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Benchmarking data sharing and
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Background: Demand for head and neck cancer (HNC) radiotherapy data in

algorithmic development has prompted increased image dataset sharing.

Medical images must comply with data protection requirements so that re-use

is enabled without disclosing patient identifiers. Defacing, i.e., the removal of

facial features from images, is often considered a reasonable compromise

between data protection and re-usability for neuroimaging data. While

defacing tools have been developed by the neuroimaging community, their

acceptability for radiotherapy applications have not been explored. Therefore,

this study systematically investigated the impact of available defacing algorithms

on HNC organs at risk (OARs).

Methods: A publicly available dataset of magnetic resonance imaging scans for

55 HNC patients with eight segmented OARs (bilateral submandibular glands,

parotid glands, level II neck lymph nodes, level III neck lymph nodes) was utilized.

Eight publicly available defacing algorithms were investigated: afni_refacer,

DeepDefacer, defacer, fsl_deface, mask_face, mri_deface, pydeface, and

quickshear. Using a subset of scans where defacing succeeded (N=29), a 5-

fold cross-validation 3D U-net based OAR auto-segmentation model was

utilized to perform two main experiments: 1.) comparing original and defaced

data for training when evaluated on original data; 2.) using original data for

training and comparing the model evaluation on original and defaced data.

Models were primarily assessed using the Dice similarity coefficient (DSC).
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Results: Most defacing methods were unable to produce any usable images for

evaluation, while mask_face, fsl_deface, and pydeface were unable to remove

the face for 29%, 18%, and 24% of subjects, respectively. When using the original

data for evaluation, the composite OAR DSC was statistically higher (p ≤ 0.05) for

the model trained with the original data with a DSC of 0.760 compared to the

mask_face, fsl_deface, and pydeface models with DSCs of 0.742, 0.736, and

0.449, respectively. Moreover, the model trained with original data had

decreased performance (p ≤ 0.05) when evaluated on the defaced data with

DSCs of 0.673, 0.693, and 0.406 for mask_face, fsl_deface, and pydeface,

respectively.

Conclusion: Defacing algorithms may have a significant impact on HNC OAR

auto-segmentation model training and testing. This work highlights the need for

further development of HNC-specific image anonymization methods.
KEYWORDS

anonymization, radiotherapy, head and neck cancer, MRI, medical imaging, artificial
intelligence (AI), autosegmentation, defacing
Introduction

The landscape of data democratization is rapidly changing. The

rise of open science practices, inspired by coalitions such as the

Center for Open Science (1), and the FAIR (Findable, Accessible,

Interoperable, and Reusable) guiding principles (2), has spurred

interest in public data sharing. Subsequently, the medical imaging

community has increasingly adopted these practices through

initiatives such as The Cancer Imaging Archive (3). Given the

appropriate removal of protected health information through

anonymization techniques, public repositories have democratized

the access to medical imaging data such that the world at large can

now help develop algorithmic approaches to improve clinical

decision-making. Among the medical professions seeking to

leverage these large datasets, radiation oncology has the potential

to vastly benefit from these open science practices (4). Imaging is

crucial to radiotherapy workflows, particularly for organ at risk

(OAR) and tumor segmentation (5, 6). Moreover, in recent years

public data competitions, such as the Head and Neck Tumor

Segmentation and Outcome Prediction in positron emission

tomography/computed tomography (PET/CT) Images

(HECKTOR) challenge (7–9), have been targeted to improve the

radiotherapy workflow. However, there is a particular facet of

medical image dissemination for radiotherapy applications that

has spurred controversy, namely the anonymization of head and

neck cancer (HNC) related images.

