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Background and purpose: Deep learning-based models have been actively

investigated for various aspects of radiotherapy. However, for cervical cancer,

only a few studies dealing with the auto-segmentation of organs-at-risk (OARs)

and clinical target volumes (CTVs) exist. This study aimed to train a deep learning-

based auto-segmentation model for OAR/CTVs for patients with cervical cancer

undergoing radiotherapy and to evaluate the model’s feasibility and efficacy with

not only geometric indices but also comprehensive clinical evaluation.

Materials and methods: A total of 180 abdominopelvic computed tomography

images were included (training set, 165; validation set, 15). Geometric indices such

as the Dice similarity coefficient (DSC) and the 95% Hausdorff distance (HD) were

analyzed. A Turing test was performed and physicians from other institutions were

asked to delineate contours with and without using auto-segmented contours to

assess inter-physician heterogeneity and contouring time.

Results: The correlation between themanual and auto-segmented contours was

acceptable for the anorectum, bladder, spinal cord, cauda equina, right and left

femoral heads, bowel bag, uterocervix, liver, and left and right kidneys (DSC

greater than 0.80). The stomach and duodenum showed DSCs of 0.67 and 0.73,

respectively. CTVs showed DSCs between 0.75 and 0.80. Turing test results were

favorable for most OARs and CTVs. No auto-segmented contours had large,

obvious errors. The median overall satisfaction score of the participating

physicians was 7 out of 10. Auto-segmentation reduced heterogeneity and

shortened contouring time by 30 min among radiation oncologists from

different institutions. Most participants favored the auto-contouring system.

Conclusion: The proposed deep learning-based auto-segmentation model may

be an efficient tool for patients with cervical cancer undergoing radiotherapy.

Although the current model may not completely replace humans, it can serve as

a useful and efficient tool in real-world clinics.
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1 Introduction

Radiotherapy (RT) plays a crucial role in the curative treatment

of locally advanced and early stage cervical cancer (1). Definitive RT

generally includes the pelvic area and, in some cases, nodal area up

to the para-aortic lymph nodes (2, 3). Many institutions use

intensity-modulated RT (IMRT) for cervical cancer, which allows

the delivery of a curative dose of radiation to the target while

minimizing toxicities to nearby organs-at-risk (OAR). The benefit

of IMRT in patients with cervical cancer has been demonstrated in a

randomized controlled trial, with reduced toxicity but no difference

in disease outcomes (4). However, compared to RT using

conventional techniques, the planning process for IMRT is far

more complicated.

For RT, a computed tomography (CT) simulation is necessary

for treatment planning. Radiation oncologists contour both target

volumes and OAR for every CT slice. Target volumes consist of

gross tumor volume and clinical target volume (CTV), including

microscopic disease and nodal areas. In cervical cancer, the

anorectum, sigmoid colon, bowel, bladder, uterocervix, spinal

cord, cauda equina, stomach, duodenum, liver, right and left

kidneys, and femoral head can be included as OARs for treatment

planning. All these contours need to be precisely contoured in every

CT slice for accurate treatment planning.

Consequently, the workload of radiation oncologists has

increased considerably. Consequently, increased workloads lead

to increased time for preparing IMRT, which may also lead to a

delay in the start of treatment for patients. Furthermore, with

multiple OAR and target volumes, there may be increased

heterogeneity in the definition of contours. Large heterogeneity

among radiation oncologists has been shown to affect the quality

of treatment (5, 6).

Deep learning has attracted substantial interest in various fields

of medicine (7–9). In the field of radiation oncology, deep learning-

based models have been actively investigated for various aspects of

RT (10). Auto-segmentation tools have been introduced in head

and neck and prostate cancer (11, 12). For cervical cancer, most

research concerning auto-segmentation has focused on gross tumor

segmentation (13, 14) with few studies on the auto-segmentation of

OAR/CTVs on a simulated CT scan (15).

In this study, we attempted to train a deep learning-based auto-

segmentation model for OAR and CTV in patients with cervical

cancer undergoing RT and to evaluate the feasibility and efficacy of

the model.
2 Materials and methods

This study was approved by the Institutional Review Board of

Severance Hospital (IRB: 4-2021-0605). Informed consent was not

required due to the retrospective nature of this study. This study

included the planning CT images of 182 patients who underwent

definitive RT as the first treatment modality for pathologically

diagnosed cervical cancer between January 2016 and May 2020.

