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CT-based radiomics with various
classifiers for histological
differentiation of parotid
gland tumors

Yang Lu, Haifeng Liu, Qi Liu, Siqi Wang, Zuhui Zhu,
Jianguo Qiu and Wei Xing*

Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
Objective: This study assessed whether radiomics features could stratify parotid

gland tumours accurately based on only noncontrast CT images and validated

the best classifier of different radiomics models.

Methods: In this single-centre study, we retrospectively recruited 249 patients

with a diagnosis of pleomorphic adenoma (PA), Warthin tumour (WT), basal cell

adenoma (BCA) or malignant parotid gland tumours (MPGTs) from June 2020 to

August 2022. Each patient was randomly classified into training and testing

cohorts at a ratio of 7:3, and then, pairwise comparisons in different parotid

tumour groups were performed. CT images were transferred to 3D-Slicer

software and the region of interest was manually drawn for feature extraction.

Feature selection methods were performed using the intraclass correlation

coefficient, t test and least absolute shrinkage and selection operator. Five

common classifiers, namely, random forest (RF), support vector machine

(SVM), logistic regression (LR), K-nearest neighbours (KNN) and general

Bayesian network (Gnb), were selected to build different radiomics models.

The receiver operating characteristic curve, area under the curve (AUC),

accuracy, sensitivity, specificity and F-1 score were used to assess the

prediction performances of these models. The calibration of the model was

calculated by the Hosmer–Lemeshow test. DeLong’s test was utilized for

comparing the AUCs.

Results: The radiomics model based on the RF, SVM, Gnb, LR, LR and RF

classifiers obtained the highest AUC in differentiating PA from MPGTs, WT from

MPGTs, BCA from MPGTs, PA from WT, PA from BCA, and WT from BCA,

respectively. Accordingly, the AUC and the accuracy of the model for each

classifier were 0.834 and 0.71, 0.893 and 0.79, 0.844 and 0.79, 0.902 and 0.88,

0.602 and 0.68, and 0.861 and 0.94, respectively.
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Conclusion: Our study demonstrated that noncontrast CT-based radiomics

could stratify refined pathological types of parotid tumours well but could not

sufficiently differentiate PA from BCA. Different classifiers had the best diagnostic

performance for different parotid tumours. Our study findings add to the current

knowledge on the differential diagnosis of parotid tumours.
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Introduction

Parotid gland tumours are the main tumours of the salivary

glands, and more than 80% are benign. However, an early accurate

diagnosis is still needed to define the proper surgical treatment (1).

For patients with malignant parotid gland tumours (MPGTs), total

parotidectomy is necessary, and postoperative chemoradiation is

considered if patients have high-risk factors (2). Among benign

parotid gland tumours (BPGTs), the major types are Warthin

tumour (WT), pleomorphic adenoma (PA) and basal cell

adenoma (BCA), and the operation types are also different. Due

to its higher malignancy and recurrence rates, PA is treated by

partial parotidectomy (3), while WA and BCA are treated only by

local surgical excision of the tumour or by conservative treatment,

given that malignant transformation is rare (4).

Thus, a simple and effective diagnostic method is crucial and

necessary for the differential diagnosis of parotid tumours before

surgical treatment. Routine fine needle aspiration is largely

dependent on the experience of the clinical operators, as the

diagnostic accuracy is sometimes poor due to insufficient or

nonrepresentative aspiration (5). In addition, the conventional

radiological features of different parotid tumour types may

considerably overlap (6). Some studies have reported that changes

in parotid tumour margins may not indicate malignancy, and

heterogeneously enhanced features cannot be used to distinguish

benign from malignant parotid tumours (7, 8). Some BPGTs

resemble MPGTs with a heterogeneous appearance due to the

existence of the area of cystoid variation and necrosis (9). All of

these results present significant diagnostic challenges in the

preoperative diagnosis of parotid gland tumours.

Radiomics is a fast-growing research field that is widely used in

tumour imaging. The radiomics approach can automatically extract

comprehensive data present in imaging modalities and uncover

much more quantitative tumour information than our eyes can

detect. In recent years, multiple studies have reported that

radiomics may be applied to parotid gland tumours with

promising preoperative diagnostic results (10). Li et al. confirmed

that radiomics analysis of ultrasound images may help improve the

discrimination of BPGTs from MPGTs (11). Zheng et al. developed
02
a computed tomography (CT)-based radiomics nomogram to

distinguish benign lymphoepithelial lesions from mucosa-

associated lymphoid tissue lymphoma, which has promising

predictive efficacy (12). In addition, the magnetic resonance (MR)

radiomics model has yielded excellent diagnostic performance in

differentiating BPGTs from MPGTs and PA from WT (13–18).

