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Identification and verification of
the temozolomide resistance
feature gene DACH1 in gliomas

Qiang Gu, Lang Li, Jiahao Yao, Fa-yan Dong, Yifan Gan,
Shuhuai Zhou, Xinyu Wang and Xue-feng Wang*

Harbin Medical University, Harbin, China
Introduction: The most important chemotherapy treatment for glioma patients

is temozolomide. However, the development of drug resistance severely restricts

the use of temozolomide. Therefore, elucidating the mechanism of

temozolomide resistance, enhancing temozolomide sensitivity, and extending

patient survival are urgent tasks for researchers.

Methods: Temozolomide resistance hub differential genes were identified using

differential analysis and protein interaction analysis from the GEO datasets

(GSE100736 and GSE113510). These genes were further studied in glioma

patients treated with temozolomide in the TCGA and CGGA databases.

Patients from the mRNAseq_325 dataset (CGGA) were considered as the

training set to construct a risk model for predicting glioma sensitivity to

temozolomide, while patients from the mRNAseq_693 dataset (CGGA) and

TCGA-GBM dataset were considered as the validation set to evaluate the

performance of models. PCR and western blot were performed to determine

the difference in expression of the feature gene DACH1 between glioma cells and

temozolomide-resistant glioma cells. The alterations in the sensitivity of tumor

cells to temozolomide were also observed after DACH1 was silenced. The

patients were then divided into two groups based on the expression of

DACH1, and the differences in patient survival rates, molecular pathway

activation, and level of immune infiltration were compared.

Results: Based on four signature genes (AHR, DACH1, MGMT, and YAP1), a risk

model for predicting glioma sensitivity to temozolomide was constructed, and

the results of timeROC in both the training and validation sets showed that the

model had good predictive performance. The expression of the signature gene

DACH1 was significantly downregulated in temozolomide-resistant cells,

according to the results of the PCR and western blot experiments. The

sensitivity of tumor cells to temozolomide was significantly reduced after

DACH1 was silenced. DACH1 probably regulates temozolomide resistance in

glioblastoma through the transcriptional dysregulation in cancer and ECM.

Discussion: This study constructs a risk model that can predict glioma

susceptibility to temozolomide and validates the function of the feature gene

DACH1, which provides a promising target for the research of temozolomide

resistance.
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Introduction

Gliomas are the most common primary intracranial tumors,

which mostly affect the frontal and temporal lobes of the cerebral

hemispheres (1). Although this tumor shares many characteristics

with typical glial cells, its precise origin is yet unknown (2). The

current standard of care is surgical resection combined with

postoperative radiation and temozolomide chemotherapy,

fo l lowed by cont inued adjuvant chemotherapy with

temozolomide (3). Despite the benefit of standard treatment, the

prognosis for patients is still poor, with a median survival rate of less

than 15 months and a five-year survival rate of only 6.9% (4). This is

closely related to a number of factors, such as the tumor’s infiltrative

growth, the inadequate surgical resection, and the development of

chemo-radiotherapy resistance (5). Temozolomide is a novel, 2nd-

generation oral alkylating agent that has been approved by the FDA

(Food and Drug Administration) for the treatment of brain tumors

since 2005 (6). Temozolomide does not directly inhibit the growth

of tumors. It can degrade into MTIC (5-(3-methyl-1-triazeno)

imidazole-4-carboxamide), and then degrade into AIC (4-amino-

5-imidazole-carboxamide) and methane-diazonium. Methane-

diazonium is considered as an active alkylating substance that can

alkylate the N7 and O6 sites of guanine and the N3 site of adenine,

interfering with DNA replication through the MMR (mismatch

repair) pathway to exert cytotoxic effects and induce apoptosis in

tumor cells (7). Due to its lipophilic nature, temozolomide easily

penetrates the BBB (blood-brain barrier) (8). Temozolomide is the

recommended chemotherapeutic agent for glioma since it has a

good oral absorption ratio and fewer side effects compared to other

chemotherapy drugs (such as procarbazine, lomustine, vincristine,

etc.) (9). However, as treatment proceeds, tumors gradually develop

chemoresistance, which ultimately results in treatment failure.

Currently, the theoretical explanations for Temozolomide

resistance include DNA repair mechanisms, survival autophagy,

glioma stem cells (GSCs), drug efflux transporters, and others (10).

However, the precise mechanisms through which drug resistance

develops are still unknown.

Machine learning is a multidisciplinary technique that

combines statistics and computer science and uses a variety of

strategies and algorithms to arrive at the best model (11). Compared

with traditional statistical methods that concentrate on the causality

of hypothesis testing and the significance of model features,

machine learning focuses more on the downscaling of high-

dimensional data and the predictive performance and

generalization of models (12, 13). As a result, machine learning is

better suited for analyzing complex and large quantities of data (e.g.,

gene expression analysis, image feature extraction, drug sensitivity

prediction, etc.).