Out of the 182 patients, 16 (9%) were diagnosed with stage I cervical

cancer, 54 (30%) with stage II, 96 (53%) with stage III, and 16 (9%)
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with stage IV. The CT scans of patients who underwent surgery

prior to RT were excluded. Contrast-enhanced planning CT scans

(Somatom Sensation Open syngo CT 2009E, Siemens and Aquilion

TSX-201A, Toshiba) were performed 1 min after the administration

of 80–90 mL of intravenous contrast (iohexol, 84.11 g/130 mL,

depending on the patient’s weight). Planning CT scans were

performed approximately 1 week prior to RT, with a slice

thickness of 3 mm. The setup for all planning CT scans was the

supine position.

For homogeneity, a single expert radiation oncologist, blinded

to patient information, delineated CTVs and OARs within 3

months. The initial contours used for the actual treatment were

not used in this study. The OARs were contoured according to the

Radiation Therapy Oncology Group guidelines (16). The rectum,

bowel bag, bladder, uterocervix, spinal cord, cauda equina, stomach,

duodenum, liver, right kidney, left kidney, right femoral head, and

left femoral head were contoured as the OARs. For the target

volume, various recommendations and guidelines were reviewed,

and the pictorial atlas derived by consensus best practice delineation

was used (2, 3, 17–20). CTV1 included the uterus, ovaries (if

visible), gross tumor, cervix, bilateral parametria, and vagina.

CTV2 included pelvic nodal groups, such as the common iliac,

external iliac, internal iliac, obturator, and presacral lymph node.

CTV3 included the para-aortic nodal chain.

Among the 182 planning CT images, two were excluded

because of serious metal artifacts and prone positioning. Finally,

180 female abdominopelvic CT images were included, of which 165

were used as the training set and 15 as the validation set. The

algorithm for auto-segmentation was designed as a two-stage

structure to improve segmentation performance (Figure 1A), and

a U-Net structure using EfficientNet-B0 as the backbone was used

as the network model (Figure 1B). The details of the algorithm are

explained in the Supplementary Material.

The Dice similarity coefficient (DSC) and 95% Hausdorff

distance (HD), which are the most commonly used geometrical

indices, were used to compare the two different sets of contours.

DSC is a measure of the overlap between two sets of contours,

ranging from “0” to “1,” in which “1” implies a complete overlap.

HD is the maximum distance of a set contour to the nearest point of

the contour of another set. Therefore, 0 mm indicates complete

overlap for HD.

As a method for subjective evaluation, the Turing test, also

known as the imitation game, was used to assess whether the auto-

segmented contours were distinguishable from the manual contours

(21). The CT slices from the validation cases were randomly

selected for each OAR/CTV. A survey, including the Turing test,

was conducted using a web interface (Supplementary Figure 1) and

consisted of four sections.

Section I. Single contour: “How was this contour drawn?”

Answer: By human or by computer

Section II. Two contour sets: “Which contour set do you prefer?”

Answer: Set A or B

Section III. Alternative questions: “You have been asked to review

these contours for clinical use by a colleague. Would you:”

Answer:

Require them to be corrected; there are large, obvious errors.
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Require them to be corrected; there are minor errors.

Accept them as they are; there are minor errors.

Accept them as they are; the contours are very precise.

Section IV. Overall satisfaction score: “How much are you

satisfied with auto-segmentation for actual clinical use?”

Answer: 0 (worst) to 10 (best)

Sections I to III consisted of 80 questions each. Section IV,

assessing physician satisfaction, consisted of five questions, one for

each case.

To observe a reduction in inter-physician heterogeneity and

time, 10 radiation oncologists, experts in gynecologic cancer, from

six different institutions were asked to delineate OAR/CTVs on an

anonymized CT image initially and record the time to complete the

process. They were then asked to delineate OAR/CTVs using auto-

segmented contours as a baseline and to record the time.

Quantitative metrics before and after using the auto-segmentation

model were analyzed. The reduction in time was also analyzed.