Many studies have explored radiomics for the differential

diagnosis of parotid tumours based on multiphasic CT or

multisequence MR radiomics features; however, it is still necessary

to further explore the diagnostic performance of radiomics models

based on noncontrast CT. Contrast-enhanced CT orMR studies have

superior diagnostic results. However, they often have downsides, and

MRmay require long acquisition times and have absolute and relative

MR contraindications. Contrast-enhanced CT may often burden the

patient with more radiation exposure and have contrast agent

contraindications. These factors could make noncontrast CT-based

radiomics an attractive choice, at least in selected patients. Another

potential advantage of CT-based radiomics is the possibility of

detecting and characterizing incidental parotid masses in patients

undergoing CT for other unrelated reasons. Furthermore, previous

CT radiomics studies focused on distinguishing benign from

malignant parotid tumours, but there is little research addressing

the possibility of distinguishing among the detailed pathological types

of parotid tumour. Typically, only a single machine learning classifier

was used in previous research, and different classifiers may lead to

different diagnostic performances. Hence, it would be beneficial to

evaluate whether noncontrast CT-based radiomics can perform well

in stratifying different pathological types of parotid tumours and

whether there are differences in the diagnostic value of various

machine learning classifiers in the diagnosis of parotid gland

tumours. This may help distinguish different parotid tumours

accurately and conveniently and guide the selection of the best

model for future multicentre research of large datasets.

The purpose of this study was to construct different radiomics

models based on noncontrast CT images with five mainstream

classifiers to compare the predictive ability of various radiomics

models for different parotid tumours, such as MPGTs, PA, WT and

BCA, and to determine the classifier with the best diagnostic

performance for each parotid tumour.
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Materials and methods

Patients

In this single-centre retrospective study, a total of 415 patients

with definite pathological results indicating a parotid gland tumour

in the Third Affiliated Hospital of Soochow University were

registered from June 2020 to August 2022. The exclusion criteria

were as follows (1): parotid tumour recurrence or previous

treatment (n=51) (2); no CT examination of the parotid gland

before treatment (n=35) (3); maximum tumour diameter less than

0.5 cm (n=25) (4); unsatisfactory image quality due to the existence

of metallic or beam hardening artefacts (n=41); or (5) simple cystic

lesions (n=14). Thus, a total of 249 patients were included in our

study. The baseline clinical characteristics were collected by

retrieving the patients’ hospital records. CT was performed with

four CT scanners: a double source scanner (SOMATOM Definition

Flash, Siemens Healthcare, Forchheim, Germany), a 64-slice CT

scanner (Discovery 750 HD, GE Healthcare, Milwaukee,

Wisconsin), a 320-slice CT scanner (Aquilion ONE, Toshiba

Medical Systems, Otawara, Japan), and a 256-slice CT scanner

(Brilliance iCT; Philips Healthcare, Cleveland, OH, USA).

According to the pathological results of their parotid gland

tumours, the patients were divided into the MPGT, PA, WT and

BCA groups. The flowchart for selecting the study population is

shown in Figure 1. Our study was approved by the ethics committee

of the Third Affiliated Hospital of Soochow University, Jiangsu,

China, and exempted from informed consent requirements due to

the retrospective nature of the study.
CT image acquisition

Each patient underwent noncontrast imaging with a multislice

spiral CT scanner. The CT scanners and parameters were as follows

(1): Discovery 750 HD: 120 kV tube voltage; smart mA (100-450

mAs) tube current, section thickness, 2.5 mm; section interval,

2.5 mm; gantry rotation time, 0.6 seconds; detector collimation,

64 mm × 0.625 mm; matrix512×512 (2); SOMATOM Definition
Frontiers in Oncology 03
Flash: 120 kV tube voltage; tube current with dose modulation

(Care Dose 4D), section thickness, 3 mm; section interval, 3 mm;

gantry rotation time, 0.5 seconds; detector collimation, 128 mm ×

0.6 mm; matrix512×512 (3); Aquilion ONE: 120 kV tube voltage;

250 mAs tube current, section thickness, 3 mm; section interval,

3 mm; gantry rotation time, 0.35 seconds; detector collimation,

320 mm × 0.5 mm; matrix512×512 (4); Brilliance iCT: 120 kV tube

voltage; 250 mAs tube current, section thickness, 3 mm; section

interval, 3 mm; gantry rotation time, 0.27 seconds; detector

collimation, 256 mm × 0.625 mm; matrix512×512. All scans were

performed from 1 cm below the aortic arch to the top of the head.
ROI segmentation

All noncontrast CT images were stored in the Digital Imaging

and Communications in Medicine format and imported to 3D-

Slicer software for manual segmentation of the regions of interest

(ROIs) by two radiologists who were blinded to the pathological

results. Contours were drawn slice-by-slice within the borders of the

tumours on axial CT images, excluding adjacent bone and vessels.

