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hepatocellular carcinoma
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Background: Due to the viral infection, chronic inflammation significantly

increases the likelihood of hepatocellular carcinoma (HCC) development.

Nevertheless, an inflammation-based signature aimed to predict the prognosis

and therapeutic effect in virus-related HCC has rarely been established.

Method: Based on the integrated analysis, inflammation-associated genes (IRGs)

were systematically assessed. We comprehensively investigated the correlation

between inflammation and transcriptional profiles, prognosis, and immune cell

infiltration. Then, an inflammation-related risk model (IRM) to predict the overall

survival (OS) and response to treatment for virus-related HCC patients was

constructed and verified. Also, the potential association between IRGs and

tumor microenvironment (TME) was investigated. Ultimately, hub genes were

validated in plasma samples and cell lines via qRT-PCR. After transfection with

shCCL20 combined with overSLC7A2, morphological change of SMMC7721 and

huh7 cells was observed. Tumorigenicity model in nude mouse was established.

Results: An inflammatory response-related gene signature model, containing

MEP1A, CCL20, ADORA2B, TNFSF9, ICAM4, and SLC7A2, was constructed by

conjoint analysis of least absolute shrinkage and selection operator (LASSO) Cox

regression and gaussian finite mixture model (GMM). Besides, survival analysis

attested that higher IRG scores were positively relevant to worse survival

outcomes in virus-related HCC patients, which was testified by external

validation cohorts (the ICGC cohort and GSE84337 dataset). Univariate and

multivariate Cox regression analyses commonly proved that the IRG was an

independent prognostic factor for virus-related HCC patients. Thus, a

nomogram with clinical factors and IRG was also constructed to superiorly

predict the prognosis of patients. Featured with microsatellite instability-high,

mutation burden, and immune activation, lower IRG score verified a superior OS

for sufferers. Additionally, IRG score was remarkedly correlated with the cancer

stem cell index and drug susceptibility. The measurement of plasma samples

further validated that CCL20 upexpression and SLC7A2 downexpression were
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positively related with virus-related HCC patients, which was in accord with the

results in cell lines. Furthermore, CCL20 knockdown combined with SLC7A2

overexpression availably weakened the tumor growth in vivo.

Conclusions: Collectively, IRG score, serving as a potential candidate, accurately

and stably predicted the prognosis and response to immunotherapy in virus-

related HCC patients, which could guide individualized treatment decision-

making for the sufferers.
KEYWORDS

hepatocellular carcinoma, virus, inflammation, tumor microenvironment, immune,
drug sensitivity
1 Introduction

Considering as the third leading cause of cancer death

worldwide, hepatocellular carcinoma (HCC) is the fifth most

usual cancer (1). During HCC progression and development, a

battery of risk factors, such as genetical (i.e., alteration of tumor

suppressors and oncogenes) and environmental factors (i.e.,

viruses), had been indicated to be involved (2). Thus,

comprehensive understanding of risk factors could assist

researchists and clinicians to make effective therapeutic options in

terms of HCC treatment. As we all know, various viruses, involving

hepatitis B virus (HBV) and hepatitis C virus (HCV) targeting

several cellular and molecular pathways, could contribute to HCC

pathogenesis (3). As we all know, chronic HBV and HCV infections

account for probably 60-70% of the leading cause for

hepatocarcinogenesis worldwide (4). Especially in Africa and

Asia, HBV is the single primary risk factor for liver cancer,

whereas HCV infection dominates in Japan, northern Europe and

USA (5). Thus, Hepatitis B and C viruses are an universal health

issue for the reason of causing acute and chronic infections, which

can generate liver cirrhosis and even HCC with significant mortality

more than 1.3 million deaths per year (6, 7).
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Presently for advanced HCC, cure options are finite, among

which chemotherapy is one of the most vital treatment patterns (8).

Multiple tyrosine kinase inhibitors (mTKIs) such as sorafenib,

lenvatinib, cabozantinib, and regorafenib have been used to treat

advanced HCC. However, although they show some benefit, it does

not significantly alter the course of disease for most patients (9, 10).

In addition to standard systemic therapy with mTKIs, recent studies

demonstrate the capacity for durable responses from immune

checkpoint inhibition in subsets of HCC patients across disease

etiologies (11). A majority of HCC derives from the context of

chronic inflammation, with a lot of cases relevant with hepatitis

virus infections, which are associated with both local and systemic

immune deficiency (12). Also, the liver is an immunologic organ to

enhance or suppress the immune response to cancer arising within

it (13, 14). Therefore, there is an imperative to develop an effective

gene signature for risk stratification and guiding clinical treatment,

especially involved in targeted therapy and immunotherapy.

Chronic inflammation resulting from viral infection markedly

enhances the likelihood of cancer development by activating

inflammatory signaling pathways and cytokines, stimulating

growth of infected cells and inhibiting apoptosis viruses (15–17).