In conclusion, we developed a risk model to predict the

prognosis of patients treated with temozolomide using gene

expression profiles and clinical data from the GEO (Gene

Expression Omnibus), TCGA (The Cancer Genome Atlas), and

CGGA (Chinese Glioma Genome Atlas) databases. One of the
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model’s signature genes (DACH1) was identified and validated,

providing a promising target for temozolomide resistance research.
Materials and methods

Patients and datasets

The RNA expression profiles of glioma cells and glioma TR

(temozolomide-resistance) cells were obtained from the GEO

database. There was a total of two datasets: GSE100736 contained

the RNA expression profiles of three U251 and three U251TR, while

GSE113510 contained the RNA expression profiles of three LN229

and three LN229TR. The RNA expression profiles and clinical

information of glioma patients were obtained from the CGGA and

TCGA databases. The training set included 188 patients from the

mRNAseq 325 dataset (CGGA), the validation set I included 435

patients from the mRNAseq_693 dataset (CGGA), and the

validation set II included 58 patients from the TCGA-GBM.

Selection criteria include: 1. receiving standard temozolomide

treatment; 2. having a survival time of more than 30 days; 3.

having a glioblastoma with a clear pathologic diagnosis. R

software (version 4.2.0) was used to standardize, batch-correct,

quality-check, and ID-transform the data.
Differential expression analysis

Differential expression analysis was performed using the

“limma” package (version 3.52.1) for microarrays from the GEO

database and the “DESeq2” package for RNA-seq from the CGGA

and TCGA databases in R software. Volcano plots were used to

depict differential expression genes (DEGs).
Protein-protein interaction

DEGs were imported into the string website (14) (https://

cn.string-db.org/) to build PPI networks online. The generated

networks were then imported into the Cytoscape software

(version 3.9.1) to analyze the hub node of the network using the

Centiscape plugin, with the following selected parameters: degree,

betweenness, Eigenvector centrality, and bridging centrality. For the

genes whose scores were all above 50%, we defined them as

hub DEGs.
Model construction and evaluation

A batch univariate COX regression analysis was conducted to

identify genes that were significantly related with patient prognosis

(p <0.05). Genes that were risky for prognosis and up-regulated in

the DEGs as well as genes that were protective for prognosis and
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down-regulated in the DEGs were picked out. Then, lasso

regression analysis and random forest were used to further screen

these genes. The risk model was built using the final feature genes

that had been screened, and the patient’s riskScore values were

calculated (riskScore = h0 (t)*exp(b1x1+b2x2+… + bnxn). The
performance of the model was evaluated using the training set and

validation set data.
Drug prediction

Based on the riskScore values calculated by the model, patients

were divided into high- and low-risk groups, and differences in

temozolomide sensitivity between high- and low-risk groups were

predicted by the “oncoPredict” package. Drugs that can reverse

feature gene expression were predicted online with the help of the

SPIED3 website (http://212.48.67.52/cgi-bin/HGNC-SPIED3.cgi).
Functional prediction of DACH1

Genes that interact with DACH1 were identified on the

GeneMANIA website (http://genemania.org/), and these genes

were entered into the Metascape website (https://metascape.org/

gp/index.html#/main/step1) for enrichment analysis of GO

biological processes and KEGG pathways to predict the function

of DACH1.
Cell culture and inducing temozolomide-
resistant clones

U251 human-derived GBM cell lines were obtained from the

Chinese Academy of Sciences Cell Bank and cultured using 90%

DMEM (Dulbecco’s modified Eagle medium, Gibco) + 10% FBS

(fetal bovine serum, Hyclone) at 37° and 5% CO2 environment. After

the cell proliferation was stabilized, ten U251 clones were selected for

the construction of drug-resistant cell lines by the drug concentration

increment method. The temozolomide concentrations were in the

following order: 0.125 mg/mL, 0.25 mg/mL, 0.5 mg/mL, 1 mg/mL, 2 mg/
mL, 4 mg/mL, 8 mg/mL, and 16 mg/mL. Each concentration was

maintained until the cells could keep growing steadily for five to six

generations. After more than 6 months of induction, three U251

clones were successfully converted to U251TR, which were employed

in subsequent biological experiments.
Cell transfection

The DACH1 shRNA lentiviral vector was purchased from

Shanghai Genechem Co., Ltd. The interference target sequence is

5’-GCACTTGAGTTTGAGACGA-3’ [from the research by Zhao

et al. (15)]. The vector component is hU6-MCS-CBh-gcGFP-IRES-

puromycin. U251 cells were cultured in 6-well plates at 10,000 cells
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per well, incubated for 24 h, and then replaced with medium