The intraclass correlation coefficients (ICCs) were used to evaluate

the stability and agreement of the features, and an ICC greater than

0.75 indicated good agreement.
Imaging feature extraction

Image preprocessing and feature extraction were performed

using the open-source package PyRadiomics 3.0 in python software

(version 3.7.6; http://www.radiomics.io/pyradiomics.html). To

eliminate the potential impact of the different CT devices on the

extracted features, a voxel spacing of 1 × 1 × 1 mm³ was performed

to resample the images, and a fixed bin width of 25 was used to

normalize image intensity (19). Then, 1323 features were retrieved

from each VOI as follows: (a) shape-based features; (b) first-order

statistics features; (c) grey-level co-occurrence matrix-based

features (GLCM); (d) grey-level run-length matrix-based features

(GLRLM); (e) grey-level size zone matrix (GLSZM); (f)

neighbouring grey tone difference matrix (NGTDM); (g) grey-

level dependence matrix (GLDM) and (h) transform-filtered

features (including square, square root, logarithm, exponential,

gradient, Laplacian of Gaussian [LOG], wavelet). Finally, z score

normalization was also performed for all features to reduce the

influence of different dimensions among features (20).
Feature selection

In this study, patients were divided into four different groups

(PA, WT, BCA and MPGT) according to pathological type. In

addition, each patient was randomly assigned to the training or test

cohort at a ratio of 7:3, and then, pairwise comparisons were

performed between different groups after analysis was performed

according to the following pipeline. Three steps were performed for

feature selection. First, the features with ICCs >0.75 were selected
FIGURE 1

Flowchart for selecting the study population. PA, pleomorphic
adenoma; WT, Warthin tumour; BCA, basal cell adenoma; MPGTs,
malignant parotid gland tumours.
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due to their stability. Second, to select features that differed

significantly between groups, the t test was performed. Finally, a

least absolute shrinkage and selection operator (LASSO) regression

model with 10-fold cross-validation was performed to select

features with nonzero coefficients.
Statistical analysis

The final selected features were utilized for modelling with five

mainstream classifiers, including logistic regression (LR), K-nearest

neighbours (KNN), support vector machine (SVM), random forest

(RF) and GaussianNB (Gnb). The diagnostic performance of each

model for the differential diagnosis of parotid gland tumours (PA

and MT, PA and WT, PA and BCA, WT and MT, WT and BCA,

and BCA and MT) was quantitatively evaluated by means of the

area under the curve (AUC) of the receiver operating characteristic

(ROC), accuracy, sensitivity, specificity and F-1 score. The

calibration of the radiomics model was calculated by the
Frontiers in Oncology 04
Hosmer–Lemeshow test. DeLong ’s test was utilized for

comparisons of AUCs. A p value < 0.05 indicates a significant

difference. The distributions of radiomics scores for each validation

cohort patient in the different models are presented as a waterfall

plot. All the above processes were implemented in Python (version

3.7.6), except DeLong’s test, which was implemented with

MedCalc19.8 software (MedCalc, Ostend, Belgium). A flow

diagram describing the radiomics analysis process is shown

in Figure 2.
Results

Study cohort

Among the 249 patients included in this study, 154 (61.85%)

were men, and 95 (38.15%) were women. The average age of the

patients was 52.72 ± 15.22 years. Among the 180 BPGT cases, the

most common subtype was PA (71, 39.44%), followed by WT (68,
FIGURE 2

Workflow of the radiomics analysis. LASSO, least absolute shrinkage and selection operator; MPGTs, malignant parotid gland tumors; PA,
pleomorphic adenoma; WT, warthin tumor; BCA, basal cell adenoma; SVM, support vector machine; RF, random forest; KNN, k-Nearest Neighbor;
LR, logistic regression; Gnb, GaussianNB.
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37.78%) and BCA (41, 22.78%). The other 69 lesions were MPGTs.

The numbers of cases evaluated with the Discovery 750 HD,

SOMATOM Definition Flash, Aquilion ONE and Brilliance iCT

scanners were 61, 75, 71 and 42, respectively.
MPGTs vs. PA

In the comparisons of MPGTs and PAs, a total of 503 radiomics

features were selected after being screened by the ICC and t test.

