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Lung cancer is one of the most commonmalignant tumours worldwide, with the

highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are

reported annually; of which, 85% of deaths occur owing to non-small-cell lung

cancer (NSCLC). At present, the conventional treatment methods for NSCLC

include radiotherapy, chemotherapy, targeted therapy and surgery. However,

drug resistance and tumour invasion ormetastasis often lead to treatment failure.

The ubiquitin–proteasome pathway (UPP) plays an important role in the

occurrence and development of tumours. Upregulation or inhibition of

proteins or enzymes involved in UPP can promote or inhibit the occurrence

and development of tumours, respectively. As regulators of UPP, ubiquitin-

specific proteases (USPs) primarily inhibit the degradation of target proteins by

proteasomes through deubiquitination and hence play a carcinogenic or

anticancer role. This review focuses on the role of USPs in the occurrence and

development of NSCLC and the potential of corresponding targeted drugs,

PROTACs and small-molecule inhibitors in the treatment of NSCLC.

KEYWORDS

NSCLC, USPs, PROTACs, E3 ligase, signalling pathway
1 Introduction

Lung cancer is one of the most common primary malignant tumours. Non-small-cell

lung cancer (NSCLC) refers to any type of epithelial lung cancer except for small cell lung

cancer. It accounts for approximately 85% of the total lung cancer cases. NSCLC is

primarily divided into two types: lung squamous cell carcinoma (LUSC) and lung

adenocarcinoma (LUAD) (1). Recent studies have demonstrated that uncontrolled

intracellular protein homeostasis, especially abnormality of the ubiquitin–proteasome

pathway (UPP), plays an important role in the progression of NSCLC. Deubiquitinating
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1120828/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1120828/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1120828/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1120828/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1120828/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1120828&domain=pdf&date_stamp=2023-03-09
mailto:malitian1234@163.com
mailto:zjddln@163.com
https://doi.org/10.3389/fonc.2023.1120828
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1120828
https://www.frontiersin.org/journals/oncology


Yang et al. 10.3389/fonc.2023.1120828
enzymes (DUBs) play an important role in UPP, which is

responsible for removing the ubiquitin chain of protein

substrate in cells. Abnormal activity or expression of DUBs can

cause functional changes in key carcinogenic/tumour suppressor

proteins, leading to malignant transformation of cells (2, 3).

Ubiquitin-specific proteases (USPs), the largest subset of the

DUBs family, are expressed in different cancer cells and mediate

deubiquitination (4). Various USPs are abnormally expressed in

NSCLC cells, with most USPs having evident carcinogenic effects

and only a few USPs having beneficial effects (5–9). Targeting

USPs with carcinogenic effects may benefit patients with NSCLC.

Furthermore, E3 ligases mediate the binding of target proteins to

the proteasome, and enhancing or inhibiting their activity can

affect the degradation of target proteins. Therefore, E3 ligases may

participate in regulating the activity of tumour cells (10). In this

review, we summarised the role and mechanisms of action of USPs

in NSCLC, the effects of enhancing/reducing the activity of target

proteins through UPP and the potential of small-molecule

inhibitors and PROTACs technology in the treatment of NSCLC.
2 Ubiquitination and deubiquitination

Eukaryotic cells recognize and degrade proteins through UPP.

Substrate proteins bound to ubiquitin chains are directed to the 26S

proteasome for degradation. UPP is a major protein breakdown

mechanism in mammalian cells. The 26S proteasome consists of a

19S regulatory complex, which is responsible for recognizing

ubiquitinated proteins, and a 20S protein breakdown core, which

is primarily responsible for catalysing protein degradation (11).

Ubiquitination can be classified as monoubiquitination, in which a

Ub molecule is directly added to the lysine residue of a protein, and

polyubiquitination, in which a Ub chain is formed from a single

lysine residue on a substrate. The lysine residue and the N-terminal

methionine residue (M1) of Ub can serve as ubiquitination sites and

bind to Ub molecules to form different types of Ub chains. Seven

lysine residues, namely, K6, K11, K27, K29, K33, K48 and K63, are

known to be amenable to ubiquitination. K48- and K11-linked

polyubiquitin chains are mainly related to proteasomal degradation,

whereas K63-linked polyubiquitin chains are mainly involved in

signal transduction in cells (12, 13). E1 enzymes initiate the

modification of ubiquitination by adenylating Ub using ATP to

form a high-energy thioester bond between the C-terminal carboxyl

group of Ub and the thiol group of the cysteine residue of E1. The

activated Ub is subsequently transferred to the cysteine residue of

an E2 enzyme to form a similar thioester bond. Finally, an E3 ligase

recruits the E2 enzyme to facilitate the specific transfer of Ub to

substrate proteins, resulting in degradation of target proteins by the

proteasome (14). Ubiquitination is involved in several biological

processes, including but not limited to: enzyme activation,

regulatory interaction between proteins, signal transduction and

regulation of transcription (15).

E3 ligases are the key enzymes in ubiquitination, which

determine the reaction rate and substrate properties (16). E3 ligases

found in mammalian cells are categorised into three types according
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to their structural characteristics and mechanisms of action: really

interesting new genes (RINGs), homologous to E6AP C-terminus

(HECT) and RING-between-RING (RBR) ligases (17). RING E3

ligases catalyse the direct transfer of Ub from E2 enzymes to the

substrate, whereas HECT and RBR E3 ligases contain a catalytic form

of cysteine that receives Ub from E2 enzymes and transfers it to the

target protein. Studies have demonstrated that E3 ligases are closely

related to tumour development and may be involved in tumour

invasion, cell proliferation, apoptosis, DNA damage and repair,

tumour metabolism and immunity (10). The effects of E3 ligases

vary based on the target protein they bind to. For example, Pirh2, the

product of the human RCHY1 gene, is an E3 ligase containing a ring

structure that stabilises c-MYC and promotes the growth, invasive

ability and migratory ability of NSCLC (H1299) cells (18).

Homologous to the E6-associated protein carboxyl terminus

domain-containing 3 (HECTD3) is a member of the HECT E3

ligase family. Its overexpression primarily regulates K63

polyubiquitination and promotes MALT1 stabilisation, which

promotes the proliferation of angiotensin II receptor-positive breast

cancer cells (19, 20). Therefore, E3 ligases may play an oncogenic role.