Participants were asked to complete a questionnaire to estimate the

feasibility and efficacy of the auto-segmentation model and to

comment on whether the auto-segmented contours were different

from the routine contours of their institutions.

Question 1. Are you satisfied with auto-segmentation for actual

clinical use?

Question 2. Do you think that AI-based auto-contouring system

will be able to replace human beings in the future?

Question 3. Do you think that that AI-based auto-contouring

system will be helpful for physicians and/or dosimetrists in actual

real-world clinic?

Answer options: Not at all/No/Average/Yes/Definitely yes
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3 Results

Examples of deep-learning-based auto-segmented and

manually contoured OARs/CTVs are shown in Figure 2. Table 1

shows a comparison of the manual and auto-segmented contours

obtained by DSC and HD. Regarding OARs, the anorectum,

bladder, spinal cord, cauda equina, and right and left femoral

heads showed DSCs between 0.80 and 0.90. Bowel bag,

uterocervix, liver, left kidney, and right kidney showed excellent

DSCs of over 0.90. For the stomach and duodenum, DSCs were 0.67

and 0.73, respectively. CTV1, CTV2, and CTV3 showed DSCs

between 0.75 and 0.80. For HD, the anorectum, bladder,

uterocervix, spinal cord, cauda equina, liver, right and left kidney,

and right and left femoral head showed HD below 10 mm, while the

bowel bag, stomach, duodenum, CTV1, CTV2, and CTV3 showed

HD over 10 mm.

The results for Section I of the Turing test are shown in

Figure 3A. For section I, a CT slice image of a single contour was

provided, and participants were asked whether the contour was

delineated by a human being or computer. Overall, the

participants answered correctly for 58% of the questions, but

expected differently for the other 42%. For auto-segmented and

manual contours, the participants predicted correctly for 54%

and 63% of the questions, respectively. Specifically, most

participants correctly answered the question of whether the

contour was drawn by a computer or a human in relation to

the uterocervix and liver.

The results for Section II are shown in Figure 3B. The

participants answered in favor of the auto-segmented contours
B

A

FIGURE 1

Two-stage structure algorithm for auto-segmentation (A) and schematic of the proposed convolutional neural network architecture (U-Net with
EfficientNet-B0) (B).
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and manual contours for 39% and 61% of the overall questions,

respectively. The liver, right kidney and right and left femoral head

were the OARs that the participants preferred manual contours

over auto-segmented contours by more than 70%.

The results of Section III are shown in Figure 4. For the auto-

segmented contours, which were blinded, the participants answered

that they would accept them as they are for 66% and that they would

require them to be corrected since they have minor errors for 34%.

No auto-segmented contours were judged to have large, obvious

errors. For the anorectum, bowel bag, bladder, uterocervix, spinal

cord, and cauda equina, over 80% of the participants accepted the
Frontiers in Oncology 04
contours. In comparison, for the right kidney, left femoral head,

right femoral head, CTV1, and CTV2, over 50% required correction

for minor errors. For manual contours, the participants answered

that they would accept them as they were for 86% and that they

would require them to be corrected since they had minor errors for

14%. No large, obvious errors were observed for manual contours.

More than 80% of the manual contours for all OARs, except for the

bowel bag, were accepted as they were.

For section IV, participants were asked to provide an overall

satisfaction score for five cases with auto-segmented contours

(Supplementary Figure 2). The median overall satisfaction score
FIGURE 2

Example of deep learning-based auto-segmentation and manual contours.
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was 7 (range 1–10). The median scores for each participating

physician varied widely (range 3–9).