Then, 16 features were finally selected by LASSO for building the

radiomics models, and the best tuned regularization parameter

lambda was 0.0569. There were 1 first-order statistics feature, 1

GLCM feature, 1 gradient feature and 13 wavelet features among

the final selected features.

The radiomics model of the RF classifier obtained the best

diagnostic performance in differentiating PA from MPGTs

compared with the other four classifiers. The AUC and accuracy

were 0.834 and 0.71, with sensitivity, specificity and F-1 scores of

0.87, 0.62 and 0.82, respectively. The p value of the RF model in

the Hosmer–Lemeshow test was 0.139 (>0.05), so the calibration

of the RF model was reliable. Analysis by Delong’s test showed

that the AUC of the RF model was the highest but was significantly

higher than that of the Gnb model only (p=0.021), with no

significant differences compared to those of the other three

models (p>0.05). The waterfall plot of the RF model in

differentiating PA from MPGTs in the validation cohort is

presented in Figure 3A. The ROC curve is shown in Figure 4A.
MPGTs vs. WT

In the differentiation between MPGTs and WTs, a total of 456

radiomics features were selected according to the ICC and t test.

Then, 14 features were finally selected by LASSO for building the
Frontiers in Oncology 05
radiomics models, and the best tuned regularization parameter

lambda was 0.0281. There were 1 shape-based feature, 1

exponential feature, 1 logarithm feature and 11 wavelet features

among the final selected features.

The radiomics model of the SVM classifier had the best diagnostic

performance in differentiating WT from MPGTs compared with the

other four classifiers. The AUC and accuracy were 0.893 and 0.79, with

sensitivity, specificity and F-1 values of 0.79, 0.78 and 0.84, respectively.

The p value of the RF model in the Hosmer–Lemeshow test was 0.911

(>0.05), so the calibration of the SVM model was reliable. Analysis by

Delong’s test showed that the AUC of the SVMmodel was significantly

better than that of the LR model (p=0.022) or Gnb model (p=0.010),

but there was no significant difference compared to the AUCs of the RF

and KNN models (p>0.05). The waterfall plot of the SVM model in

differentiating WT from MPGTs in the validation cohort is presented

in Figure 3B. The ROC curve is shown in Figure 4B.
MPGTs vs. BCA

In the differential diagnosis between MPGTs and BCAs, a total

of 503 radiomics features were selected after being screened by the

ICC and t test. Then, 16 features were finally selected by LASSO for

building the radiomics models, and the best tuned regularization

parameter lambda was 0.036. There were 1 shape-based feature, 1

GLCM feature, 1 GLRLM feature, 2 exponential features and 11

wavelet features among the final selected features.

The radiomics model of the Gnb classifier obtained the best

diagnostic performance in differentiating BCA from MPGTs

compared with the other four classifiers. The AUC and accuracy

were 0.844 and 0.79, with sensitivity, specificity and F-1 values of

0.84, 0.79 and 0.84, respectively. The p value of the Gnb model

in the Hosmer–Lemeshow test was 0.908 (>0.05), so the calibration

of the Gnb model was reliable. Analysis by DeLong’s test showed

that the Gnb model achieved the highest AUC, but there were no
A B

D E F

C

FIGURE 3

Waterfall plots for distribution of scores based on different radiomics models for each patient in the validation cohort. (A) MPGTs vs. PA; (B) MPGTs
vs. WT; (C) MPGTs vs. BCA; (D) PA vs. WT; (E) WT vs. BCA; (F) PA vs. BCA. MPGTs, malignant parotid gland tumors; PA, pleomorphic adenoma; WT,
warthin tumor; BCA, basal cell adenoma.
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significant differences between the AUC of the Gnb model and

those of the other four models (p>0.05). The waterfall plot of the

Gnb model in differentiating BCA from MPGTs in the validation

cohort is presented in Figure 3C. The ROC curve is shown

in Figure 4C.
PA vs. WT
In the comparisons of PAs and WTs, a total of 336 radiomics

features were selected after being screened by the ICC and t test.

Then, 18 features were finally selected by LASSO for building the

radiomics models, and the best tuned regularization parameter

lambda was 0.022. There were 2 shape-based features, 1 first-

order statistics feature, 1 GLCM feature, 1 gradient feature, 3

logarithm features, 2 square root features and 8 wavelet features

among the final selected features.