Thus, it attested apparent that inflammation is served as a prime

driving force in cancer progression for the close correlation between

chronic virus infection and carcinogenesis. When it comes to HCC

development, there are approximately 90% of primary liver cancers

arising almost exclusively in the setting of inflammation (18, 19).

Recently, inflammation inhibition has appeared to be as a

conducive therapeutic choice, particularly for tumors where

conventional treatment is unavailable (20). Presently, the studies

are predominantly concentrated upon figuring out the role of

individual inflammation-associated genes on HCC progression

and prognosis (21–25). In addition, inflammation-associated

genes are often deemed as therapeutic targets for tumors since

exploring the relevance between inflammation-associated genes and

tumor immune status may conduce to further integration of

targeted therapy and immunotherapy (26, 27).

In the present study, we identified IRGs in virus-related HCC

and constructed a prognostic signature to accurately predict

the clinical outcome of virus-related HCC patients and
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immunotherapeutic effect by least absolute shrinkage and selection

operator (LASSO) regression analyses as well as Gaussian Mixture

Model (GMM) based on The Cancer Genome Atlas (TCGA, https://

www.cancer.gov/tcga) and Gene Expression Omnibus (GEO)

databases. Also, the prognosis and tumor microenvironmental

characteristics of diverse subtypes based on IRGs as well as

corresponding responses to therapy were analyzed. Furthermore,

we evaluated the molecular features, prognostic significance, and

infiltrating immune cell intensities of the IRGs clusters. Our

findings verified a potential relationship between inflammation,

prognosis, TME, and the response to immunotherapy in virus-

related HCC.
2 Materials and methods

2.1 Data acquisition

RNA sequencing data and corresponding clinical information

of 179 virus-relevant patients with liver cancer were downloaded

from TCGA website (https://portal.gdc.cancer.gov/repository).

RNA sequencing data and clinical information of another 260

virus-related HCC samples were obtained from ICGA website

(https://dcc.icgc.org/projects/LIRI-JP). Besides, patients from

GSE84337 (n=75) in the GEO repository was screened to acquire

clinical parameters and normalized gene expression data. Clinical

information of virus-related liver cancer patients was shown in

Table S2. Samples lacking significant clinicopathological or survival

information were excluded from further analysis.
2.2 Curation of inflammation-related genes

200 inflammatory response-related genes were found in the

Molecular Signatures database and listed in the Supplementary

Table 1. Furthermore, t-distributed Stochastic Neighbor

Embedding (t-SNE), a nonparametric and unsupervised

algorithm, was employed to sort or condense patients into diverse

clusters, based on given signatures or hallmarks by using an R

package Seurat (28). According to the OS data, two groups were

singled out for comparison to determine the “inflammationhigh” and

“inflammationlow” clusters. The limma algorithm was applied to

filtrate DEGs between the above two groups, generating genes with

false discovery rate (FDR) adjusted p-value<0.05 and absolute value

of log2 (fold change)>1 were regarded as inflammation-

related DEGs.
2.3 Protein–protein interaction
network construction

The STRING database (https://string-db.org/) was used to

establish the protein–protein interaction (PPI) network among

sufferers with co-expression coefficients >0.4. Also, cytoscape
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software (version 3.7.2) was exploited to visualize the network.

Moreover, the hub genes were screened with the MCC algorithm of

the cytoHubba plugin. The correlation between the expression of

inflammation-related genes was identified by the “reshape2”

R package.
2.4 Enrichment analysis

To explore the potential mechanisms and pathways about

inflammation-related genes, the Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

functional enrichment analysis were conducted among IRGs

using the R packages “clusterProfiler,” “enrichplot,” “ggplot2,”

and “org.Hs.eg.db.”
2.5 Consensus clustering analysis of IRGs

Based on the expression of inflammation-related genes (IRGs),

we classified distinct inflammation-regulated groups through

consensus clustering with the k-means method. The number

of patterns and corresponding homologous stability were

defined by consensus clustering algorithm using the R package

ConsensusClusterPlus with 1,000 repetitions (29).
2.6 Relationship of molecular patterns with
TME in virus-related HCC

The immune infiltration characteristics (the immune and

stromal scores) of virus-related HCC, based on the RNA-seq

dataset of TCGA database LIHC, were evaluated by ESTIMATE

algorithm (30). Then, CIBERSORTx was applied to quantify the

percentages of 22 immune cell subtypes of each patient in the TME

(31). Also, the correlation between the subsets on PD-1, PD-L1, and

CTLA-4 expression was assessed.
2.7 Construction and validation of
inflammation-related gene score

