives

Given the recognition of the importance of TME, the roles of

non-tumor cell components in tumor initiation, growth, and

metastasis are increasingly studied. The roles of platelets in tumor

biology are gradually recognized, and significant progress has been

made in revealing the effects of platelets on cancer development.

Herein, we reviewed the essential molecular mechanisms

underlying tumor–platelet dynamic interactions from the

perspectives of cancer hallmarks (Figure 2). Several platelet

molecules can be potential anti-platelet targets and have

been verified by experiments in animal models. However,

platelet-targeted anti-tumor therapy has not formed a

prospective treatment regimen. Profound knowledge of tumor–

platelet interactions is critical for future research and novel

therapeutic interventions.

Aspirin is widely used to prevent and treat cardiovascular and

cerebrovascular diseases, and cyclooxygenase (COX) is an

important target of aspirin. Clinical evidence has demonstrated

that aspirin exerts the roles in chemoprevention of multiple cancers,

such as colorectal, gastric, pancreatic, and breast cancers (133–136).

However, numerous cohort studies found no effect or even

increased risks of several types of cancers (137). The efficacy of

aspirin for cancer prevention still needs more clinical trials to verify;

furthermore, whether the combination of aspirin and other agents

may be more effective than aspirin alone; whether patients can

benefit from aspirin in the presence of potential side-effects or apply

novel aspirin derivatives; whether aspirin can have a preventive

effect in different population types or specific cancer subtypes; and

whether the efficiency of aspirin may be dose-dependent,

particularly at low doses. Many questions must be answered so

that more individuals can benefit from aspirin use (138).

Furthermore, the efficacy of aspirin for adjuvant cancer therapy

has been validated (139). Aspirin inhibits platelet activation via

COX-1 and epithelia and tumor cells via COX-2. Although aspirin

and its metabolites have a variety of targets, platelet COX-1 may be
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FIGURE 2

Examples of interactions between platelets and tumor cells. Platelet surface receptors and released 880 granules provide favorable conditions for
tumor progression. Platelets recruit granulocytes via released factors and induce NET formation to bind to CTCs. Platelet surface receptors, such as
FcgRIIa and CLEC-2, bind to tumor cells and promote platelet activation and aggregation. LPA and ATP released by platelets as well as platelet GPVI
and integrin a6b1 aid tumor cell trans-endothelial migration. Platelets rich in TGF sources promote EMT of tumor cells. Platelets suppress NK and T
cell activity, allowing tumor cells to survive in the bloodstream.
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the key mechanisms for the anticancer effects of low-dose aspirin

(140). The anti-cancer effects of aspirin, which involve multiple

cancer hallmarks, including tumor growth (141), metastasis (142,

143), angiogenesis (144, 145), immune evasion (113), are consistent

with the platelet biology.

Drug delivery systems using nanoparticles are being developed

as an alternative therapeutic route for chemotherapeutic drug

transport that can minimize the side effects of chemotherapy in

cancer patients (146). Nanoparticles modified with P-selectin-

targeting agents contain the antiplatelet agent ticagrelor and the

anti-inflammatory agent celecoxib. This nanoplatform focuses on

tumor inflammation and tumor–platelet crosstalk and thereby

various steps of metastatic cascades can be influenced. Platelet-

blocking nanoparticles reduce the platelet-derived TGF-b and

downregulate CXCL5 which decreases granulocytes recruitment.