Knockdown of the E3 ligase MKRN3 can increase the proliferation of

NSCLC cells, whereas upregulation of recombinant MKRN3 can

directly inhibit the growth and proliferation of NSCLC cells both in

vitro and in vivo. Therefore, E3 ligases may mediate the action of

MKRN3 and have certain tumour-suppressing effects (21). E3 ligases

mediate the degradation of substrate proteins and exert both

protective and detrimental effects. However, whether the

degradation of substrate proteins mediated by E3 ligases promotes

or inhibits tumours remains unclear.

Ubiquitination and deubiquitination are two mechanisms for

modifying protein homeostasis in cells. These mechanisms have

controllable and reciprocal characteristics and cooperate to

dynamically regulate various cellular processes (22). DUBs

catalyse deubiquitination and disrupt the bond between Ub

molecules and substrate proteins, thus acting as proofreaders for

protein degradation and preventing abnormal hydrolysis of active

proteins. The human genome encodes approximately 100 DUBs,

which can be roughly divided into two categories based on their

catalytic domain: cysteine proteases and metalloproteinases. The

seven subfamilies of DUBs are as follows: USPs, ubiquitin carboxyl-

terminal hydrolases (UCHs), ovarian tumour domain proteases

(OTUs), Machado–Joseph disease protein domain-containing

proteases (MJDs/Josephins), motif− interacting with ubiquitin

−containing novel DUB family (MINDYs) and zinc finger-

containing ubiquitin peptidase1 (ZUP1) belong to cysteine

proteases, whereas JAB1/MPN/Mov34 metalloenzymes (JAMMs)

belong to metalloproteinases (23–25). The deubiquitination

mechanism of cysteine proteases depends on the conserved

catalytic triad of amino acids, His-Cys-Asn/Asp. Histidine (His)

residues reduce the pKa of cysteine (Cys) residues and promote the

nucleophilic attack of Cys residues on isopeptide bonds, whereas

Asn/Asp residues usually play a role in the localisation and

polarisation of His residues (26). The deubiquitination

mechanism of metalloproteinases depends on the coordination of

His, aspartic acid and serine residues with zinc ions (27).
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USPs are the largest subset of the DUBs family, and

approximately 70 USPs have been identified in humans. The

functions of USPs are similar to those of DUBs. USPs can

recognise various substrates with Lys48-, Lys63- and Met1-linked

Ub chains, which are involved in several processes related to

tumour progression, including epithelial–mesenchymal transition

(EMT), tumour metastasis , alterations in the tumour

microenvironment, DNA damage repair and protein dysfunction

(4, 28, 29). USPs possess a highly conserved USP domain consisting

of three subdomains that resemble the palm, thumb and finger of

the right hand, respectively. The catalytic site of USPs is located

between the palm and thumb regions, and the catalytic centre of

USPs includes a C-terminal His Box and an N-terminal Cys Box

with catalytic His and Cys residues, respectively, at the interface

between the thumb and palm subdomains. The finger region is

responsible for interaction with Ub (30). In vivo studies have

reported that weak interactions between the Ub-binding domain

and monoubiquitin chains are passively regulated by various

mechanisms such as aggregation of Ub, modification of Ub and

concatenation of domains (31). Given that the substrate proteins of

USPs contain numerous cell homeostasis regulators, oncoproteins
Frontiers in Oncology 03
and tumour suppressor proteins, some USPs may serve as targets

for the development of anti-tumour drugs.

The ubiquitin-proteasome pathway has been shown in Figure 1.
3 PROTACs

Proteolysis-targeting chimaeras (PROTACs) are emerging

small molecules that use UPP to degrade target proteins and have

promoted unprecedented innovation in drug research and

development. Multiple PROTACs are undergoing evaluation in

phase I and II clinical trials (32–35). Advances in PROTAC

technology may lead to the development of novel strategies for

targeted therapy of cancer.

PROTAC is a chemical molecule containing different ligands at

two ends. One end binds to E3 ligases, whereas the other end binds

to intracellular proteins. The two ends are subsequently connected

by a linker to form a ternary complex: target protein-PROTAC-E3

ligase. Such chemical molecules can be polyubiquitinated by

recruiting targeted proteins to the vicinity of E3 ligases, resulting

in the degradation of target proteins by the 26S proteasome. Owing
A

B

D

E

F

C

FIGURE 1

Schematic representation of the ubiquitin–proteasome pathway and PROTACs. (A) A PROTAC, which has an E3 ligase ligand at one end and a
protein ligand at the other end, is connected by a linker in the middle to form a ternary complex: target protein–PROTAC–E3. Eventually, the target
protein is degraded by the 26S proteasome, and the PROTAC is retained. (B) Monoubiquitination. (C) Multiubiquitination. (D) Polyubiquitination.
(E) DUB-mediated deubiquitination (which disconnects target proteins from Ub). (F) Protein degradation products.
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to their recyclability, PROTACs are good candidates for cancer

therapy (36, 37). For example, PROTAC ARV-110, which uses UPP

to degrade the androgen receptor (AR) protein, has demonstrated

some efficacy in the treatment of prostate cancer, especially

metastatic castration-resistant prostate cancer (mCRPC). The

mechanism of action of ARV-110 differs from that of traditional

inhibitors. Because ARV-110 acts by degrading AR, instead of

inhibiting AR function, it may help to overcome drug

resistance (38).

PROTACs have several advantages over small-molecule

inhibitors. First, PROTACs act by degrading target proteins

instead of inhibiting their activity. Second, PROTACs may be

used for selective targeting of target subtypes. They can inhibit

the scaffold function of target proteins and improve the efficiency of

the warhead. Third, because the protective effects of PROTACs can

be achieved at lower doses, their use decreases the risk of dose-

dependent toxicity and promotes long-term adherence (39).

However, PROTACs have some disadvantages. Compared with

the common small-molecule Ub ligase inhibitors, PROTACs have

larger molecular weight and poor tissue and cell permeability in the

human body. Moreover, their clinical safety as drugs warrants

further investigation (40, 41).

The content of PROTACs has been shown in Figure 1.
4 Abnormally expressed USPs in
tumour cells

To date, many studies have focused on evaluating the functions

and substrates of proteins and the role of USPs in specific diseases.

Mutations in USPs can disrupt cellular metabolism in vivo, resulting

in an increased predisposition to cancer. Therefore, USPs can be

used as targets for developing anticancer drugs (28). The common

abnormal USPs associated with NSCLC and other tumours are

summarised below.
4.1 USP4

The human USP4 gene was identified as a proto-oncogene

related to Tre2/Tre17(USP6). In USP4, its catalytic domain is

composed of a Cys box and His box, whereas its non-catalytic

structure is composed of a USP domain (DUSP) and a Ub-like

domain (UBL) (42). Studies have demonstrated that USP4 is closely

associated with various malignant tumours, such as colorectal,

breast, liver and lung cancers (43–46).