Compared with the other four classifiers, the radiomics model

of the LR classifier obtained the best diagnostic performance in

differentiating PA fromWT. The AUC and accuracy were 0.902 and

0.88, with sensitivity, specificity and F-1 values of 0.84, 0.83 and

0.86, respectively. The p value of the LR model in the Hosmer–

Lemeshow test was 0.243 (>0.05), so the calibration of the LR model

was reliable. Analysis by Delong’s test showed that the LR model

achieved the highest AUC but that the AUC was significantly higher

than that of the Gnb model only (p=0.019), with no significant

differences compared to those of the other models (p>0.05). The

waterfall plot of the LR model in differentiating PA fromWT in the

validation cohort is presented in Figure 3D. The ROC curve is

shown in Figure 4D.
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WT vs. BCA

In the differential diagnosis between WTs and BCAs, a total of

193 radiomics features were selected after being screened by the ICC

and t test. Then, 15 features were finally selected by LASSO for

building the radiomics models, and the best tuned regularization

parameter lambda was 0.028. There were 1 shape-based feature, 2

first-order statistics features, 1 gradient feature, 1 logarithmic

feature, 1 square root feature and 9 wavelet features among the

final selected features.

The radiomics model of the RF classifier obtained the best

diagnostic performance in differentiating WT from BCA compared

with the other four classifiers. The AUC and accuracy were 0.861

and 0.94, with sensitivity, specificity and F-1 scores of 0.83, 0.90 and

0.91, respectively. The p value of the RF model in the Hosmer–

Lemeshow test was 0412 (>0.05), so the calibration of the RF model

was reliable. Analysis by DeLong’s test showed that the RF model

had the highest AUC but that this value was not significantly

different from those of the other models (p>0.05). The waterfall

plot of the RF model in differentiating WT from BCA in the

validation cohort is presented in Figure 3E. The ROC curve is

shown in Figure 4E.
PA vs. BCA

In the differentiation between PA and BCA, a total of 93

radiomics features were selected after being screened by the ICC

and t test. Then, 10 features were finally selected by LASSO for

building the radiomics models, and the best tuned regularization

parameter lambda was 0.018. There were 2 first-order statistics
B C

D E F

A

FIGURE 4

The ROC curves of the different radiomics models: (A) MPGTs vs. PA; (B) MPGTs vs. WT; (C) MPGTs vs. BCA; (D) PA vs. WT; (E) WT vs. BCA; (F) PA vs.
BCA. MPGTs, malignant parotid gland tumors; PA, pleomorphic adenoma; WT, warthin tumor; BCA, basal cell adenoma; SVM, support vector
machine; RF, random forest; KNN, k-Nearest Neighbor; LR, logistic regression; Gnb, GaussianNB.
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features, 1 GLDM feature, 1 GLSZM feature and 6 wavelet features

among the final selected features.

The radiomics model of the LR classifier obtained the best

diagnostic performance between differentiating PA and BCA

compared with the other four classifiers. However, the AUC and

accuracy were only 0.602 and 0.68, yielding sensitivity, specificity

and F-1 values of 0.66, 0.68 and 0.59, respectively. The p value of the

LR model in the Hosmer–Lemeshow test was 0.357 (>0.05), so the

calibration of the LR model was reliable. Analysis by DeLong’s test

showed that the AUC of the LRmodel was not significantly different

from those of the other four models (p>0.05). The waterfall plot of

the LR model in differentiating PA from BCA in the validation

cohort is presented in Figure 3F. The ROC curve is shown

in Figure 4F.

The detailed selected features and coefficients of different

radiomics models are shown in the Supplementary Table. The

detailed diagnostic performance of all models is displayed in

Table 1. The detailed results of DeLong’s test of the AUCs among

the different models are shown in Table 2.
Discussion

In this study, we provided a detailed analysis of the radiomics

model based on noncontrast CT scans and advantageous machine

learning classifiers that differentiate MPGTs, PA, WT and BCA.

Our results revealed that noncontrast CT-based radiomics might

help distinguish all parotid tumours with promising diagnostic

results, except for the differentiation between PA and BCA. The

classifier with the best diagnostic performance for each parotid

tumour was different.

Radiomics uses mathematical calculations to identify invisible

imaging features and then quantifies the different characteristics

that parotid tumour tissues exhibit in radiological data to

distinguish different parotid gland tumours (21). In our study, the

highest AUCs in the comparisons of PA and MPGTs, WT and

MPGTs, BCA and MPGTs, PA and WT, and BCA and WT were

0.834, 0.893, 0.844, 0.902 and 0.861, respectively. The diagnostic

efficiency was promising and similar to that in previous studies.