containing virus (MOI = 5) for transfection, which took roughly

8 h. Puromycin (concentration: 2 mg/ml) was then used to further

treat U251 cells for 48 hours in an effort to remove any

failed transfections.
Quantitative real-time PCR

RNAiso Plus (Takara, Code No. 9108) and PrimeScript™

RT reagent Kit (Takara, Code No. RR047A) were used to extract

and reverse-transcribe total RNA to cDNA. The SYBR Green Premix

Ex Taq kit (Takara, Code No. RR820A) was used to perform real-time

quantitative fluorescence analysis in the CFX Connect Real-Time

System (Bio-Rad, USA). The experimental steps are followed

according to the manual. The PCR procedure was 95°C for 30 s,

45 cycles at 95°C for 10 s, and 55°C for 30 s. Relative mRNA expression

was calculated through the 2-DDCT method and adjusted to GAPDH.

Prism software was used to analyze and display the results.

The primer sequences are as follows: GAPDH (forward primer: 5’-

AGTAGAGGCAGGGATGATG-3’; reverse primer: 5’- TGG

TATCGTGGAAGGACTC-3’); DACH1 (forward primer: 5’-

GGAATGGATTGTGGCTGAAC-3’; reverse primer: 5’- GGT

ATTGGACTGGTACATCAAG-3’).
Western blot

Cell lysis buffers (Beyotime) were used to lyse the cell. Protein

concentrations were determined by the BCA method and finally

diluted to 3 mg/ml. Electrophoresis was performed using 12.5%

PAGE gel with a loading volume of 10 ml per lane. After

electrophoresis, proteins were transferred from gel to PVDF

membrane. The PVDF membrane was sealed for 2 h with 5%

skim milk, then incubated with primary antibodies at 4°C for 12 h

and secondary antibodies at room temperature for 1.5 h. Prior to

each step, the membrane was washed three times with TBST for ten

minutes. Final imaging by ECL (enhanced chemiluminescence).

Both primary and secondary antibodies were purchased from the

Proteintech company. Primary antibodies included DACH1

monoclonal antibody (Cat No: 60082-1-Ig, dilution: 1:5000) and

GAPDH monoclonal antibody (Cat No: 60004-1-Ig, dilution:

1:50000). The secondary antibody is HRP-conjugated Affinipure

Goat Anti-Mouse IgG(H+L) (Cat No: SA00001-1, dilution: 1:5000).
Temozolomide toxicity experiment

Cells from the experimental and control groups were cultured

in 96-well plates with 5000 cells per well for 24 h and then replaced

with serum-free medium containing different concentrations of

temozolomide (GLPBIO) (0 mM, 400 mM, 1000 mM, 1600 mM,

2200 mM, 2800 mM in order). The CCK8 (GLPBIO) (final

concentration of 10%) was administered after 48 h of incubation.
frontiersin.org

http://212.48.67.52/cgi-bin/HGNC-SPIED3.cgi
http://genemania.org/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://doi.org/10.3389/fonc.2023.1120103
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2023.1120103
The OD value was measured after 1 hour, and the cell survival rate

was calculated. Cell survival rate = (experimental group - blank

group)/(control group - blank group). The IC50 was extrapolated

from a fitted curve made using the cell survival rate and

temozolomide concentrations.
Scratch assay

Cells were cultured in 6-well plates with 30,000 cells per well

after marking the 6-well plates’ bottom surface. After 24 h, the 6-

well plates were scratched perpendicularly to the marker line and

replaced with medium containing temozolomide (concentration: 50

mM). The marker points at 0 and 24 hours, respectively, were

captured on camera. The formula for calculating the cell migration

rate is (1-24 h scratch area/0 h scratch area) * 100%.
Survival analysis

Based on the feature genes’ median levels of expression, the

samples were divided into two groups. The “survival” package was

used to analyze survival differences between the two groups.
Analysis of immune infiltrates and gene set
enrichment analysis

Based on the median value of the feature gene DACH1

expression, patients in the training set were divided into high and

low expression groups, and differential expression analysis was run

for the two groups. Genes were sorted according to logFC value

from largest to smallest, and GESA was performed by the

“clusterprofiler” package to find potential molecular pathway
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with a P-value < 0.05 were considered statistically significant. The

“Estimate” package was applied to examine the immune score and

tumor purity of patients. The Cibersortx website (https://

cibersortx.stanford.edu/) (16) was visited to examine immune cell

infiltration in patients.
Statistical analysis

The Prism software (version 9.3) and R software (version 4.2)

were used for statistical analysis of the experimental results. The t-

test was used to compare two groups, and double-factor variance

analysis was used to compare several groups. The Kaplan-Meier

method was used to compare the survival rates of high-risk and

low-risk groups. Risk models were constructed by multivariate Cox

regression analysis. In the figure, 'ns' indicates P > 0.05, '*' indicates

P ≤ 0.05, '**' indicates P ≤ 0.01, '***' indicates P ≤ 0.001, and '****'

indicates P ≤ 0.0001. The prediction accuracy of the risk model was

evaluated by TimeROC. There were at least three successful

replications in each experiment.
Result

Identification of hub DEGs

1529 DEGs were yielded by differential analysis from the

GSE100736 dataset and the GSE113510 dataset, of which 556

DEGs were up-regulated and 973 DEGs were down-regulated.