In breast cancer, USP4 directly interacts with and

deubiquitinates TbRI and promotes the proliferation of tumor

cells (44). In liver cancer, the low expression of microRNA-148a

can increase the expression of the downstream molecule USP4,

thereby promoting the proliferation and migration of liver cancer

cells (45). In human osteosarcoma cells, USP4 can directly bind to

and deubiquitinate ARF-BP1, which stabilises ARF-BP1 and

reduces p53 levels, thereby promoting cancer cell proliferation (47).
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USP4 may act as a tumour suppressor protein in some tumours.

In head and neck squamous cell carcinoma, USP4 inhibits

carcinogenesis by deubiquitinating receptor-interacting protein 1

(RIP1) and promoting apoptosis induced by tumour necrosis

factor-a (TNF-a) (48). Downregulation of endogenous USP4 can

promote TNF-a-induced migration of LUAD (A549) cells,

indicating that USP4 is a negative regulator of cell migration.

Mechanistically, USP4 can directly bind to the TRAF domain to

inhibit TRAF2/TRAF6 activity through deubiquitination in an

activity-dependent manner and negatively regulate IL-1b and

TNF-a-induced NF-kB activation, thereby inhibiting lung cancer

metastasis (46).

Therefore, USP4 plays different roles in different types of

cancer cells, and whether it promotes or suppresses cancer

remains controversial.
4.2 USP7

To date, USP7 is the most extensively investigated DUB and is

the first DUB that can be specifically targeted and inhibited by drugs

with promising therapeutic effects (49). It contains 1102 amino acid

residues, has a molecular weight of approximately 135 kDa, and

contains seven domains: an N-terminal TRAF-like (Tumor necrosis

factor Receptor-Associated Factor) domain, a catalytic domain and

five C-terminal ubiquitin-like domains (50, 51). MDM2 is one of

the substrates of USP7. USP7 has a high affinity for MDM2, which

often leads to p53 degradation and increases the risk of cancer.

Therefore, USP7 can be considered an oncogene (52).

USP7 can deubiquitinate CCDC6, a tumour suppressor protein,

in cells with DNA damage to protect it from degradation by the

tumour suppressor FBXW7, thus improving the prognosis of

NSCLC (53, 54).

Both USP7 and Ki-67 are highly expressed in NSCLC. In

particular, Ki-67 expression is high in the G1, S, G2 and mitotic

phases of the cell cycle, which usually indicates a poor prognosis.

USP7 acts by binding to Ki-67 and stabilizing its expression to play

a pro-carcinogenic role (55).

Fat mass and obesity associated protein (FTO), a demethylase

that is significantly upregulated in NSCLC, can promote the

expression of USP7 by activating its m6A demethylase activity,

reducing the m6A level of USP7 and improving the stability of its

mRNA (56).

In addition, USP7 is associated with phosphatase and tensin

homologue (PTEN). In chronic myeloid leukaemia (CML), BCR-

ABL can enhance USP7-induced deubiquitination of PTEN, which

is conducive to nuclear rejection (57). NPM1 is frequently mutated

and can interact with USP7 in acute myeloid leukaemia (AML). It

prevents USP7-mediated deubiquitination in the nucleus and

promotes the translocation of PTEN to the cytoplasm, leading to

polyubiquitination and degradation of PTEN in the cytoplasm (58).

Patients with acute promyelocytic leukaemia (PML) harbour a

PML-RARa translocation in which USP7 deubiquitinates PTEN

primarily in the cytoplasm, promoting nuclear rejection (59).
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4.3 USP10

The target proteins of USP10 include p53 (60), PTEN (61),

P14ARF (62). Similar to that of USP7, the most prominent

physiological function of USP10 is to specifically deubiquitinate

p53 and neutralise the effects of MDM2, eventually stabilising p53

in normal cells (63). However, USP10 can stabilise oncogenes such

as FLT3 (64), RAF1 (65) and Musashi2 (66). USP10 overexpression

in breast cancer and neuroblastoma is found to be associated with a

poor prognosis (67, 68).

USP10 expression is downregulated in some cancers, including

gastric cancer and NSCLC. Downregulation of USP10 results in a

poor prognosis and shortened survival in gastric cancer. In NSCLC,

USP10 deficiency is not significantly associated with clinical

outcomes and prognosis, indicating that USP10 may not be directly

involved in tumour progression (69, 70). However, USP10 can

interact with PTEN to reduce K63-linked ubiquitination of PTEN

mediated by the E3 ligase TRIM25, restore PTEN activity and reduce

PIP3 production, thereby inhibiting the signal transduction of

mammalian target of rapamycin (mTOR) in NSCLC cells (71).

Although USP10 may act as a tumour suppressor, its role in

different tumours remains controversial.
4.4 USP22

USP22 is highly expressed in various tumours such as lung (72),

colorectal (73) and gastric cancers (74), and is involved in DNA

transcription, malignant transformation of cells and cell cycle

progression (75).

USP22 can be inhibited by shRNA, activates the p53 pathway in

tumours and downregulates MDMX protein, thereby inducing

apoptosis in NSCLC cells (9). In LUAD, knocking down USP22

may induce ubiquitin C (UBC) expression, which promotes cell

cycle and ubiquitin-mediated protein degradation, and inhibits the

occurrence of lysosomal autophagy, thereby promoting the

development and progression of LUAD (76).

In addition, USP22 can promote hypoxia-induced generation of

liver cancer stem cells through the HIF1a/USP22 positive feedback
loop after p53 inactivation, and lipoprotein complexes targeting

USP22 can inhibit the growth of liver cancer cells and enhance

sorafenib sensitivity (77).

Therefore, USP22 may be a potential drug target for

cancer therapy.
4.5 Other USPs

USP3 can interact with KLF5 and stabilize KLF5 through

deubiquitination. USP3 knockdown inhibited the proliferation of

breast cancer cells, while ectopic expression of KLF5 partially

rescued this inhibitory effect (78). As one of the factors

responsible for NSCLC cell proliferation, USP3 may lead to Ub-

mediated degradation by targeting RBM4, which is a tumour

suppressor gene and a key molecule for RNA splicing (79).
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USP5 can enhance the stability of cyclin D1 (CCND1) protein,

significantly prolong the half-life of CCND1 and reduce the

degradation of CCND1. Additionally, it can promote the

proliferative, migratory and colony-forming abilities of NSCLC

cells. The USP5 inhibitor G9 can lead to cell cycle arrest in

NSCLC cells and can significantly downregulate phosphorylated

retinoblastoma (RB) protein, thereby inhibiting the growth of

NSCLC xenografts (80). USP5 can activate the Wnt/b-catenin
signalling pathway, and its expression is higher in NSCLC tissues

than in normal tissues. It promotes nuclear accumulation and

signalling of b-catenin by deubiquitinating it, and its increased

expression is associated with large tumour size, poor differentiation,

advanced tumour stage and poor patient survival (81).