Zheng et al. extracted radiomics features from nonenhanced,

arterial, and venous phase CT images and constructed LR-, SVM-

, and RF-based radiomics models to differentiate between benign

and malignant parotid tumours (22). They demonstrated that the

model using SVM exhibited the best predictive accuracy, with an

AUC of 0.844. Xu et al. extracted imaging features from noncontrast

and contrast-enhanced CT images for differentiating between

benign and malignant parotid gland tumours via multicentre

cohorts (23). In their report, the accuracy of the SVM-based

radiomics model reached 0.854. Xu et al. established a machine

learning predictive model based on CT radiomics to improve the

accuracy of differentiation among PA, WT and parotid carcinoma,

with a total accuracy of 80.5% (24). All these studies used CT-based

radiomics models to differentiate various parotid tumour types with

promising performance. Unlike the abovementioned literature, we

not only performed differentiation between benign and malignant

tumours but also classified parotid tumours according to differences
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in pathological results, and various classifiers were used. Our study

demonstrated that in addition to benign and malignant tumours,

refined pathological types of parotid tumours could be stratified

well by CT radiomics.

However, not all radiomics results are ideal. In our study, the

nonenhanced CT-based radiomics model did not achieve good

diagnostic performance in differentiating PA from BCA, and the

highest AUC was only 0.602. It seemed that PA and BCA may not

be effectively differentiated based on the noncontrast CT-based

radiomics model alone. This result is similar to that in previous

studies. Zheng et al. constructed radiomics models based on

noncontrast CT for differentiating PA from BCA, and the AUCs

of the models in the testing cohort with classifiers based on SVM,

KNN, and LR were only 0.691, 0.612 and 0.652, respectively (25).

This may be due to the pathological components of PA and BCA.

The pathological structure of PA is complex and contains mixed

components, such as glandular cells, myoepithelial cells, the parotid

duct, mucus and cartilage-like tissue (26). In CT images, the density

of the tumour was heterogeneous and may present cystic and

necrosis. For BCA, there are four histological subtypes, namely,

solid, trabecular, tubular, and membranous (27). Pathological

composition varies by BCA histological subtype, which makes the

radiomics features of BCA more complex. For the limited cases of

BCA, we did not divide the BCA patients into different histological

subtype groups. The mixed subtypes of BCA and high pathological

heterogeneity of PA make it more difficult to differentiate them on

noncontrast CT. Future radiomics models may need to incorporate

additional CT-enhanced phases to refine model performance.

In addition, it should also be noted that among the selected

radiomics features for predicting different tumours, most were

transform-filtered features. The higher-order statistics performed

by transform-filtered features can extract areas with increasingly

coarse texture patterns more flexibly and thus have the potential to

highlight more details in the original images (28). Among the

transform-filtered features, wavelets were more valuable in our

data analysis. The frequencies of wavelet features in the final

selected features in the comparison of PA and MPGTs, WT and

MPGTs, BCA and MPGTs, PA andWT, PA and BCA, and WT and

BCA were 13/16, 11/14, 11/16, 8/18 6/10 and 9/15, respectively.

Wavelet transforms can decompose image signals by using low- and

high-pass filters and may amplify the heterogeneity information of

texture features in radiological imaging, which is similar to previous

studies. Jiang et al. reported that wavelet transformation can

enhance CT texture features and may be used to effectively assess

the grade of pulmonary lesions caused by COVID-19 (29).

Regarding the best performance in discriminating an expansive

from an infiltrative front in tumour growth, Granata et al. reported

that wavelet transformation had the best performance in identifying

tumour recurrence (30). This study suggests that in distinguishing

different parotid gland tumours, the transform-filtered features,

especially the wavelet transform-filtered features, may be more

indicative of parotid tumour heterogeneity than other features (31).

In radiomics analysis, it is crucial to develop robust predictive

models to select valid and appropriate modelling classifiers.

Different classifiers mean different model algorithms and may

lead to different diagnostic performances. Therefore, five
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frequently utilized machine learning classifiers were investigated in

this study, namely, LR, KNN, RF, Gnb and SVM. LR is one of the

most commonly used binary classification algorithms. The principle

of KNN is that if most of the k-nearest samples near a sample

belong to a certain category, the sample also belongs to this

category. The advantages are that it is insensitive to outliers. RF is

an ensemble algorithm with multiple decision trees. Its advantages

include its high accuracy and that it does not easily result in

overfitting, and its disadvantage is the large calculation. The

mechanism of SVM is to build a decision boundary between two
Frontiers in Oncology 08
classes to predict labels from one or more feature vectors. SVM was

powerful in analysing complex datasets but is also too complex to

prevent overfitting. Finally, Gnb is a relatively simple algorithm but

performs well on small-scale data. In our results, the classifier with

the best diagnostic performance for each group was different. The

classifiers with the highest AUCs in the comparisons of PA and

MPGTs, WT and MPGTs, BCA and MPGTs, PA and WT, PA and

BCA, and BCA and WT were RF, SVM, Gnb, LR, LR and RF,

respectively. In addition, after analysis by DeLong’s test, in the

comparisons of BCA and MPGTs, PA and BCA, and BCA and WT,
TABLE 1 Predictive performance of different models.