While the public dissemination of HNC image data is

invaluable to improve the radiotherapy workflow, concerns have

been raised regarding readily identifiable facial features on medical

imaging. Importantly, the U.S. Health Insurance Portability and

Accountability Act references “full-face photographs and any

comparable images” as a part of protected health information

(10). This policy introduces some uncertainty in the
02
dissemination of high-resolution images, where the intricacies of

facial features can be reconstructed to generate similar or

“comparable” visualizations with relative ease. Several studies

have shown the potential danger in releasing unaltered medical

images containing facial features, as they can often be easily

recognized by humans and/or machines (11–15). For example,

using facial recognition software paired with image-derived facial

reconstructions, one study found up to 83% of research participants

could be identified from their magnetic resonance imaging (MRI)

scans (13). Similar alarming results have been demonstrated for CT

images (14). While brain images are often processed such that

obvious facial features are removed (i.e., skull stripping), these

crude techniques remove large anatomic regions necessary for

building predictive models with HNC imaging data. “Defacing”

tools, where voxels that correspond to the areas of the patient’s

facial features are either removed or altered, offer one solution.

However, they may still engender the potential loss of voxel-level

information needed for predictive modeling or treatment planning,

thereby prohibiting their use in data resharing strategies for

radiotherapy applications. While several studies have investigated

the effects of defacing for neuroimaging (16–21), there have not yet

been any systematic studies on the effects of defacing tools for

radiotherapy applications.

Inspired by the increasing demand for public HNC imaging

datasets and the importance of protecting the privacy of patients, a

systematic analysis of a number of existing methods for facial

anonymization on HNC MRI images was performed. Through

qualitative and quantitative analysis using open-source datasets

and tools, the efficacies of defacing approaches on whole images

and structures relevant to radiation treatment planning were

determined. Moreover, the effects of these approaches on auto-

segmentation, a specific domain application that is increasingly

relevant for HNC public datasets, were also examined. This study is
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an important first step towards the development of robust

approaches for the safe and trusted democratization of HNC

imaging data.
Methods

Dataset

For this analysis, a publicly available dataset hosted on the

TCIA, the American Association of Physicists in Medicine RT-

MAC Grand Challenge 2019 (AAPM) dataset (22), was utilized.

The AAPM dataset consists of T2-weighted MRI scans of 55 HNC

patients that are labeled for OAR segmentations of bilateral: i)

submandibular glands, ii) level II neck lymph nodes, iii) level III

neck lymph nodes, and iv) parotid glands. Structures were

annotated as being on the right or left side of the patient

anatomy. The spatial resolution of the scans is 0.5 mm × 0.5 mm

with 2.0 mm spacing. Additional technical details on the AAPM

images and segmentations can be found in the corresponding data

descriptor (22). Defacing experiments were also attempted using

the HECKTOR 2021 training dataset (8) containing 224 HNC

patients with CT scans. Additional technical details on the

HECKTOR dataset can be found in the corresponding overview

papers (8, 9).
Defacing methods

For defacing the images, the same methods as taken into

consideration by Schwartz et al. (16), as well as novel tools that

benefit from recent advances in deep learning were used. The most

popular tools use a co-registration to a template in order to identify

face and ears and then identify those structures in the original

image, which should be removed or blurred. The following 6 co-

registration based methods: afni_refacer, fsl_deface (23), mask_face

(24), mri_deface (18), pydeface (25), and quickshear were

implemented. Two more recent methods using deep learning

technology were also included: defacer (26) and DeepDefacer (27).

These methods utilize pre-trained deep learning models using data

from public neuroimaging datasets to identify facial features to be

removed. An automated pipeline for applying all these defacing

methods is avai lab le at ht tps : / /g i thub.com/eglerean/

faceai_testingdefacing. Each defacing method was tested with all

subjects such that, for each subject, a defaced volume was produced

as well as a volumetric mask of which voxels were affected by

defacing. All methods were run with the default parameters and

standard reference images.
Defacing performance

After applying the defacing methods, the success or failure of a

defacing method was determined by visually inspecting all the

defaced volumes (i.e., performing scanwise quality control).