The comparison between the original manual contour and the

OAR/CTVs contoured by radiation oncologists from other

institutions with and without auto-segmentation is shown in

Table 2 and also as a boxplot in Figure 5 for DCS and

Supplementary Figure 3 for HD. Among OAR/CTVs, the cauda

equina, stomach, and spinal cord showed DSCs lower than 0.60 and

the stomach and spinal cord showed HDs greater than 40 mm for

contours without auto-segmentation. In contrast, the right and left

kidneys, liver, and bladder showed DSCs higher than 0.90, and the

right and left kidneys and bladder showed HDs smaller than 10

mm. For contours obtained using auto-segmentation, the stomach

showed a DSC lower than 0.60, and the stomach and spinal cord

showed HDs greater than 40 mm. The right and left kidney, bowel

bag, uterocervix, right and left femoral head, liver, and bladder

showed DSCs higher than 0.90, and the right and left femoral head

and bladder showed HDs smaller than 10 mm. Overall, the mean

DSC and HD for the contours without using auto-segmentation

were 0.76 (standard deviation [SD] 0.07) and 25.11 (SD 16.51),

respectively. For contours using auto-segmentation, the overall

mean DSC and HD were 0.82 (SD 0.03) and 24.40 (SD 7.34),

respectively, showing slightly a higher DSC and a smaller HD with

smaller SDs suggesting reduced heterogeneity. The median times

for contouring all OAR/CTVs without auto-segmentation and with

auto-segmentation were 82 min (range, 66–101 min) and 51 min

(range, 31–78 min), respectively. The responses to Questions 1, 2,
Frontiers in Oncology 05
and 3 are shown in Supplementary Figure 4. Most participating

radiation oncologists scored average or in favor of the auto-

contouring system. All participants, except one, answered that the

CTVs were different from those of their institution, but that the

OARs were similar. Most comments concerning the CTVs were

about the margin and the range of muscle or vessel the

CTV included.
4 Discussion

We trained a deep learning-based auto-segmentation model for

13 OARs and three CTVs using simulated CT images of patients

with cervical cancer. The proposed auto-segmentation model

showed acceptable agreement with geometric indices, such as

DSC and HD, and favorable clinical agreement with various

subjective evaluation methods.

Unlike studies applying artificial intelligence in other medical

areas, one specific characteristic of studies reporting auto-

segmentation is that the concept of ground truth is disputable.

The contours of OAR/CTVs vary among physicians, even within

the same institution (5). Therefore, although the current model was

generated with contours according to existing guidelines, the

contours of the current model may not fit all clinical situations.

Multi-domain evaluation may be necessary to evaluate auto-

segmentation for RT, because geometric indices such as DSC and

HD are not well correlated with clinically meaningful endpoints
TABLE 1 Comparison of deep learning auto-segmentation and manual contours of organs-at-risk and clinical target volumes.

DSC SD HD (mm) SD (mm)

Organs-at-risk

Stomach 0.67 0.27 28.33 29.28

Duodenum 0.73 0.19 12.60 13.50

Liver 0.94 0.01 6.20 1.47

Right kidney 0.90 0.03 7.60 3.50

Left kidney 0.90 0.04 8.20 4.83

Spinal cord 0.82 0.06 8.40 8.48

Cauda equina 0.81 0.04 5.20 3.69

Bowel bag 0.90 0.02 13.40 5.40

Bladder 0.88 0.24 6.93 13.41

Uterocervix 0.90 0.05 7.27 4.68

Anorectum 0.86 0.04 8.00 8.04

Right femoral head 0.89 0.07 7.47 4.79

Left femoral head 0.89 0.08 7.60 4.94

Target

CTV1_primary 0.76 0.07 15.67 6.13

CTV2_pelvic node 0.77 0.05 12.53 5.73

CTV3_para-aortic node 0.80 0.12 13.00 8.69
fr
DSC, Dice similarity coefficient; STD, standard deviation; HD, 95% Hausdorff distance; CTV, clinical target volume.
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(22). We included geometric indices for evaluation and qualitative

evaluation methods, such as the Turing test, assessing changes in

inter-physician variability and contouring time, and physician-

reported assessment.

Previously, studies have reported the results of auto-

segmentation of OAR/CTVs in cervical cancer (15, 23–26). One

study including 100 cases for model training reported similar results

to those of our study for OARs (24). The DSC for the CTV in this

study was slightly higher, but in our study, CTVs were divided into

CTV1, CTV2, and CTV3, which may have affected the results. Small

differences may translate into larger differences in DSCs in smaller

contour volumes. In another study by Rhee et al., overall, there were

no large differences compared to the results of this study (15). The

differences in DSC values for primary CTV and spinal cord may be

attributed to the higher number of CT scans (2254 cases) included

in the model by Rhee et al. (15). A study by Li et al. employed

quantitative metrics, including the DSC, HD, and true positive

volume fraction, to analyze the contours of the CTV, bladder,
Frontiers in Oncology 06
rectum, bowel bag, and femoral head in postoperative cases. The

DSC values ranged from 0.84 to 0.93 (25). In another study, in

addition to DSC and HD, the Jaccard coefficient and dose-volume

index were utilized for dosimetric evaluation of the spinal cord,

kidney, bladder, femoral head, pelvic bone, rectum, and small

intestine (26). Recent studies have suggested that surface metrics,

such as surface DSC and Added Path Length, are better tools for

analyzing clinical acceptability or correlating with time-savings

compared to traditional metrics such as DSC and HD (27–30).