The results are shown by volcano plots (Figure 1A) and heat map

(Figure 1B). In the volcano plot, the red dots represent genes that

are upregulated in the temozolomide resistance group (logFC > 2

and P.value < 0.01) while the green dots represent genes that are
A B C

FIGURE 1

Identification of hub DEGs. (A) DEGs are shown by the volcano plot. Red dots represent genes that are upregulated in the resistance group (logFC >
2 and P.value < 0.01), and green dots represent genes that are downregulated (logFC < 2 and P.value < 0.01). (B) The heatmap shows the top 30 up-
regulated and top 30 down-regulated genes in the drug resistance group. Red means genes up-regulated and blue means genes down-regulated.
(C) 45 hub DEGs PPI network.
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downregulated (logFC < 2 and P.value < 0.01) in that group. The

heatmap displays the top 30 genes that were up- and down-

regulated in the temozolomide resistance group. Blue indicates

down-regulated genes, while red indicates up-regulated genes.

These DEGs were input into the string website for the PPI

network’s construction. 45 hub DEGs network were identified

and constructed with the help of the Centiscape plugin of the

Cytoscape software (Figure 1C).
Construction and evaluation of a risk
model for predicting glioma sensitivity
to temozolomide

Univariate COX regression analysis identified 18 genes from 45

hub DEG that were significantly (P<0.05) related with patient

prognosis (Supplementary material 1). Finally, nine genes were

determined by intersecting genes with HR > 1 and upregulated

DEGs as well as genes with HR < 1 and downregulated DEGs

(Figure 2A). The lasso regression analysis was ran using the

“glmnet” package. As log(l) increases, the regression coefficients

of variables start to converge, eventually reaching 0 (Figure 2B). As

the variables gradually converge, the partial likelihood deviance

changes in a waveform. When there are 7 variables, the model

performs best (Figure 2C). Hence, these 7 genes were chosen for

further analysis. The random forest algorithm was executed using

the “randomForestSRC” package. As the number of decision trees
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increased, the model’s error rate gradually reduced (Figure 2D). The

variables were ordered from high to low importance in the model

(Figure 2E). The top 4 genes in terms of importance were used as

the feature variables (Figure 2F), and the coxph function of the

“survival” package was used to construct the risk model. In the risk

model, riskScore = exp (0.26495 * AHR +0.30219 * MGMT-0.08143

* DACH1+0.07468 * YAP1) *h0(t). We calculated the riskScore of

each patient in the training and validation sets based on this

formula, then divided the patients into high-risk and low-risk

groups based on the median riskScore in the training set. The risk

distribution of patients and the expression of feature genes are

shown in Figures 3A-C. The top 3 panels in Figures 3A-C show the

proportional relationship between the high-risk and low-risk

groups. Patients are ranked from low to high according to their

riskScore, and the dotted line divides them into high-risk group

(indicated by red dots) and low-risk group (indicated by green

dots). The middle 3 panels in Figures 3A-C show the relationship

between the riskScore and patient survival time (red dots indicate

dead patients, green dots indicate alive patients). As the riskScore

increases, the survival time of patients decreases and the number of

deaths increases. The bottom 3 panels in Figures 3A-C show the

relationship between the riskScore and the expression of the feature

genes. As the riskScore increases, the expression of MGMT, AHR,

and YAP1 increases, while the expression of DACH1 decreases. The

Kaplan-Meier method was used to determine the difference in

survival between the high-risk and low-risk groups. The results

show that the survival rates of patients were significantly lower in
A B

D E

F

C

FIGURE 2

Acquisition of signature genes and construction of risk models. (A) Nine genes were significantly associated with the prognosis of temozolomide-
treated patient, among which the HR values of TGFA, DACH1, and NEEL were less than 1, and they played a protective role, while the HR values of
TFAP2A, YAP1, SRGN, AHR, PRDM1, and MGMT were more than 1, and they played a risky role. (B) The nine different colored lines represent nine
different variables. As log(l) increases, the regression coefficients of variables start to converge, eventually reaching 0. (C) As the variables gradually
converge, the partial likelihood deviance changes in a waveform. When the number of variables is 7, the model performs best. When the number of
variables is 5, the model is the simplest. (D) As the number of decision trees increases, the error rate gradually decreases. (E) Variable importance
ranking in random forests (F) The top 4 variables of importance in the random forest. (The x-axis represents gene expression level, the y-axis
represents mortality, and the red line is the fitted curve.).
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the high-risk group than those in the low-risk group (P < O.O5)