Specifically, a binary categorization of each scan was
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implemented: “1” if the eyes, nose, and mouth were removed (i.e.,

defacing succeeded), “0” if the eyes, nose, or mouth were not

removed (i.e., defacing failed). Subsequently, the amount of voxels

present in the structures after application of the defacing algorithm

were quantitatively measured.
Deep learning model for OAR
segmentation reliability

To evaluate the OAR segmentation performance under different

defacing schemes from volumetric MRI data, a convolutional neural

network architecture, 3D U-net, which has found wide success in

HNC-related segmentation tasks (28–33), was utilized. Both

contractive and expansive pathways include four blocks, where

each block consists of two convolutional layers with a kernel size

of 3, and each convolution is followed by an instance normalization

layer and a LeakyReLU activation with 0.1 negative slope. The max-

pooling and transpose convolutional layers have a kernel size and

stride of 2. The last convolutional layer has a kernel size and stride

of 1 with 9 output channels and a softmax activation. The model

architecture is shown in Figure 1. Experiments were developed in

Python v. 3.6.10 (34) using Pytorch 1.8.1 (35) with a U-net model

from Project MONAI 0.7.0 (36) and data preprocessing and

augmentation with TorchIO 0.18.61 (37).

A subset of patients for which defacing was deemed successful

were used for building the segmentation models. The subset was

randomly split with 5-fold cross validation: for each cross-

validation iteration one fold was used for model testing, one fold

was used for model validation, and the remaining three folds were

used for model training. The reported segmentation performance
FIGURE 1

U-net network architecture with blocks on the contractive path
colored in red and blocks on the expanding path colored in green.
Each block includes two convolutions, each followed by instance
normalization and Leaky ReLU activation, subsequently followed by
a max-pool layer (red arrow) or transpose convolution layer (green
arrow) on contractive and expanding paths, respectively. The
number shown in each block indicates the number of channels of
the feature map. Arrows with the letter C indicate concatenation.
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was based on the test fold that was not used for model development.

The same random splits were used for training and evaluating the

models trained on original or defaced data.

Data preprocessing after the defacing included linear

resampling to 2 mm isotropic resolution with the intensity scaled

into a range of [-1,1]. The training data was augmented with

random transforms that were applied with a probability (p),

independently of each other. The used transforms were random

elastic deformations (p=10%) for all axes, random flips for inferior-

superior and anterior-posterior axes (p=50%), random rotation

(-10° to 10°) of all axes (p=50%), random bias field (p=50%), and

random gamma (p=50%). The model was trained using the cross-

entropy loss for the 8 OAR classes and background with parameter

updates computed using the Adam optimizer with (0.001 learning

rate, 0.9 b1, 0.999 b2, and AMSGrad). The model training was

stopped early after 60 epochs for non-improvement of the

validation loss.
Segmentation evaluation

Two experiments to evaluate the impact of defacing on the

resulting segmentations were performed. In order to determine the

impact of defacing on algorithmic development, models were

trained on original or defaced data using the original target data

for evaluation. Subsequently, in order to determine the impact of

defacing on algorithms not originally developed for defaced data, a

model was trained using the original data and its performance was

evaluated by using the original data or the defaced data.

For both experiments, the performance of the models were

quantified primarily with the Dice similarity coefficient (DSC) and

the mean surface distance (MSD), defined as follows:

DSC =
2  TP

2  TP + FP + FN
;

MSD =
1
2
(o
t∈T

d(t,   P)
Tj j + o

p∈P

d(p,  T)
Pj j  ) ;

where TP denotes true positives, FP false positives, FN false

negatives, P the set of segmentation surface voxels of the model

output, and T the set of segmentation surface voxels of the

annotation. The distance from the surface metric is defined as:

d(a, B)=minb∈B{‖a−b‖2} . These metrics were selected because

of their ubiquity in literature and ability to capture both volumetric

overlap and boundary distances (38, 39). The model output was

resampled into the original resolution with the nearest-neighbor

sampling and evaluated against the original resolution

segmentations. MSD was measured in millimeters. When

comparing the performance measures between the segmentation

models, Wilcoxon signed rank tests (40) were implemented, with p-

values less than or equal to 0.05 considered as significant. To correct

for multiple hypotheses, a Benjamini-Hochberg false discovery rate

procedure (41) was implemented by taking into account all the

OARs and models compared. Statistical comparisons were

performed using the statannotations 0.4.4 Python package
Frontiers in Oncology 04
(https://github.com/trevismd/statannotations). Notably, any ROI

metrics that yielded empty outputs were omitted from the

comparisons. Additional surface metric values (mean Hausdorff

distance at 95% and Hausdorff distance at 95%) were also calculated

as part of the supplementary analysis (details in Appendix A).
Results

Defacing performance

Five of the methods tested (afni_refacer, quickshear,

mri_deface, DeepDefacer, and defacer) failed for all subjects in

the AAPM dataset. Therefore, for all subsequent analyses only the

mask_face, fsl_deface, and pydeface methods were considered.