Overexpression of USP14 promotes tumour cell proliferation

and is associated with the poor prognosis of NSCLC. The mRNA

expression of USP14, accumulation of b-catenin protein and

activation of the Wnt pathway are upregulated in NSCLC,

resulting in shorter survival (82). Therefore, USP14 acts as a

tumour promoter and may serve as a promising therapeutic

target for NSCLC.

USP17 is highly expressed in NSCLC, and its expression in

squamous cell carcinoma is significantly higher than that in

adenocarcinoma. The high expression of USP17 in squamous cell

carcinoma may be attributed to differences in transcriptional

regulation or protein turnover (83).

Overexpression of USP19 increases the migratory and invasive

abilities of breast cancer (MCF7) cells. These effects of USP19 are

closely related to its catalytic activity and transmembrane domain.

Knockdown of USP19 reduces tumour aggressiveness, suggesting

that USP19 plays a key role in the migration of breast cancer

cells (84).

Overexpression of USP21 is associated with the progression of

pancreatic ductal adenocarcinoma (PDAC). Overexpression of

USP21 can accelerate PDAC growth in mice and promote the

progression of pancreatic intraepithelial neoplasia (PanIN) to

PDAC in immortalised human pancreatic ductal cell models.

However, the loss of USP21 impairs PDAC cell growth.

Mechanistically, USP21 promotes cancer cell proliferation by

deubiquitinating and stabilising the TCF/LEF transcription factor

TCF7 (85).

USP28 is upregulated in NSCLC and is associated with a poor

prognosis of NSCLC (86). The lower expression of miR-3940-5p in

NSCLC tissues than in paired adjacent normal tissues usually

indicates tumor growth and proliferation (87). miR-3940-5p can

target CCND1 and USP28 to inhibit the growth of NSCLC cells, and

overexpression of CCND1 and USP28 can attenuate miR-3940-5P-

induced proliferation and apoptosis of NSCLC cells (88).

Additionally, USP28 plays an important role in maintaining the

protein expression of c-MYC, c-JUN and Dp63 in laryngeal

squamous cell carcinoma (LSCC). Inhibition of USP28 can reduce

the expression of these proteins in mice with LSCC and induce

tumour cell death (89).

USP29 can promote the migration of gastric cancer cells by

preventing Snail degradation, thereby maintaining high protein

expression of Snail in cancer cells. Snail is a major inducer of
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EMT and metastasis, and its high expression is associated with poor

survival and prognosis (90). In addition, USP29 overexpression

induced by chemotherapy and oxidative stress treatment can

promote chemotherapy resistance by hijacking the USP29/Snail1

axis, which is associated with enhanced cancer stem cell properties,

poor prognosis and drug resistance in lung cancer (91).

USP43, an H2BK120 deubiquitinase, exerts strong inhibitory

effects on the growth and metastasis of breast cancer in vivo. It is

phosphorylated by AKT in the cytoplasm and subsequently binds to

the 14-3-3b/e heterodimer to be retained in the cytoplasm, resulting

in a marked reduction in USP43 levels in the nucleus. Low levels of

USP43 in the nucleus are associated with EGFR accumulation, AKT

hyperactivation, higher histological grades and a poor

prognosis (92).

A list of USPs upregulated/downregulated in NSCLC is

provided in Table 1.
5 NSCLC-related targets and
treatment

Signalling pathways associated with the development of NSCLC

should be identified and examined to understand the pathogenesis

of NSCLC. The PI3K/AKT/mTOR (99), Ras/Raf/Mek/Erk (100),
Frontiers in Oncology 06
Wnt/b-catenin (101), NF-kB pathways (102), are closely related to

the occurrence and development of NSCLC. Inhibiting key proteins

involved in these pathways may represent an effective therapeutic

strategy for NSCLC. Similarly, tumour suppressor genes are often

aberrantly expressed in NSCLC. For example, downregulation of

p53 and PTEN promotes cancer cell proliferation and indicates a

poor prognosis (103). Specific inhibitors can be used to target and

degrade oncoproteins through UPP and activate tumour suppressor

proteins, which can effectively block downstream signal

transduction and prevent the proliferation of cancer cells. In

recent years, PROTACs have demonstrated anti-tumour effects in

cellular or preclinical models of NSCLC. The USPs and PROTAC

targets related to NSCLC-associated signalling pathways are

summarised below.
5.1 Targeting key proteins in tumour-
related signalling pathways and application
of PROTACs

5.1.1 EGFR
Overexpression of Epidermal growth factor receptor (EGFR) is

associated with the poor prognosis of several cancers, including

oesophageal, breast, head and neck squamous cell, and lung cancers
TABLE 1 Ubiquitin-specific proteases upregulated/downregulated in NSCLC.

Deubiquitinase Upregulated/
downregulated NSCLC-related Events Implicated

signaling References

USP5 Upregulated

USP5 promotes the proliferation and migration of NSCLC cells by binding to
CCND1, reducing polyubiquitin-mediated degradation of CCND1 and stabilising its
protein levels. KRAS activates USP5 to stabilise nuclear Beclin 1, leading to instability
of MDM2-mediated p53 protein.

USP5/CCND1
and USP5/
Beclin 1

(80, 93)

USP7 Upregulated
USP7 overexpression inhibits ERK1/2 through deubiquitination of RAF1 and inhibits
the development of lung adenocarcinoma independently of p53 protein.

RAS/RAF/
MEK/ERK

(7)

USP9X Upregulated
USP9X interacts with prostaglandin E synthase (PTGES) to prevent its ubiquitination
and degradation, enhance PGE2 signalling and promote NSCLC.

PTGES/PGE2 (94)

USP10 Downregulated
Loss of USP10 downregulates KLF4 expression and accelerates KRASG12D-driven
initiation and progression of lung adenocarcinoma.

USP10/KLF4/
TIMP3

(95)

USP21 Upregulated
USP21 deubiquitinates and stabilises the oncogene YinYang-1 (YY1) in NSCLC cells,
activates SNHG16 and promotes the proliferation of NSCLC cells.