(Figures 3D–F). ROC curves were plotted by the “timeROC”

package to evaluate the performance of the model. The AUC

values for 1, 3, and 5 years were 0.728, 0.738, and 0.781 in

CGGA-mRNAseq_325 (Figure 3G) and 0.699, 0.712, and 0.708 in
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CGGA-mRNAseq_693 (Figure 3H). Because the patient survival in

the TCGA-GBM was all less than 5 years, we calculated AUC values

for 1, 2, and 3 years, and they were 0.588, 0.712, and 0.66,

respectively (Figure 3I). The results showed that the model

performed well in terms of prediction.
A B

D E F

G IH

C

FIGURE 3

Validation of the risk model. (A-C) The top 3 panels show the proportional relationship between the high-risk and low-risk groups. Patients are
ranked according to their riskScore from low to high, and the dotted line divides patients into high-risk group (indicated by red dots) and low-risk
group (indicated by green dots). The middle 3 panels show the relationship between the riskScore and patient survival time (red dots indicate dead
patients, green dots indicate alive patients). As the riskScore increases, the survival time of patients decreases and the number of deaths increases.
The bottom 3 panels show the relationship between the riskScore and the expression level of the feature genes. As the riskScore increases, the
expression of MGMT, AHR, and YAP1 increases, while the expression of DACH1 decreases. (D-F) The red represents the high-risk group, and the
green represents the low-risk group. Patients’ survival rates in the high-risk group were significantly lower than in the low-risk group (P<O.O5).
(G–I) ROC curves and AUC values at different time points. The red, blue, and orange lines in Figures A and B indicate the ROC curves for 1, 3, and 5
years, and in Figure C, the ROC curves for 1, 2, and 3 years. The AUC values are 0.728, 0.738, and 0.781 in the CGGA-mRNAseq_325, 0.699, 0.712,
and 0.708 in the CGGA-mRNAseq_693, 0.588, 0.712, and 0.66 in the TCGA-GBM.
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Drug prediction

Patients were divided into high- and low-risk groups based on

the median riskScore, and the “oncoPredict” package was used to

forecast the temozolomide sensitivity. The results showed that

patients in the high-risk group had significantly lower

temozolomide sensitivity than those in the low-risk group

(Figure 4A). This result further demonstrated the accuracy of the

model. We entered the four feature genes and their logFC into the

SPIED3 website to seek some drugs that could reverse the

expression of the feature genes. Finally, some compounds were

found that were considered to be promising treatments for

temozolomide resistance (Supplementary Material 2). The top 10

compounds are shown in Figure 4B.
Functional prediction of DACH1

The GeneMANIA website identified 20 genes that interact with

DACH1 (Figure 5A). Enrichment analysis revealed that genes

interacting with DACH1 were enriched for functions such as

transcriptional misregulation in cancer, TGF-beta receptor

signaling pathway, and negative regulation of signal transduction

in absence of ligand (Figure 5B).
Construction and validation of
U251TR cells

After 6 months of continuous induction, 3 out of 10 U251

clones were successfully converted into U251TR. The drug toxicity

test indicated that the cell survival rate of U251TR was significantly
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higher than that of U251 at various Temozolomide concentrations

(Figure 6). The IC50 was estimated from a fitted curve made using

the cell survival rate and temozolomide concentrations. The results

suggest that the IC50 of U251TR (1545.45 mM) was about 2.3 times

higher than that of U251 (671.8 mM).
The expression differences of the DACH1
between the U251 and the U251TR

The qPCR and western blot experiments were performed to

determine the difference in DACH1 expression between U251 and

U251TR. The results of PCR experiments indicated that the relative

RNA expression of DACH1 (adjusted to GAPDH) was significantly

higher in the U251 group than that in the U251TR group (P < 0.05)

(Figure 7A). The results of western blot experiments indicated that

the gray degree of DACH1 was significantly higher in three U251

clones than that in three U251TR clones (Figure 7B). The statistical

results of the gray values show that the relative protein expression of

DACH1 (adjusted to GAPDH) was significantly higher in the U251

group than that in the U251TR group (Figure 7C).
The effect of DACH1 on
temozolomide sensitivity

The expression of DACH1 in U251 was silenced using the

lentivirus. Cells display green fluorescence after successful

transfection (Figure 8A). The effect of silencing was investigated

using qPCR and western blot experiments. The results of PCR

experiments showed that the relative RNA expression of DACH1

(adjusted to GAPDH) was significantly lower in the U251+Sh-
A B

FIGURE 4

(A) The red indicates the high-risk group, and the green indicates the low-risk group. Patients in the high-risk group had significantly lower temozolomide
sensitivity than the low-risk group (P < O.O5). (B) The top 10 compounds predicted by the SPIED3 website that reversed feature gene expression.
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A