There was scanwise quality control to remove the defaced scans

with poor quality from the analyses, which resulted in 16 (29%), 10

(18%), and 13 (24%) scans removed from mask_face, fsl_deface,

and pydeface, respectively, with all these methods working on 29

patient scans. A barplot comparison of the ratio of remaining OAR

voxels after defacing and quality control is depicted in Figure 2. In

addition, the defacing methods removed some OARs completely,

which were also omitted from the segmentation evaluation. After

filtering unusable data, the total number of OARs available for use

in segmentation experiments was 232 for the original data and

mask_face, 231 for fsl_deface, and 169 for pydeface. A full

comparison of omitted OARs is shown in Table 1.

All of the tested defacing methods were unable to provide

sufficient data for segmentation analysis in the HECKTOR CT

dataset. Specifically, fsl_deface and pydeface methods successfully

defaced 18 (8%) and 102 (46%) scans, respectively. All other

methods (afni_refacer, quickshear, mri_deface, DeepDefacer,

defacer, and mask_face) failed to correctly deface any of the

scans. Although pydeface had the highest success rate on

defacing, it only preserved the brain. Thus, no further analysis

was performed for this dataset.
Segmentation performance

The 29 patient scans for which the defacing was deemed

successful were used to construct and evaluate segmentation

models for the mask_face, fsl_deface, and pydeface methods. The

model DSC performances pooled across all structures based on

training input and valid evaluation target combinations are shown

in Table 2. The models trained using the original, mask_face, and

fsl_deface input data had the highest composite mean DSC when

evaluated on the original target data with values of 0.760, 0.742, and

0.736, respectively, while the model trained on pydeface input data

had the highest composite mean DSC of 0.653 when evaluated on

pydeface target data. In contrast, the models trained using original

mask_face, and fsl_deface input data had the lowest composite

mean DSC when evaluated on pydeface target data with values of

0.406, 0.413, 0.465, respectively, while the model trained using

pydeface input data had the lowest composite mean DSC of 0.395
frontiersin.org

https://github.com/trevismd/statannotations
https://doi.org/10.3389/fonc.2023.1120392
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sahlsten et al. 10.3389/fonc.2023.1120392
when evaluated on fsl_deface target data. All comparisons within

the same evaluation data are statistically different from each other

(p ≤ 0.05) with the exception of mask_face and fsl_deface trained

models evaluated on original data, and original as well as mask_face

trained models evaluated on pydeface data.

Defacing impact on model training
The analysis was based on eight OAR structure segmentations

from 29 patients totaling 232 evaluations. The MSD of left and right

level III neck lymph nodes for pydeface trained models were

omitted from the analysis as all the model outputs were empty.

Full comparisons of the model performance for each OAR are

depicted in Figure 3. Additional surface distance metrics are shown

in Appendix A (Figure A1). Overall, the model trained with the

original data performed better than the models trained with the

defaced data for the majority of structures and evaluation metrics.

Both metrics were significantly better for the model trained with the

original data compared to the model trained with mask_face data

for the left submandibular gland and right level II neck lymph node,

while only the DSC was significantly better for the right

submandibular gland and right level III neck lymph node.
Frontiers in Oncology 05
Similarly, both metrics were significantly better for the model

trained with the original data compared to the model trained

with fsl_deface data for the right level II neck lymph node, left

parotid, and right parotid, while only the DSC was significantly

better for the right level III neck lymph node. Moreover, both

metrics were significantly better for the model trained with the

original data compared to the model trained with pydeface data for

all the structures.