USP21/YY1/
SNHG16

(8)

USP22 Upregulated
Silencing USP22 using shRNA can downregulate MDMX, activate p53 pathway and
inhibit the proliferation of NSCLC cells.

MDMX/P53 (9)

USP28 Upregulated
USP28 interacts with STAT3 to reduce STAT3 ubiquitination, increase STAT3
stability and promote NSCLC proliferation.

USP28/STAT3 (6)

USP29 Upregulated USP29 hijacks the USP29/Snail1 axis to promote chemotherapy resistance in NSCLC. USP29/Snail1 (91)

USP35 Upregulated

USP35 binds to ferroportin (FPN) to reduce ferroptosis triggered by erastin/RSL3,
thereby promoting NSCLC proliferation. Overexpression of USP35 stabilises RRBP1,
inhibits endoplasmic reticulum stress-induced apoptosis and promotes NSCLC
proliferation.

Ferroptosis
pathway and
USP35/RRBP1

(5, 96)

USP51 Upregulated
CDK4/6 mediates the phosphorylation of USP51 at Ser26. Phosphorylated USP51
regulates the stability of ZEB1 protein through deubiquitination and promotes the
metastasis of lung adenocarcinoma.

CDK4/6/
USP51/ZEB1

(97)

USP53 Downregulated
USP53 deubiquitinates FKBP51, which in turn dephosphorylates AKT1 and
ultimately inhibits tumor growth in LUAD.

FKBP51/
AKT1

(98)
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(104–107). In Asian and non-Asian populations, EGFR mutations

are observed in approximately 40% and 20% of patients with

NSCLC, respectively (108). Therefore, EGFR is one of the key

therapeutic targets for NSCLC. To date, several generations of

epithelial growth factor receptor tyrosine kinase inhibitors

(EGFR-TKIs) have been used for the treatment of NSCLC.

EGFR-TKIs can inhibit the proliferation and metastasis of

tumour cells by mimicking ATP configuration and occupying

ATP-binding sites, thereby blocking downstream signal

transduction (109, 110). However, owing to mutations and signal

bypass pathways, resistance to EGFR-TKIs has become a common

problem in clinical settings (111). In lung adenocarcinoma, USP22

can induce EGFR-TKI resistance by regulating the endocytosis and

transport of EGFR through deubiquitination modification,

stabilising the intracellular EGFR protein levels and promoting

the continuous activation of EGFR-dependent signalling pathways

(112). Similarly, tripartite motif 25 (TRIM25), an E3 ligase, can

promote the proliferation of cancer cells by promoting the K63-

linked ubiquitination of EGFR, increasing the stability of EGFR

protein and promoting the continuous activation of downstream

signalling pathways (113).

In recent years, PROTACs have demonstrated good EGFR-

targeting ability. Yu et al. developed MS 9427, an EGFR-specific

PROTAC degrader that effectively induces efficient degradation of

mutant EGFR in a concentration- and time-dependent manner

through UPP and the autophagy-lysosome pathway and exerts a

strong inhibitory effect on NSCLC cell proliferation (114). Cheng et al.

reported that the E3 ligases VHL and CRBN can recruit the EGFR

degraders MS 39 and MS 154, respectively, to effectively induce the

degradation of mutant EGFR in NSCLC in an E3 ligase-dependent

manner (115). In addition, Zhao et al. reported that compound P3,

which contains a purine structure that recruits VHL, can significantly

induce degradation of mutant EGFRdel 19, promote cell apoptosis,

arrest the cell cycle and inhibit colony formation (116). The

PROTACs SIAIS 125 and SIAIS 126 can selectively degrade

EGFRL858R+T790M resistance proteins in H1975 cells and exhibit

potent and selective anti-tumour effects against EGFR-TKI-resistant

lung cancer. Selective degradation of EGFREx19del mutant protein in

NSCLC (PC9) cells can induce apoptosis (117). Zhang et al. reported

that the orally available PROTAC HJM-561 can overcome EGFR

triple mutation-mediated resistance in NSCLC by specifically

degrading mutant EGFR proteins. Additionally, HJM-561 can

exhibit potent antitumour effects against EGFRDel19/T790M/C797S-

driven Ba/F3 cell-derived xenograft (CDX) and patient-derived

xenograft (PDX) models of NSCLC resistant to osimertinib (118).

Overall, PROTACs targeting EGFR are excellent therapeutic

candidates for overcoming EGFR-TKI-induced resistance.

5.1.2 PI3K/AKT/mTOR
The PI3K/AKT/mTOR pathway plays a key role in tumour

growth, invasion, metastasis, and angiogenesis (119). Activation of

PI3K by upstream signalling molecules, such as EGFR or other

receptor tyrosine kinases, can catalyse PIP3 production, thereby

triggering the activation of the AKT/mTOR signalling cascade
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(120). AKT plays an important role in tumor growth and

development, such as ovarian, breast and gastric cancers (121–

123). K63-linked polyubiquitination of AKT at lysine 8 and 14,

which is mediated by the E3 ligase TRAF6 or SKP2, can localise

AKT to the cell membrane, thereby resulting in AKT activation and

enhanced intracellular signalling (124).

USPs and E3 ligases are involved in the PI3K/AKT/mTOR

pathway. As a tumour suppressor, USP53 can deubiquitinate

FK506-binding protein 51 (FKBP51) to dephosphorylate AKT1

and inactivate downstream signalling pathways, thereby inhibiting

the progression of LUAD (98).

Calcium- and integrin-binding protein 1 (CIB1) is an oncogene

that regulates cell adhesion, migration and differentiation (125).

The E3 ligase CHIP can activate K48-linked polyubiquitination,

which targets CIB1 to inhibit AKT/mTOR signalling and EMT in

LUAD (126). Although significant progress has been achieved in

the development of inhibitors targeting specific proteins in the

PI3K/AKT/mTOR pathway to treat NSCLC, acquired drug

resistance remains inevitable. However, targeted degradation of

AKT may help to overcome drug resistance in NSCLC, and may

exert long-term pharmacological effects when compared with their

inhibition (127, 128). PROTACs can control tumour growth and

invasion by inducing the ubiquitination and degradation of AKT. In

the first PROTAC targeting AKT, INY-03-041, GDC-0068 was used

as the target head compound and lenalidomide was used as an E3

ligase ligand. It can effectively induce degradation of the three

isoforms of AKT proteins (AKT1/2/3) (128). Similarly, MS 143, a

potent AKT degrader, can effectively inhibit tumour growth in

xenograft mouse models by hijacking UPP to induce rapid and

stable AKT degradation in a concentration- and time-dependent

manner (129). However, to date, PROTACs targeting AKT in

NSCLC have not been developed and warrant further exploration.