B

FIGURE 5

(A) Twenty genes that interact with DACH1 were identified on the GeneMANIA website. (B) Genes interacting with DACH1 were enriched for
functions such as transcriptional misregulation in cancer, TGF-beta receptor signaling pathway, and negative regulation of signal transduction in
absence of ligand.
FIGURE 6

The blue color indicates the U251 group, and the coffee color indicates the U251TR group. The results of temozolomide toxicity experiments
revealed that the survival rate of U251 was significantly lower than that of U251TR at various temozolomide concentrations (P<0.05).
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DACH1 group than that in the U251 group and the U251+Vector

group (P<0.05) (Figure 8B). The results of western blot experiments

indicated that the gray degree of DACH1 was significantly lower in

the U251+Sh-DACH1 group than that in the U251 group and the

U251+Vector group (P<0.05) (Figure 8C). The statistical results of

the grayscale values show that the relative protein expression of

DACH1 (adjusted to GAPDH) was significantly lower in the U251

+Sh-DACH1 group than that in the U251 group and the U251

+Vector group (P<0.05) (Figure 8D). These results suggest that

lentiviruses successfully downregulate DACH1 expression. We

conducted temozolomide toxicity experiments to discover the

effect of DACH1 on temozolomide sensitivity. The results show

that the survival rate of the Sh-DACH1 group was significantly

higher than that of the U251 group and the U251-vector group at

different concentrations of temozolomide (P < 0.05) (Figure 8E),

indicating that downregulation of DACH1 increases the resistance

of U251 to temozolomide.
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Relationship between silencing of DACH1
and cell invasion

Based on predictions from the cancerSEA website, DACH1

expression was significantly negatively correlated with the function

of invasion and EMT in GBM (Figures 9A, B). Scratch experiments

were performed to observe the effect of DACH1 on the migratory

ability of cells. We found that temozolomide at the 50 mM
concentra t ion had no eff ec t on U251 pro l i f e ra t ion

(Supplementary Material 3), but significantly inhibited the U251

migration. So, we carried out the scratch assay with temozolomide

at a concentration of 50 mM. The results of scratch experiments

show that the cell migration rate was significantly lower in the

vector+TMZ (50 mM) group than that in the vector group (P < 0.05)

and significantly higher in the Sh-DACH1+TMZ (50 mM) group

than that in the vector+TMZ (50 mM) group (P < 0.05) (Figures 9C,

D). According to the results, temozolomide limited U251 migration
A

B

C

FIGURE 7

(A) The results of PCR experiments indicated that the relative RNA expression of DACH1 (adjusted to GAPDH) was significantly higher in the U251
group than in the U251TR group (P < 0.05). (B) The results of western blot experiments indicated that the gray degree of DACH1 was significantly
higher in three U251 clones than in three U251TR clones. (C) The statistical results of the gray values show that the relative protein expression of
DACH1 (adjusted to GAPDH) was significantly higher in the U251 group than the U251TR group.
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at the concentrations of 50 mM. However, the inhibitory ability of

temozolomide was lost when DACH1 was downregulated.
The relationship between DACH1
expression and molecular pathways

Patients treated with temozolomide were divided into high- and

low-expression groups based on the median expression of DACH1.

Differential expression genes were identified by differential analysis

and employed for GSEA. The GSEA results showed that several

pathways were activated in the DACH1 low expression group
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(Supplementary Material 4), such as transcriptional misregulation

in cancer, ECM-receptor interaction, and the NF-kappa B signaling

pathway (Figure 10). This result suggests that DACH1 may regulate

the sensitivity of gliomas to temozolomide via these

molecular pathways.
The relationship between the expression of
DACH1 and the immune infiltration status

The “estimate” package and the Cibersortx website were used to

analyze the expression matrix of patients treated with
A B

D

E

C

FIGURE 8

(A) The U251 cells in the Sh-DACH1 group and the Vector group display green fluorescence after successful transfection. (B) The results of PCR
experiments showed that the relative RNA expression of DACH1 (adjusted to GAPDH) was significantly lower in the U251+Sh-DACH1 group than in
the U251 group and the U251+Vector group (P < 0.05). (C) The results of western blot experiments indicated that the gray degree of DACH1 was
significantly lower in the U251+Sh-DACH1 group than in the U251 group and the U251+Vector group. (D) The statistical results of the gray values
show that the relative protein expression of DACH1 (adjusted to GAPDH) was significantly lower in the U251+Sh-DACH1 group than in the U251
group and the U251+Vector group. (E) The result of temozolomide toxicity experiments showed that the survival rate of the Sh-DACH1 group was
significantly higher than that of the U251 group and the U251-vector group at different concentrations of temozolomide (P < 0.05).
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temozolomide in the train set. The results of the “estimate” package