End-point Models AUC 95%CI Accuracy Sensitivity Specificity F1-score H-L test (p-value)

MPGTs versus PA RF 0.834 0.687-0.931 0.71 0.87 0.62 0.82 0.139

SVM 0.816 0.666-0.918 0.67 0.88 0.54 0.80 0.051

KNN 0.788 0.634-0.898 0.62 0.60 0.91 0.71 0.136

LR 0.823 0.674-0.923 0.62 0.88 0.55 0.80 0.003

Gnb 0.707 0.546-0.837 0.69 0.75 0.64 0.65 0.073

MPGTs versus WT RF 0.887 0.751-0.963 0.79 0.75 0.83 0.88 0.433

SVM 0.893 0.733-0.955 0.79 0.79 0.78 0.84 0.911

KNN 0.872 0.732- 0.955 0.81 0.83 0.78 0.85 0.296

LR 0.864 0.708-0.955 0.75 0.68 0.82 0.89 0.387

Gnb 0.748 0.590-0.869 0.74 0.70 0.77 0.79 0.595

MPGTs versus BCA RF 0.835 0.665-0.941 0.88 0.95 0.71 0.88 0.120

SVM 0.838 0.669-0.943 0.82 0.84 0.85 0.86 0.052

KNN 0.735 0.553-0.873 0.88 0.89 0.57 0.81 0.296

LR 0.797 0.621-0.916 0.85 0.84 0.71 0.84 0.310

Gnb 0.844 0.676-0.946 0.79 0.84 0.79 0.84 0.908

PA versus WT RF 0.871 0.755-0.946 0.83 0.93 0.62 0.85 0.493

SVM 0.878 0.762-0.950 0.83 0.87 0.79 0.86 0.299

KNN 0.866 0.748-0.942 0.81 0.87 0.67 0.84 0.623

LR 0.902 0.793-0.965 0.88 0.84 0.83 0.86 0.243

Gnb 0.775 0.643-0.876 0.79 0.75 0.88 0.81 0.183

PA versus BCA RF 0.570 0.368-0.772 0.68 0.75 0.50 0.57 0.031

SVM 0.542 0.363-0.713 0.59 0.67 0.51 0.55 0.820

KNN 0.591 0.410-0.756 0.65 0.66 0.50 0.54 0.869

LR 0.602 0.421-0.765 0.68 0.66 0.68 0.59 0.357

Gnb 0.587 0.406-0.753 0.65 0.63 0.59 0.56 0.378

WT versus BCA RF 0.861 0.682- 0.960 0.94 0.83 0.90 0.91 0.412

SVM 0.822 0.636-0.938 0.88 0.91 0.76 0.79 0.240

KNN 0.786 0.595- 0.915 0.76 0.75 0.81 0.72 0.752

LR 0.784 0.592-0.914 0.79 0.84 0.71 0.78 0.446

Gnb 0.726 0.530-0.874 0.79 0.84 0.76 0.80 0.223
MPGTs, malignant parotid gland tumors; PA, pleomorphic adenoma; WT, warthin tumor; BCA, basal cell adenoma; SVM, support vector machine; RF, random forest; KNN, k-Nearest
Neighbor; LR, logistic regression; Gnb, GaussianNB; AUC, area under the curve; CI, confidence interval; H-L, Hosmer–Lemeshow. Significant P values (<0.05) are in bold.
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there were no significant differences in AUC between the different

classifiers. In the comparisons of MPGTs and PAs, MPGTs and

WTs, and PAs and WTs, the AUCs of the best classifier were

observed only to have significant differences with some of the

classifiers. This was different from previous studies, which

suggested that the performance of SVM was superior to that of

other machine learning classifiers for total diagnostic accuracy (23,

25). We suggest that different classification models have their own

advantages for different tasks. The performance of the radiomics

model may depend more on the characteristics of the classifier

algorithm and how well the classifiers match the model target

tumour. Moreover, the different methods in radiomics feature

extraction and selection would influence the final selected features

and affect the diagnostic efficiency of models constructed with

different classifiers. In our study, the results indicated that the key

radiomics features among the different parotid tumours varied, so

the selected classifier in the model with the best diagnostic efficacy

was different. However, for the prediction efficiency of some parotid

tumours, there seems to be no significant difference in the selection
Frontiers in Oncology 09
of classifiers. The results of our study could be a good reference in

guiding the selection of the most appropriate classifiers for

constructing different parotid gland tumour radiomics models.