5.1.3 RAS/RAF/MEK/ERK
The RAS/RAF/MEK/ERK signalling pathway, one of the MAPK

cascades in humans, plays a key role in regulating various processes,

including cell proliferation, differentiation and apoptosis (130, 131).

After EGFR is activated by TGF-a, RAS, one of the downstream

signals of EGFR, is activated initially through SOS and Grb2 and

subsequently through a cascade of RAF and MEK1/2, eventually

resulting in activation of ERK1/2 (132).

Studies have shown that USP7 may be involved in the

regulation of RAF1 in lung adenocarcinoma cells in this signaling

pathway. Overexpression of USP7 can regulate ERK1/2 signaling

pathway, increase P53 expression, and inhibit G2/M transformation

and proliferation of LUAD cells by deubiquitinating the M1, K6,

K11, K27, K33, and K48 polyubiquitin chains of Raf-1 to reduce the

level of RAF1 phosphorylation (7). In chronic myeloid leukemia

cells, Leucine zipper-like transcriptional regulator 1 (LZTR1)

participates in the formation of the junction of Cullin 3 (CUL3)

ubiquitin ligase complex, mediates CUL3 and thus causes RAS

ubiquitination, And regulate downstream MEK, ERK and other

signals, and finally achieve the purpose of affecting BCR-ABL

TKI (133).
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KRAS is the predominant mutant subtype of the RAS family,

accounting for approximately 85% of the total RAS mutations.

KRASG12C mutation accounts for approximately half of KRAS

mutations in patients with LUAD (134, 135). KRAS is difficult to

target owing to its lack of a deep binding pocket, its high affinity for

GTP and the presence of abundant intracellular levels of GTP (136,

137). PROTACs can be used to overcome KRAS12C-induced

resistance and target other KRAS mutants. For example, a VHL-

based PROTAC has been designed using MRTX849 as a covalent

KRASG12C warhead. The lead molecule LC-2 in this PROTAC can

induce KRAS degradation and impair downstream MAPK

signalling, resulting in reduced pERK levels in KRASG12C mutant-

positive human lung cancer cell lines (138). Lu et al. developed a

reversible covalent PROTAC that can efficiently target the

degradation of endogenous KRASG12C in KRASG12C-mutated

H358 and H23 lung cancer cells (139).

Furthermore, PROTACs have demonstrated great potential in

targeting MEK protein for tumour therapy. The PROTAC MS432

has been synthesised by linking the major portion of PD0325901, a

non-ATP competitive MEK inhibitor, to VHL or CRBN E3 ligase. It

can effectively degrade MEK1/2 protein and effectively inhibit the

proliferation of BRAF-mutated colorectal cancer (HT-29) cells and

melanoma (SK-MEL-28) cells (140).
5.1.4 Wnt/b-catenin
Wnt signalling was first found to play a role in tumour and

embryonic development. Recent studies have revealed that it also plays

a role in tissue regeneration in adult bones, skin and intestines (141,

142). Wnt/b-catenin is one of the branches of the Wnt signalling

pathway. The modification and degradation of b-catenin protein is the

key function of this signalling pathway, which can be regulated through

ubiquitination and deubiquitination. The interaction between b-
catenin and E-cadherin may be associated with the prognosis of

NSCLC (143–145).

FBXW2, an E3 ligase, binds to b-catenin via EGF-AKT1-mediated

phosphorylation at Ser552 and promotes its ubiquitination and

degradation. Functionally, FBXW2 overexpression inhibits the

migratory and invasive abilities of lung cancer cells by blocking b-
catenin driven trans-activation ofMMPs, whereas FXBW2 knockdown

promotes the migratory and invasive abilities of lung cancer cells and

tumour metastasis in vitro and in vivo (146), indicating that FBXW2

acts as a tumour suppressor.

USP44 may serve as a tumour suppressor protein in colorectal

cancer (CRC). USP44 is significantly downregulated in CRC and

enhances the apoptosis of CRC cells. Its overexpression increases

the expression of Axin1 protein, a scaffolding protein that promotes

negative regulation of the Wnt signalling pathway; reduces the

expression of b-catenin, c-myc and cyclin D1 and inhibits Wnt/b-
catenin signalling-mediated activation of apoptosis in CRC

cells (147).

As an activator of the Wnt signalling pathway, USP7 may serve

as a specific therapeutic target for APC-mutated CRC. USP7

stabilizes b-catenin through deubiquitination and activates the

Wnt signalling pathway, whereas the b-catenin inhibitory domain

of APC protects b-catenin from deubiquitination by USP7 (148).
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P5091, a specific inhibitor of UPS7, inhibits the growth of CRC cells

by promoting ubiquitination and degradation of b-catenin.
Therefore, inhibition of USP7 can inhibit the activation of Wnt

signalling by regulating the ubiquitination of b-catenin (149).

Chen and Hu et al. reported that the PROTAC xStAx-VHLL,

which is designed to target the Wnt pathway, can trigger b-catenin
degradation and effectively inhibit the survival of patient-derived

CRC organoids throughWnt signalling blockade. Therefore, xStAx-

VHLL can be used in the treatment of CRC (150).

5.1.5 NF-kB
Nuclear factor-kb (NF-kB) is a family of transcription factors

that play an important role in regulating immune response and

inflammation. NF-kB regulates the expression of a variety of genes

and plays a key role in the occurrence and development of tumors,

such as proliferation, migration and apoptosis. Inhibition of NF-kB
signaling can inhibit cancer progression (151). Ubiquitination/

deubiquitination plays a key role in the activation of the NF-kB
signalling pathway (152).

USP20 plays an important role in TNFa-induced NF-kB
signalling by stabilising p62. Knockdown of USP20 and p62 in

HeLa cells decreases cell viability and number while increasing the

expression of cleaved caspase-8, caspase-3 and PARP (153).

USP4 can inhibit NF-kB activation through deubiquitination of

TRAF2 and TRAF6, thereby promoting cell migration and invasion

in lung cancer (46). Overexpression of wild-type USP4 in Hela cells

can inhibit TAK1 polyubiquitination and NF-kB activation,

whereas its knockdown can enhance polyubiquitination of TAK1

and phosphorylated IkBa and negatively regulate NF-kB activation

induced by IL-1b, LPS and TGFb (154).