analysis showed that the DACH1 low expression group had higher

StromalScore, ImmuneScore, and ESTIMATEScore, as well as lower

tumor purity (Figures 11A, B), indicating that downregulating

DACH1 can promote immune cell infiltration. The results of the

Cibersortx website analysis showed the proportion of 22 immune

cell types in 188 patients in the training set (Figure 11C) and the

difference of 22 immune cell types between the DACH1 high

expression group and low expression group (Figure 11D). There

were more regulatory T cells and less activated NK cells in the

DACH1 low expression group.
The relationship between the expression of
DACH1 and clinical features

Patients treated with temozolomide were divided into high and

low expression groups based on the median DACH1 expression,

and the Kaplan-Meier method was used to analyze the survival

difference. The results showed that the survival rate in the low
Frontiers in Oncology 11
expression group was significantly lower than that in the high

expression group (P<0.05) (Figure 12A). The ANOVA (Analysis of

Variance) and the t-test were used to analyze the relationship

between DACH1 expression and tumor grade, patient age,

MGMT methylation status, and IDH mutation status. The results

show that as the glioma grade increases, DACH1 expression

decreases (Figure 12B). The expression of DACH1 in the >=43-

year-old group was significantly lower than that in the <43-year-old

group (P < 0.05) (Figure 12C). The expression of DACH1 in the

non-methylated group was significantly lower than that in the

methylated group (P < 0.05) (Figure 12D). The expression of

DACH1 in the IDH wild-type group was significantly lower than

that in the IDH mutant group (P < 0.05) (Figure 12E).
Discussion

Gliomas have great intra- and inter-tumoral heterogeneity (17),

which makes both research and treatment very complex. Due to the

limitations of histopathology, molecular biomarkers are becoming
A

B

D

C

FIGURE 9

(A, B) The cancerSEA website predicts that the lower the expression of DACH1, the stronger the function of invasion and EMT in GBM. (C, D) The results of
scratch experiments show that the cell migration rate was significantly lower in the vector+TMZ (50 mM) group than in the vector group (P < 0.05) and
significantly higher in the Sh-DACH1+TMZ (50 mM) group than in the vector+TMZ (50 mM) group (P < 0.05).
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more and more critical in assisting with diagnosis, guiding

treatment, and evaluating prognosis (18). Diffuse astrocytoma

with TERT promoter mutations, EGFR amplification, and/or +7/-

10 copy number variants in IDH wild type have biological behavior

equivalent to glioblastoma (WHO grade 4), even though they

exhibit histologically as WHO grade 2/3 (19); WHO grade 2/3

IDH-wild/H3-wild diffuse glioma with BRAF V600E mutation,

FGFR1 variant, and/or MYB/MYBL1 variant are suggestive of

biological indolence and have a better prognosis for patients (20).

The 2021 WHO CNS5 has recognized molecular biomarkers as

crucial signatures for glioma classification (21). Therefore,

exploratory research on feature genes is increasingly important.

In this study, gene expression information and clinical information

of patients were obtained from the GEO, TCGA, and CGGA

databases. Clinical data from temozolomide-treated patients was

chosen to predict drug sensitivity, because the longer survival times

of these patients suggest better sensitivity to the drug. A risk model

for predicting glioma susceptibility to temozolomide was built

based on the feature genes identified through differential analysis,

PPI, machine learning, etc. The prediction results in both the

training set and the validation set demonstrated that the risk

model had good predictive ability. We then predict a number of

potential compounds that could overcome temozolomide resistance

by regulating the model signature genes, and we intend to further
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validate them in subsequent experiments. In the process of

functional prediction of model signature genes, we found that

DACH1 is closely associated with transcriptional misregulation in

cancer and TGF-beta, both of which are crucial for the development

of tumor treatment resistance. Therefore, we chose the DACH1

gene for our further experimental research. DACH1 was first

discovered as a key gene involved in Drosophila retinal

development (22). Further research found that DACH1

expression was down-regulated in a variety of cancers and was

closely related to poor prognosis (23). DACH1 regulates the

development and progression of liver cancer via the Wnt/-catenin

pathway (24), promotes breast cancer growth and metastasis via

cyclin D1 (25), and maintains glioma cell stemness via bFGF

transcriptional activation (26). Loss of DACH1 causes tumor cells

to proliferate and migrate, which has also been observed in prostate,

kidney, and lung adenocarcinomas (27–29).