There were several limitations in this study. First, potential

selection bias may have occurred due to the retrospective nature of

our study design. Second, the patients were enrolled from a single

centre; thus, multicentre studies with much larger patient cohorts

are necessary. Third, although our study included a large number of

patients, the more detailed patient classification resulted in small

numbers of cases in each group, especially the BCA group, so our

study is still limited by the small number of samples in our dataset.

Follow-up studies with larger sample sizes are needed. Fourth, to

ensure that our results encompass different CT manufacturers, the

CT-based radiomics features were from four different CT scanners.

However, different scanning protocols, especially the fixed mA

protocol, might affect the diagnostic performances of the

radiomics features. Finally, we used the PyRadiomics package for

feature extraction and image preprocessing in this study. Therefore,

our results apply only to this package. Since other radiomics
TABLE 2 Comparison of the performance of the different models with DeLong’s test.

Comparison p-value Comparison p-value Comparison p-value

MPGTs vs PA MPGTs vs. WT MPGTs vs. BCA

RF vs. SVM 0.609 RF vs. SVM 0.621 RF vs. SVM 0.961

RF vs. KNN 0.368 RF vs. KNN 0.601 RF vs. KNN 0.171

RF vs. LR 0.735 RF vs. LR 0.098 RF vs. LR 0.375

RF vs. Gnb 0.021 RF vs. Gnb 0.015 RF vs. Gnb 0.875

SVM vs. KNN 0.511 SVM vs. KNN 0.950 SVM vs. KNN 0.081

SVM vs. LR 0.748 SVM vs. LR 0.022 SVM vs. LR 0.603

SVM vs. Gnb 0.005 SVM vs. Gnb 0.010 SVM vs. Gnb 0.942

KNN vs. LR 0.452 KNN vs. LR 0.015 KNN vs. LR 0.305

KNN vs. Gnb 0.094 KNN vs. Gnb 0.003 KNN vs. Gnb 0.127

LR vs. Gnb 0.008 LR vs. Gnb < 0.001 LR vs. Gnb 0.458

PA vs WT PA vs. BCA WT vs. BCA

RF vs. SVM 0.807 RF vs. SVM 0.749 RF vs. SVM 0.197

RF vs. KNN 0.867 RF vs. KNN 0.756 RF vs. KNN 0.061

RF vs. LR 0.352 RF vs. LR 0.613 RF vs. LR 0.118

RF vs. Gnb 0.083 RF vs. Gnb 0.791 RF vs. Gnb 0.129

SVM vs. KNN 0.728 SVM vs. KNN 0.646 SVM vs. KNN 0.129

SVM vs. LR 0.353 SVM vs. LR 0.584 SVM vs. LR 0.529

SVM vs. Gnb 0.076 SVM vs. Gnb 0.651 SVM vs. Gnb 0.561

KNN vs. LR 0.339 KNN vs. LR 0.822 KNN vs. LR 0.599

KNN vs. Gnb 0.060 KNN vs. Gnb 0.961 KNN vs. Gnb 0.514

LR vs. Gnb 0.019 LR vs. Gnb 0.795 LR vs. Gnb 0.995
fron
MPGTs, malignant parotid gland tumors; PA, pleomorphic adenoma; WT, warthin tumor; BCA, basal cell adenoma; SVM, support vector machine; RF, random forest; KNN, k-Nearest
Neighbor; LR, logistic regression; Gnb, GaussianNB. Significant P values (<0.05) are in bold.
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software packages may use different preprocessing filters, it is

unclear whether our conclusions could apply to these radiomics

packages. Regarding future research prospects, many machine

learning radiomics studies have tried to predict early recurrence

in different carcinomas after resection (32, 33), offering the

possibility that radiomics models may also be used to predict

recurrence in malignant parotid tumours after resection.

Moreover, whether radiomics models could differentiate the

inflammatory pathology of the parotid gland from neoplasms has

rarely been discussed, and further studies are needed to research

these topics.
Conclusion

Based on this study, we propose using noncontrast CT-based

radiomics features for the differential diagnosis of PA, WT, BCA

and MPGT, as they show good predictive performance for all

comparisons except for that of PA and BCA. Our findings suggest

that noncontrast CT radiomics analysis can be used as an additional

tool to support radiologists in their decision-making in

distinguishing different parotid gland tumours.
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