USP18 interacts with the TAK1-TAB1 and IKKa/b-Nemo

complexes to cleave the K63-linked polyubiquitin chain attached

to TAK1 and inhibit NEMO ubiquitination, respectively, in a

protein-dependent manner, thereby negatively regulating NF-

kB (155).

5.1.6 PTEN
PTEN is a tumour inhibitor that can antagonise PI3K function

by dephosphorylating PIP3 to PIP2, thereby inactivating

downstream oncogenic signalling and exerting tumour-

suppressing effects (156, 157). PTEN inhibits cell proliferation

and survival by inducing cell cycle arrest through the PI3K/AKT

pathway or by downregulating cyclin D1 and decreasing its

accumulation in the nucleus (158). However, owing to gene

mutations, deletions or promoter methylation, PTEN expression

is significantly reduced in NSCLC, which promotes tumour growth

and invasion (159). Post-translational modifications (PTMS) of

PTEN, including ubiquitination of PTEN, may represent an

effective strategy for regulating PTEN function and serve as

therapeutic targets for cancer (160).

Casein kinase 1-alpha (CK1a) competitively antagonises PTEN

ubiquitination mediated by the E3 ligase NEDD4-1 by binding to

the C-terminus of PTEN. Additionally, it positively regulates

autophagy and inhibits the growth of NSCLC cells (161).

Similarly, the deubiquitylase OTUD3 can interact with PTEN and
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deubiquitinate it, thus stabilising PTEN and inhibiting the

development of breast cancer (162). However, in lung cancer,

OTUD3 promotes tumour proliferation and metastasis and

inhibits apoptosis through deubiquitination of GRP78 protein

and is closely related to drug resistance (163). Therefore, most

deubiquitinating enzymes play different roles in different tumours,

which should be comprehensively investigated for the precise

treatment of tumours.

5.1.7 MDM2/p53
p53 is a typical intracellular tumour suppressor that is activated

in response to DNA damage or oncogene activation and can act as a

negative regulator to induce cell cycle arrest, apoptosis and

senescence in cancer cells, thereby inhibiting growth and

proliferation. MDM2 suppresses p53 primarily by inhibiting its

transcriptional activity and inducing its nuclear export and Ub-

mediated degradation, thereby decreasing the p53 protein level to

maintain normal cell function (164). Ubiquitination of p53 is a key

regulatory event in the p53 pathway and can be reversed by DUBs

(165). Therefore, reactivation of p53 in cancer cells by blocking the

MDM2/p53 pathway is an effective approach for targeted therapy

of cancer.

Several studies have demonstrated that USPs can regulate

MDM2/p53. Abraxas brother 1 (ABRO1), a component of the

BRCC36-containing isopeptidase complex (BRISC), stabilises p53

by promoting its interaction with USP7 to reduce p53

ubiquitination (166). USP15 knockdown can delay Ub-mediated

degradation of p53 by accelerating MDM2 degradation in

melanoma (A375) cells (167). USP2a regulates the p53 pathway

by stabilising MDM2 and MdmX to promote the growth of

testicular embryonal carcinoma (NTERA-2) cells and breast

cancer (MCF7) cells (168).

Compound 11a, a PROTAC that induces MDM2 degradation,

can induce proteasome-dependent degradation of MDM2 in

NSCLC (A549) cells and effectively inhibit tumour growth in

xenograft mouse models of LUAD (169).

5.1.8 ALK
ALK rearrangement genes are detected in 3%–7% of NSCLC

cases, with EML4-ALK being the most important fusion genes

(170). ALK TKIs are the first-line treatment agents in patients

with lung cancer who harbour ALK rearrangements. To date, six

small-molecule inhibitors of ALK have been used to treat ALK-

positive NSCLC: crizotinib, ceritinib, alectinib, brigatinib,

ensartinib and lorlatinib (171). Although these inhibitors have

demonstrated promising efficacy in clinical settings, serious

challenges such as drug resistance and brain metastasis may

emerge with their long-term use (172, 173).

PROTACs have unique advantages in targeting ALK. Gray and

Jin et al. reported two sets of PROTACs: TL13-12 and TL13-112

and MS4077 and MS4078, which can mediate ubiquitination and

degradation of NPM-ALK and EML4-ALK in vitro (174, 175). Xu

et al. developed PROTACs compounds (36 and 37) with a novel

skeleton based on the second-generation small-molecule inhibitor
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alectinib. These PROTACs induced strong anti-proliferative activity

in H3122 (NSCLC cells expressing the EML4-ALK fusion protein)

and Karpas 299 (anaplastic large cell lymphoma cells expressing the

NPM-ALK fusion protein) cells without causing toxicity in A549

and HFL-1 cells (cell without ALK expression). These results

indicated that the PROTACs had good selectivity (176).

Therefore, in addition to traditional chemical inhibitors,

PROTACs are promising therapeutic agents for NSCLC and can

delay the emergence of resistance mutations, thereby improving

patient outcomes.

5.1.9 The roles of PROTACs in other targets
associated with NSCLC

Research into the use of PROTACs for targeting NSCLC-

associated genes is gradually emerging.

SHP2 is frequently activated in lung cancer (177). The SHP2-

targeting PROTAC SHP2-D26 can induce rapid and efficient

degradation of SHP2 and is 10- to 100-fold more effective than

allosteric SHP inhibitors in inhibiting ERK activity in cancer

cells (178).

Nuclear focal adhesion kinase (FAK) is overexpressed in various

tumours, including lung cancer (179). The Fak-targeted PROTAC

GSK215 can significantly inhibit the migration of A549 cells, and

induce rapid and long-term degradation of FAK, with lasting effects

on FAK levels (180).

The PROTAC MD13, which targets macrophage migration

inhibitory factor (MIF), can effectively inhibit the proliferation of

A549 cells, resulting in cell cycle arrest at the G2/M phase (181).

Bromodomain-containing protein 4 (BRD4) is abnormally

upregulated in lung cancer (182). The BRD4-targeting PROTAC

CREATE can reshape the tumour microenvironment to directly

reduce TAMs and effectively treat lung cancer (183).

In conclusion, PROTACs represent a novel therapeutic

modality for NSCLC and other cancers.
5.2 Application of USP-related small-
molecule inhibitors in cancer

Various partial and specific inhibitors of USPs have been

developed for the treatment of cancer. Some USP inhibitors used

in the treatment of NSCLC are shown in Table 2.

LCA hydroxyamide (LCAHA) is a USP2a inhibitor that induces

G0/G1-phase arrest by inhibiting the deubiquitinase USP2a and

destabilising cyclin D1 and is independent of p53 status (189).