In this study, we chose the U251 cell line, which was derived

from glioma patient tumor tissue and is one of the most commonly

used cell lines in glioma research. We investigated the

characteristics of the U251 cell line in more detail on the Cell

Model Passports website (https://cellmodelpassports.sanger.ac.uk/)

and found that DACH1 was wild type in the U251 cell line. Then,

we observed the genetic changes after converting U251 into

U251TR. The results of the western blot and qPCR experiments
FIGURE 10

GSEA results showed that the three pathways—transcriptional misregulation in cancer, ECM-receptor interaction, and the NF-kappa B signaling
pathway—were activated in the DACH1 low expression group.
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showed that the expression of DACH1 was significantly lower in

U251TR. The sensitivity of U251 to temozolomide was lowered

after DACH1 was silenced. The above results suggest that DACH1

is downregulated in U251TR and the silencing of DACH1 causes

U251 to become resistant to temozolomide. In order to determine

the function of DACH1 in temozolomide resistance, we ran GSEA

and immune infiltration analysis. The GSEA results showed that

transcriptional misregulation in cancer, ECM-receptor interaction,

and the NF-kappa B signaling pathway were activated in the

DACH1 low expression group. Transcriptional misregulation in

cancer is an important player in regulating tumor development,

metastasis, and chemotherapy resistance (30), and it was found to

be closely related to DACH1 in the functional prediction

(Figure 5B). Thus, DACH1 very likely regulates glioma

temozolomide resistance through transcriptional misregulation in
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cancer. According to the GSEA results, the ECM-receptor

interaction and NF-kappa B signaling pathways were also found

to be active in the DACH1 low expression group, which is

consistent with the research of Sattout Aman (31). We further

confirmed this using the scratch assay. The proliferation of U251

cells was unaffected by temozolomide at the concentration of 50

mM, but their migration was restricted. However, after DACH1

down-regulation, temozolomide’s ability to prevent tumor

migration was lost, and the cells even displayed a stronger

capacity for invasion than in temozolomide-free conditions. The

powerful invasive ability is probably a reason that tumors develop

drug resistance. Therefore, DACH1 probably regulates these

pathways to contribute to temozolomide resistance in glioma. The

results of the immune infiltration analysis showed that patients in

the DACH1 low expression group had higher immune scores and
frontiersin.or
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FIGURE 11

The relationship between the expression of DACH1 and the immune infiltration status. (A) The StromalScore, ImmuneScore, and ESTIMATEScore
were significantly higher in the low-risk group than in the high-risk group (P < 0.05). (B) The TumorPurity was significantly lower in the low-risk
group than in the high-risk group (P < 0.05). (C) The proportion of 22 immune cell types in the 188 patients in the training set. (D) The DACH1 low
expression group had more regulatory T cells and fewer NK cells activated.
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lower tumor purity, which suggested that DACH1 could be able to

promote immune cell infiltration. The results of the online analysis

on the Cibersortx website showed that the DACH1 low expression

group had more regulatory T cells and fewer NK cells activated,

suggesting that the downregulation of DACH1 could promote the

infiltration of immunosuppressive types of cells, which is likely a

mechanism that DACH1 regulates drug resistance.

Following a more in-depth investigation, we discovered that

DACH1 expression was closely related to several clinical

characteristics in patients. The survival rate of temozolomide-

treated patients in the low DACH1 expression group was lower,

indicating that DACH1 can affect prognosis. Furthermore, DACH1

expression decreased significantly with increasing tumor grade, and

it was also lower in patients with advanced age, IDH wild-type, and

MGMT non-methylation. Advanced age, higher grade, MGMT

non-methylation, and IDH wild type are all poor prognostic
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factors in glioma patients (32). We found DACH1 mutations

(mainly inframe deletions) and DNA methylation in some

patients while investigating the Brain Tumor PDXs (Mayo Clinic,

Clin Cancer Res 2020) dataset on the cbioportal website. These

alterations were also taken into consideration as possible reasons for

the downregulation of DACH1 in some patients. Further

investigation revealed that the DACH1-altered group’s survival

was significantly worse than that of the DACH1-unaltered group,

which also matched our study.
Conclusion

This study builds and verifies a risk model for temozolomide-

treated patients to predict their prognosis and explores the function

of one of the feature genes, DACH1, in gliomas.
A B

D EC

FIGURE 12

The relationship between the expression of DACH1 and clinical features. (A) Red indicates the DACH1 low expression group, and green indicates the
DACH1 high expression group. Patients with low expression had a lower survival rate than those with high expression (P < 0.05). (B) The expression
of DACH1 decreases with increasing glioma grade. (C) The expression of DACH1 in the >=43-year-old group was significantly lower than that in the
<43-year-old group (P < 0.05). (D) The expression of DACH1 in the non-methylated group was significantly lower than that in the methylated group
(P < 0.05). (E) The expression of DACH1 in the IDH wild-type group was significantly lower than that in the IDH mutant group (P < 0.05).
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This study provides a reliable model and a promising target for

the research of temozolomide resistance.
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