Defacing impact on model testing
In these results, only valid target data with successful defacing

on all three methods using non-empty segmentation structures

were included. This was obtained using results from 26 left

submandibular glands, 27 right submandibular glands, 1 left neck

level III lymph nodes, 2 right neck level III lymph nodes, and 28 of

each of the remaining structures. Due to the low number of cases for

the right and left level III lymph nodes, they were omitted from the

comparison. In addition, for the MSD metric, empty model output

segmentations were discarded resulting in evaluation of 1 left

submandibular gland for fsl_deface and mask_face and 14 for

pydeface, 1 and 6 right submandibular glands on fsl_deface and
FIGURE 2

Ratio of preserved voxels in comparison to the original segmentation mask after defacing (mask_face, fsl_deface, and pydeface) for each of the
organs at risk, where defacing was successful for N=39, N=42, and N=45, respectively. The mean and standard deviation are represented as the
center and extremes of the error bars, respectively.
TABLE 1 Quantitative details on the number of organs at risk available after the defacing was applied for all 55 patient scans.

Completely removed after successful defacing Unavailable for segmentation analysis*

Organ at risk/Defacing method mask_face fsl_deface pydeface mask_face fsl_deface pydeface

Left Submandibular Gland 0 (0%) 2 (4%) 6 (11%) 16 (29%) 14 (25%) 13 (24%)

Right Submandibular Gland 0 (0%) 1 (2%) 7 (13%) 16 (29%) 14 (25%) 14 (25%)

Left Neck Lymph Node Level II 0 (0%) 0 (0%) 4 (7%) 16 (29%) 13 (24%) 11 (20%)

Right Neck Lymph Node Level II 0 (0%) 0 (0%) 4 (7%) 16 (29%) 13 (24%) 11 (20%)

Left Neck Lymph Node Level III 0 (0%) 0 (0%) 45 (82%) 16 (29%) 13 (24%) 51 (93%)

Right Neck Lymph Node Level III 0 (0%) 1 (2%) 44 (80%) 16 (29%) 13 (24%) 50 (91%)

Left Parotid 0 (0%) 0 (0%) 6 (11%) 16 (29%) 13 (24%) 11 (20%)

Right Parotid 0 (0%) 0 (0%) 6 (11%) 16 (29%) 13 (24%) 11 (20%)

Total omitted 0 (0%) 4 (1%) 122 (28%) 128 (29%) 106 (24%) 172 (39%)
Only the mask_face, fsl_deface, and pydeface methods yielded usable data. The first group of columns correspond to the organs at risk that were completely removed from the cases with
successful defacing. The second group of columns correspond to all items in the first group of columns plus incorporating any of the cases where defacing failed. Defacing success or failure was
counted from scanwise quality control. *Organs at risk in these columns were omitted for all the subsequent segmentation-related experiments.
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pydeface, respectively, 1 left level II lymph node for pydeface, and 2

left parotids for pydeface. The model evaluated on the original data

performed significantly better than the models evaluated on the

defaced data for all of the structures and both evaluation metrics

except in the case of left submandibular gland DSC for fsl_deface

which exhibited a non-significant difference. The full comparison of

the model performance for each of the OARs is shown in Figure 4.

Additional surface distance metrics are shown in Appendix A

(Figure A2).
Discussion

This study has systematically investigated the impact of a

variety of defacing algorithms on structures of interest used for

radiotherapy treatment planning. This study demonstrated that the

overall usability of segmentations is heavily dependent on the

choice of the defacing algorithm. Moreover, the results indicate
Frontiers in Oncology 06
that several OARs have the potential to be negatively impacted by

the defacing algorithms, which is shown by the decreased

performance of auto-segmentation algorithms trained and

evaluated on defaced data in comparison to algorithms trained

and evaluated on non-defaced data.

Defacing for HNC applications should be deemed optimal if the

method simultaneously removes all recognizable facial features

from the image and no voxels from structures of interest are

affected. In this study, eight commonly available defacing

algorithms developed by the neuroimaging community were

applied: afni_refacer, mri_deface, defacer, DeepDefacer,

mask_face, fsl_deface, pydeface, and quickshear. Unfortunately,

for the investigated CT data, no defacing method was able to

yield successful removal of facial features while preserving the

OARs. This is not necessarily surprising given that the methods

investigated were developed primarily with MRI in mind; these

results echo previous similar work using CT data (42). Importantly,

even when applied to MRI data of HNC patients, many of these
TABLE 2 Composite DSC performance - mean (standard deviation) - of all structures for all combinations of training data (rows) and evaluation data
(columns).