Inflammation inhibiting nanoparticles downregulate the MMPs

and reverse the inflammatory status. The combination has

synergetic effects on inhibiting EMT and interfering with

inflammatory microenvironment (147). Based on the essential

role of TGF-b in immune suppression and EMT, blocking the

major source of TGF-b, which are the platelets, is an essential

approach to prevent tumor metastasis. For this reason, Paclitaxel

and a nitric oxide (NO) donor-modified albumin shell is

constructed to release NO, which can block platelet functions

including aggregation, adhesion, and coagulation. Platelet-

induced EMT which includes morphological changes and

protein markers can be weakened. Obviously, the levels of TGF-

b derived from platelets can be downregulated so that tumor

immunosuppression can be reversed. In other words, NO-
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inhibited platelet can be restrained from contacting with tumor

cells which involves platelet adhesion around CTC, EMT, and

distant metastasis (148). Platelet membrane-coated nanoparticles

are also used as a biomimetic del ivery approach of

immunomodulator agents to inhibit tumor-promoting immune

signaling which can make efficient immunotherapy come true

(149). These studies exactly take advantage of platelet biological

characteristics and abundant connections with cells in the tumor

microenvironment. An important question is whether modified

platelets carrying cancer therapeutics can be used to target

established tumor masses in addition to tumor cells in the

circulation. Better understanding of the dominant role of

platelets in tumor progression has no doubt to be of guiding

significance. Whether directly targeting the interaction between

platelets and cancer cells by antiplatelet drugs or using platelets

themselves as anticancer drug carriers, these still need to be

verified in future clinical practice.

Both the old drug aspirin and the new nanotherapeutics

affect tumor development by inhibiting platelet activity. In

conclusion, platelet receptors, their binding partners,

signaling proteins, and soluble molecules are all potential

targets for anti-cancer drugs that target platelet–tumor cell

interactions. Extensive experimental evidence for antiplatelet

drugs supports the importance of platelets in tumor

progression. It is hoped that traditional anti-platelet drugs

and novel nanotechnology can be used in cancer treatment as

a result of a comprehensive understanding of platelet

physiology and the complex mechanisms underlying platelets

in cancer biology.
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Glossary

ATP adenosine triphosphate

ATX autotaxin

bFGF/FGF2 basic fibroblast growth factor

BMDC bone marrow-derived cell

CLEC-2 C-type lectin-like receptor 2

Co-HP cobalt hematoporphyrin

COX cyclooxygenase

CTC circulating tumor cells

ECM extracellular matrix

EGF epidermal growth factor

EMT epithelial-mesenchymal transition

FAK focal adhesion kinase

FcgRIIa Fcg receptor IIa

GARP glycoprotein A repetitions predominant

GBM glioblastoma multiforme

GITRL glucocorticoid-induced TNF-related ligand

GP glycoprotein

GPCR G protein-coupled receptor

GPVI glycoprotein VI

HCC hepatocellular carcinoma

HIF hypoxia-inducible factor

HMGB1 high-mobility group box1

HSP47 heat shock protein 47

IgG immunoglobulin G

ITAM immunoreceptor tyrosine-based activation motif

LPA lysophosphatidic acid

LPAR1 LPA receptor 1

LPS lipopolysaccharide

MAPK mitogen-activated protein kinase

miRNA micro-RNA

MMPs metalloproteinases

NAFLD non-alcoholic fatty liver disease

NETs neutrophil extracellular traps

NK natural killer

NO nitric oxide

OTME-Chip ovarian tumor microenvironment chip

OXPHOS oxidative phosphorylation

PAR proteinase-activated receptor

PAR1-AP PAR1-activating peptide
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PDGF platelet-derived growth factor

PDGFB platelet-derived growth factor B

PDPN podoplanin

PF4/CXCL4 platelet factor 4

PLR platelet to lymphocyte ratio

PMP platelet-derived microparticles

S1P sphingosine 1-phosphate

SDF-1a/CXCL12 stromal cell-derived factor-1a

TAP tumor-associated platelets

TCIPA tumor cell-induced platelet aggregation

TCIPS tumor cell-induced platelet secretion

TEP tumor-education platelets

TGF-b transforming growth factor-b

TLR4 toll-like receptor 4

TME tumor microenvironment

TSP-1 hrombospondin-1

TXA2 thromboxane A2

VEGF vascular endothelial growth factor

YFP yellow fluorescence protein
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