However, calculating surface DSC and Added Path Length is not yet

possible using commercial software and thus cannot be performed

in general. In our study, we used traditional geometric indices such

as DSC and HD, which may be a limitation, but we also

incorporated various subjective evaluation methods to overcome

this limitation.

Currently, the progress in this field has been exponential and

there are several commercial deep-learning based auto-

segmentation software for the female pelvis such as Therapanacea
A

B

FIGURE 3

Results for Section I of the Turing test (A) and Section II of the Turing test (B).
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FIGURE 4

Results for Section III of the Turing test.
TABLE 2 Comparison between the original manual contour and contours delineated by the radiation oncologists in other institutions without and
with auto-segmentation.

Manual Auto-segmentation-based

DSC
Mean SD

HD
Mean SD

DSC
Mean SD

HD
Mean SD

Stomach 0.54 0.04 54.70 24.54 0.57 0.02 64.50 4.41

Duodenum 0.73 0.09 24.02 14.30 0.79 0.04 18.83 1.14

Liver 0.95 0.01 11.67 7.38 0.94 0.01 18.57 0.85

Right kidney 0.94 0.01 9.49 6.01 0.90 0.02 19.39 1.42

Left kidney 0.93 0.01 7.96 4.75 0.89 0.01 17.60 1.22

Spinal cord 0.56 0.10 49.15 59.16 0.62 0.10 56.48 54.95

Cauda equina 0.54 0.09 31.26 14.60 0.70 0.08 24.57 9.93

Bowel bag 0.89 0.02 27.39 19.15 0.91 0.00 33.33 9.64

Bladder 0.95 0.01 5.21 2.22 0.96 0.00 5.51 0.37

Uterocervix 0.86 0.06 18.43 8.87 0.91 0.01 18.25 2.41

Anorectum 0.83 0.04 13.07 9.58 0.89 0.01 10.44 3.30

(Continued)
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Annotate, AccuContour, AI-Rad Companion, OncoStudio et

cetera. Therapanacea Annotate provides 14 OARs and 10 LN

contours (Anal Canal, Bladder, Bowel Bag, External Contour,

Femoral Heads, Iliac, Kidneys, Liver, Medullar Canal, Rectum,

Sigmoid, Spinal Cord, Common Iliac Gyneco LN, CTVt Gyneco,

Iliac Gyneco LN, Inguinal Gyneco LN, Lomboaortic Gyneco LN,

Parametrium, Presacral Gyneco LN, Vagina) and AccuContour and

OncoStudio currently provides OAR contours such as Bowel bag,
Frontiers in Oncology 08
Small intestine, Rectum, Bladder, Femoral head, Liver, Kidney,

Stomach, Duodenum. One of the strengths of the current model

in this study would be the inclusion of CTVs compared to the

products that only include OARs.

Our study has several strengths; in that, it included numerous

OAR/CTVs, which were more diverse than previous studies. In the

current study, stomach and duodenum showed poorer DSCs

compared to the other OARs. The superior limit of CT images,
TABLE 2 Continued

Manual Auto-segmentation-based

DSC
Mean SD

HD
Mean SD

DSC
Mean SD

HD
Mean SD

Right femur head 0.69 0.22 33.04 25.96 0.91 0.01 8.63 1.63

Left femur head 0.69 0.22 33.59 26.45 0.91 0.01 8.57 1.94

CTV1_primary 0.70 0.06 36.48 17.38 0.77 0.07 36.82 9.92

CTV2_pelvic node 0.70 0.08 22.93 12.37 0.71 0.07 21.91 6.26

CTV3_para-aortic node 0.69 0.08 23.40 11.48 0.73 0.06 27.03 7.98

Mean 0.76 0.07 25.11 16.51 0.82 0.03 24.40 7.34
frontier
DSC, Dice similarity coefficient; SD, standard deviation; HD, 95% Hausdorff distance; CTV, clinical target volume.
FIGURE 5

Boxplot for Dice similarity coefficient comparison between the original manual contour and contours delineated by the radiation oncologists in
other institutions without and with auto-segmentation.
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which may include all or part of the stomach, may have affected the

results. The duodenum is a small organ that is difficult to contour

manually; thus, a lower DSC compared to other OARs can

be expected.