Evaluated on original
(N =2 32)

Evaluated on mask_face
(N = 232)

Evaluated on fsl_deface
(N = 231)

Evaluated on pydeface
(N = 169)

Trained on original 0.760 (0.112) 0.673 (0.181) 0.693 (0.140) 0.406 (0.304)

Trained on mask_face 0.742 (0.115) 0.733 (0.120) 0.668 (0.143) 0.413 (0.312)

Trained on fsl_deface 0.736 (0.108) 0.643 (0.185) 0.733 (0.122) 0.465 (0.293)

Trained on pydeface 0.449 (0.333) 0.417 (0.325) 0.395 (0.301) 0.653 (0.258)
The number of total segmentation maps evaluated is shown in brackets on the header. All comparisons within the same evaluation data are statistically different from each other (p ≤ 0.05) with
the exception of mask_face and fsl_deface trained models evaluated on original data, and original and mask_face trained models evaluated on pydeface data. Statistical significance was measured
with Wilcoxon signed-rank tests corrected with Benjamini-Hochberg procedure comparisons within evaluation data.
FIGURE 3

Performance of the models trained on original or defaced data and evaluated on the original data. The mean and standard deviation for each metric
are represented as the center and extremes of the error bars, respectively. Statistical significance was determined using Wilcoxon signed-rank tests
corrected with Benjamini-Hochberg procedure for all OARs and models. Comparison symbols: ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 1e-
4), **** (p ≤ 1e-5).
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defacing methods outright failed for most if not all patients.

Therefore, despite extant studies demonstrating the acceptability

of these methods to remove facial features from neuroimaging scans

(16–21), these tools may not necessarily be robust to HNC-related

imaging. Moreover, for those defacing algorithms that were able to

successfully remove facial information in the MRI data, i.e.

mask_face, fsl_deface, and pydeface, it was shown that regardless

of the choice of the method, there was a loss of voxel-level

information for all the OAR structures investigated. Importantly,

pydeface leads to a greater number of lost voxels than mask_face

and fsl_deface for all the OAR structures, with the exception of the

parotid glands. While mask_face and fsl_deface lead to relatively

minimal reduction of available voxels in many cases, the loss of

topographic information in a radiotherapy workflow cannot be

underscored enough. It is well known that even minor variations in

the delineation of tumors and OARs can drastically alter the

resulting radiotherapy dose delivered to a patient, which can

impact important clinical outcomes such as toxicity and overall

survival (43–46). Therefore, the loss of voxel-level information of

OARs caused by the defacing algorithms, while potentially visibly

imperceptible, can still affect downstream clinical workflows.

Relatively few studies have been conducted that determined the

downstream analysis effects of defacing algorithms. For example,

recent studies by Schwartz et al. (16) and Mikulan et al. (21)

demonstrated that several defacing methods showed differences in

specific neuroimaging applications, namely brain volume

measurements and electroencephalography-related calculations.

In this study, as a proxy for a clinically relevant task, an OAR

auto-segmentation workflow was developed to investigate the

impact of defacing-induced voxel-level information loss on

downstream radiotherapy applications. As evident through both
Frontiers in Oncology 07
pooled analysis and investigation of individual OARs for auto-

segmentation model training and evaluation, performance is often

modestly decreased for fsl_deface and mask_face but greatly

decreased for pydeface; these results were consistent with the

overall voxel-level information loss. While pydeface has been

shown to have favorable results for use with neuroimaging data

(19, 21), its negative impact on HNC imaging is apparent.

Therefore, in cases where defacing is unavoidable, mask_face or

fsl_deface should likely be preferred for HNC image

anonymization. Regardless, this study demonstrates existing

approaches to anonymize facial data may not be sufficient for

implementation on HNC-related datasets, particularly for deep

learning model training and testing.