FT671, a noncovalent inhibitor of USP7, can increase the

degradation of the Ub ligase MDM2 and the expression of p53 to

exert tumour-suppressing effects in vivo (190). In addition, USP7

inhibitor P22077 can effectively induce apoptosis of cancer cells in

neuroblastoma cells with intact USP7/HDM2/p53 axis (191).

WP1130 is an inhibitor of DUBs that inhibits activities such as

USP5, UCH-L1, USP9X, USP14, and UCH37 (192). Combined

treatment with WP1130 and cisplatin can synergistically inhibit the

viability of LUAD (A549 and HCC827) cells (186). EOAI3402143
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(G9) is a non-specific USP inhibitor that inhibits USP5, USP9X and

USP24 in a dose-dependent manner. Compared with WP1130, G9

has greater solubility and inhibitory activity against USP5 and

USP9X (80, 193, 194), and the therapeutic role of G9 has been

investigated in human pancreatic cancer (195). GSK2643943A, an

inhibitor of USP20, has been investigated in oral squamous cell

carcinoma (OSCC) (196).
5.3 Targeting of E3 ligases

Proteasome inhibitors, such as bortezomib, have demonstrated

good efficacy in the treatment of multiple myeloma, which indicates

the feasibility of research and development of drugs targeting UPP.

However, because these inhibitors inhibit all 26S proteasome-

dependent protein degradation pathways without discrimination,

they can cause damage to normal cells and have significant side

effects (197). Among the potential drug targets of ubiquitin-

protease system, E3 ligases have outstanding advantages: the

specific structure of some E3 ligases determines that they have

better selectivity for screening small molecule inhibitors or

developing specific targeted antibodies.

The E3 ligase CRBN is the target of many drugs, and several

multi-target PROTACs based on CRBN have been developed (198).

For example, ARV-825, a CRBN-based anti-BET PROTAC,

exploits the association between CRBN and OTX015 to promote

BRD4 degradation and inhibit cancer cell progression (199).

Lenalidomide exerts significant activity by inhibiting CRBN,

which forms a new substrate bound by the cullin-RING ligase 4

(CRL4) complex, leading to ubiquitination and proteasome-

dependent degradation, resulting in antimyeloma activity (200).

The E3 ligase Skp2 is overexpressed in many human cancers

and can regulate tumorigenesis (201). The Skp2 inhibitor SMIP004

can improve the efficacy of radiotherapy; upregulate programmed

cell death protein 4 (PDCD4) expression levels, the target of Skp2;

and inhibit the proliferation of breast cancer cells (202).
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Compound A1874 synthesised using mouse double minute 2

(MDM2) as an E3 ligase receptor can degrade bromodomain-

containing protein 4 (BRD4), upregulate the tumour suppressor

p53, activate caspase-related apoptosis of colon cancer cells and

effectively inhibit the viability of colon cancer cells (203, 204).

AMG-232, a small-molecule inhibitor of piperidinones that

targets the E3 ligase, induces p53 activity, thereby arresting the

cell cycle and inhibiting tumour cell proliferation in melanoma

(205, 206).

The PROTAC ARV-471 is a protein degrader that binds to E3

ligases and oestrogen receptor (ER) and has potential applications

in the treatment of breast cancer (207).

In conclusion, targeting E3 ligases represents an effective

strategy for the treatment of NSCLC.
6 Concluding remarks

In this review, we summarised the role of USPs and E3 ligases

in UPP and NSCLC-associated signalling pathways and discussed

the research progress of corresponding targeted drugs, PROTACs

and small-molecule inhibitors. Significant advancements have

been made in the field of USPs; however, the role of USPs and

E3 ligase-mediated PROTACs in the signal transduction of target

protein degradation warrants further investigation. USPs and E3

ligases are aberrantly expressed in many tumours and can be used

to regulate the activity of cancer cells. To date, studies have

majorly focused on the following aspects: identifying oncogenic

proteins or enzymes and understanding their pathogenic

mechanisms and targeting and inducing ubiquitination and

degradation of related substrates for the treatment of cancer.

Given that promoting the degradation of USPs and enhancing

the activity of E3 ligases are beneficial approaches for cancer

therapy, the high expression of USPs in cells can be inhibited to

shift the intracellular balance to E3 ligases that promote the

degradation of target proteins. However, this viewpoint is
TABLE 2 Specific protease inhibitors used in the treatment of NSCLC.

USPs Inhibitor Mechanisms of inhibition Signalling
pathway

References

USP1
pimozide or
GW7647

It can affect the formation of the Fanconi anaemia core complex and reverse the resistance of
NSCLC cells to the DNA cross-linking agent cisplatin.

FA/BRCA
(184, 185)

USP5 G9
G9 can significantly reduce the expression of CCND1 protein in NSCLC tissues and inhibit
the progression of NSCLC.

USP5/CCND1
(80)

USP7
P5091 or
P22027

The inhibition of FTO promoted the m6A methylation level of USP7 mRNA and reduced the
stability of USP7 mRNA, thereby inhibiting NSCLC.

FTO/USP7/MDM2/
P53

(56)

USP9X WP1130
Downregulation of USP9X increases the sensitivity of NSCLC cells to cisplatin by inhibiting
p53.

USP9X/P53
(186)

USP14
IU1-47 or
siRNA-USP14

It can arrest A549 cells at the G2/M phase.
IRE1/XBP1, JNK1 and
PERK/eIF2a

(187, 188)

USP28 FT206
It can decrease the expression of c- MYC, c- JUN, and Dp63 and induce the regression of lung
squamous cell carcinoma.

USP28/c-MYC,
USP28/c-JUN and
USP28/Dp63

(89)
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complicated because target proteins in different cancers play

different roles, and the corresponding specific USPs or E3

ligases also act as tumour promoters and/or suppressors. In

addition, most related studies are based on carcinogenic USPs,

whereas studies on tumour-suppressing USPs are limited.

Moreover, the mechanisms underlying USP-induced drug

resistance in tumours remain unclear. USPs are involved in not

only cancer but also other diseases, such as neurodegenerative

diseases, immune diseases, alcohol-associated liver disease and

chronic kidney disease (208–211). When considering the function

of USPs as an oncogene or tumor inhibitor, this knowledge needs

to be combined with a variety of unknown substrate proteins and

tissue and/or cell-specific aspects that will improve our

understanding of the pathogenesis of NSCLC and may

contribute to the development of future therapies.
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