The Turing test showed that the auto-segmented OAR/CTVs

were comparable to the manual contours. No auto-segmented

contours were considered to have large, obvious errors, although

the percentage of contours requiring correction for minor errors

was higher than that for manual contours. Participants preferred

manual contours over auto-segmented contours for the following

OARs: liver, right kidney, and right and left femoral head. This may

be due to the fact that the auto-segmentation model contours the

OARs too accurately, as shown in an example of a liver contour in

Supplementary Figure 5. This is an interesting point in the

evaluation of auto-segmentation models, showing that highly

“accurate” contours do not directly translate into contours that

are favored in real-world clinical practice. Overall, most radiation

oncologists completing the Turing test were satisfied with the auto-

segmentation model.

When radiation oncologists from six different institutions were

asked to contour all OAR/CTVs on an anonymized CT scan with or

without auto-segmentation, reductions in contouring time were

observed. We also aimed to analyze inter-physician heterogeneity,

but statistical tests could not be applied due to the small sample size.

The cauda equina, stomach, and spinal cord showed the lowest DSC

when the contours drawn by the participating physicians were

compared to the manual contours originally used for model

training. The cauda equina and spinal cord are simple OARs to

contour, but relatively minor differences, such as contouring the

spinal cord with a circumference of 7 mm or 8 mm or setting

the superior or inferior margin differently, may have largely affected

the geometric indices. In addition, setting the superior margin

differently and contouring the stomach on all available CT slices

or only on clinically relevant CT slices considering the treatment

field may have affected the results. Interestingly, the contours for

both kidney and liver tended to show lower DSC after using auto-

segmentation compared to those without auto-segmentation. One

possible explanation for this may be the over-accurately contoured

OARs by auto-segmentation, as previously mentioned. Some of the

participants may have viewed the auto-segmented OARs as

clinically acceptable and may have not modified the contours,

which could have affected the DSC which is calculated using the

original manual contours for comparison.

Using the auto-segmentation system reduced the mean

contouring time by approximately 30 min and 84% of the

physicians were satisfied with the auto-segmentation model

considering auto-segmentation to be helpful in clinical practice.

Furthermore, 84% of physicians considered that the deep learning-

based auto-segmentation system would be able to replace humans

in the future, despite the limitations of the current model. Almost all

participants stated that contouring was different from their

institution’s routine practice. The guidelines contain limited

detail; hence, routine practice for the target volumes may vary by

institution and physicians. This poses a task and a limitation for AI-

based auto-segmentation.
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However, it seems that AI-based auto-segmentation can be

effectively used in multicenter clinical trials, because RT quality

assurance, including consistent contouring and planning in clinical

trials, is known to affect the results (6, 31). As contouring is the first

step of treatment, it may be useful to use auto-segmentation to

minimize deviations between institutions.

One limitation of this study was the number of CT images

included to train the model. However, the geometric indices were

similar to those in other studies, and the contours were clinically

accepted without any major errors. Second, only contrast-enhanced

CT images were used for the training; hence, the role of this auto-

segmentation model may be limited with non-contrast CT scans. In

addition, one radiation oncologist contoured all manual contours.

This ensured the availability of homogeneous data for deep

learning. However, variations in contours exist in the real world,

and using only homogenous data may limit the generalization of the

model. Finally, the small number of validation set is also a limitation

considering the application for general use. Further external

validation using data from other institutions is needed and will be

planned as an additional project in the future.
5 Conclusion

This study demonstrated the potential effectiveness and

feasibility of a deep learning-based auto-segmentation model for

patients with cervical cancer undergoing RT. Although there may

be limitations of the current model as a complete substitute for

human beings, it can serve as a useful and effective tool in real-world

clinical practice.
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