This study has several limitations. Firstly, to examine defacing

methods as they are currently distributed (“out-of-the-box”),

modifications to the templates or models utilized in any methods

were not performed. Further preprocessing either of the CT and

MRI data as well as subject specific settings could have helped some

of the methods to better identify the face. In addition, more suitable

templates for the HNC images (for both CT and MRI) would likely

improve the defacing performance; for the registration-based

methods, algorithms likely expected scans to cover the whole

brain, while the field-of-view of the images for HNC mostly

covered the neck and mouth, leaving the top of the brain

excluded. Notably, additional deep learning model training

schemes (i.e., transfer learning) may potentially allow for eventual

implementation of existing deep learning methods on domain-

specific datasets (i.e., HNC radiotherapy), but this negates the

immediate interoperability of these tools. Furthermore, no

additional image processing other than what was integrated into

the defacing methods was implemented; it may be possible
FIGURE 4

The performance of models trained on the original data when evaluated on the original, mask_face, fsl_deface, or pydeface data for the six organs
at risk included in the analysis. Only cases that were available for all the methods were included: 28 segmentations were used for all structures
except in the case of the left and right submandibular glands where 26 and 27 segmentations were used, respectively. In addition, for the MSD
metric, empty model output segmentations were discarded, which resulted in a smaller number of evaluated structures. The number of evaluated
structures is shown on top of the barplot. The mean and standard deviation for each metric are represented as the center and extremes of the error
bars, respectively. Statistical significance was measured with Wilcoxon signed-rank tests corrected with Benjamini-Hochberg procedure for all OARs
and models. Comparison symbols: ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 1e-4), **** (p ≤ 1e-5).
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alternative processing could change these results. Secondly, while a

robust analysis utilizing multiple relevant metrics established in

existing literature (38) was performed to evaluate OAR auto-

segmentation, there is not always a perfect correlation between

spatial similarity metrics and radiotherapy plan acceptability (39).

This study has not tested the downstream effects of defacing on

radiotherapy plan generation, which may lead to different results

from what was observed for the OAR segmentation. Thirdly, this

study was limited to public data with no modifications. Only

structures that were already available in existing datasets were

analyzed. Moreover, as an initial exploration of defacing methods

for radiotherapy applications, only a single imaging modality on a

relatively limited sample size, namely T2-weighted MRI, was

investigated for auto-segmentation experiments, despite the HNC

radiotherapy workflow commonly incorporating additional

modalities (47). Thus, experiments on additional imaging

modalities and larger diverse HNC patient populations should be

the subject of future investigations. Fourthly, the current analysis

does not thoroughly explore possible performance confounding

related to phenotypical and individual variables such as sex,

ethnicity, and age of the measured individuals. Finally, this study

has focused on defacing methods as an avenue for public data

sharing for training and evaluating machine learning models, but

privacy-preserving modeling approaches, e.g., through federated

learning (48), may also act as a potential alternative solution.
Conclusion

In summary, by using publicly available data, the effects of eight

established defacing algorithms, afni_refacer, mask_face,

mri_deface, defacer, DeepDefacer, quickshear, fsl_deface, and

pydeface, have been systematically investigated for radiotherapy

applications. Specifically, the impact of defacing directly on ground-

truth HNC OARs was determined and a deep learning based OAR

auto-segmentation workflow to investigate the use of defaced data

for algorithmic training and evaluation was developed. All methods

failed to properly remove facial features on the CT dataset

investigated. Moreover, it was observed that only fsl_deface,

mask_face, and pydeface yielded usable images from the MRI

dataset, but still decreased the total number of voxels in OARs

and negatively impacted the performance of OAR auto-

segmentation, with pydeface having more severe negative effects

than mask_face or fsl_deface. This study is an important step

towards ensuring widespread privacy-preserving dissemination of

HNC imaging data without endangering data usability. Given that

current defacing methods remove critical data, future larger studies

should investigate alternative approaches for anonymizing facial

data that preserve radiotherapy-related structures. Moreover,

studies on the impact of these methods on radiotherapy plan

generation, the inclusion of a greater number of OARs and target

structures, and the incorporation of additional imaging modalities

are also warranted.
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