To define preliminary inflammation-related DEGs that were

significantly associated with OS in the training cohort, univariate

Cox regression analyses using the R package “survival” were further

implemented among favorable and risk DEGs, of which p<0.05

were regarded as positive. Also, Least Absolute Shrinkage and

Selection Operator (LASSO) regression with 10-fold cross-

validation was explored to narrow down the prognosis-related

DEGs applying the R package “glmnet” (32). Meanwhile, based

on the Gaussian finite mixture model (GMM), classification was

conducted with model-based hierarchical agglomerative clustering

with the R package “mclust” (33). Afterwards, the clusters made up

of DEGs were classified by GMM and logistic regression analysis
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was utilized to construct combined models to predict the OS status

for patients. Besides, to calculate the predictive value of models,

receiver operating characteristic (ROC) curves were established by

assessing the area under curves (AUCs). Subsequently, the risk

scores of patients were estimated according to the expression level

of each inflammatory response-related gene and its relevant

regression coefficient. The formula was established as follows: risk

score = ∑iCoefficient (mRNAi) × Expression(mRNAi). On the basis

of the median risk scores, patients were divided into high- and low-

risk clusters among training and validation cohorts. The Kaplan-

Meier analysis was applied to compare the OS between the high-

and low-risk groups. The predictive value of the prognostic model

was assessed on account of ROC analysis. The principal component

analysis (PCA), acquiring a low-dimensional cluster distribution

from high-dimensional gene sets, was utilized for validating the

sectionalization results.
2.8 Clinical significance and classification
analysis of the prognostic IRG score

The correlation between IRG score and clinical factors was

explored. Univariate Cox and multivariate Cox regression analysis

were firstly implemented to prove whether IRG score was an

independent prognostic predictor. Ulteriorly, a grouping analysis

was conducted to explore whether the IRG score sustained its

predictive reliable in disparate subgroups on the basis of

multifarious clinical variables. Furthermore, the infiltrating levels of

immune cells and immune checkpoint (ICP) were analyzed between

the distinct risk subgroups and the relevance between IRG score and

tumor mutation burden (TMB) score, microsatellite instability (MSI)

score, and cancer stem cells (CSC) score was examined.
2.9 Nomogram and calibration

Nomogram was constructed by the rms R package. Calibration

curves and decision curve analysis (DCA) were utilized to quantify

the consistency between the predicted and the observed results for

3-, and 5-years survival rates (34).
2.10 Gene mutation analysis

On the basis of the cBioPortal database, genetic alteration data

was acquired. And the number and quality of mutations between

the two IRG clusters were analyzed using the R “Maftools” package

(35). Subsequently, the online database TIDE (Tumor Immune

Dysfunction and Exclusion, http://TIDE.dfci.harvard.edu/) and

immunophenotype score (IPS) were calculated to execute

immune checkpoint inhibitor response of each virus-related HCC

patient in the two groups to assess the value of the IRG in terms of

prognostic immunotherapy response.
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2.11 Prediction of drug susceptibility

The pRRophetic R package was used to predict the half-

maximal inhibitory concentration (IC50) value of cancer drugs in

diverse risk subgroups, which represented the availability of a

substance in inhibiting a particular biological or biochemical

process (36, 37).
2.12 Clinical samples

The samples contained 58 blood samples from virus-related

HCC patients from West China Guangan Hospital, Sichuan

University, between March and November in 2019. The diagnoses

of HCC were confirmed by senior pathologist. None of the patients

experienced radiotherapy or chemotherapy treatment before

samples collection. Also, 50 blood samples from healthy people

were considered as the control cluster. Informed consent was

obtained from all participants for the use of their blood samples

in this study. This project was approved by the Clinical Research

Ethics Committee of Chengdu medical college.
2.13 Cell culture

The human cell lines (WLR68, LO2, Huh-7, SMMC7721,

HepG2, and HCCLM3) were obtained from the School of

Bioscience and Technology, Chengdu Medical College (ChengDu,

China). All of them were cultured in DMEM (Gibco) medium, which

were supplemented with 10% fetal bovine serum (FBS) at 37 °C with

5% CO2. In addition, the cells were photographed after treatment

with paraformaldehyde.
2.14 Samples processing, RNA extraction,
and real-time fluorescence qRT-PCR

Approximately 8 ml of whole blood from participants was

gathered in EDTA tube. After centrifuged at 1,2000g at 4°C to

spin down the blood cells for 10 min, the supernatant was shifted

into microcentrifuge tubes. Afterwards, plasma was aliquoted or

stored at −80°C. RNA was isolated from 400 mL plasma with the

mirVana PARIS kit (Ambion, USA) abided by the manufacturer’s

protocol. The PrimeScript™ RT reagent kit (TaKaRa) was further

applied for reverse transcriptase reaction. Reverse transcription

−quantitative PCR (RTqPCR) were implemented to attest the

expression levels of the six hub genes in plasma samples and cell

lines. The mRNA expression level of MEP1A, CCL20, ADORA2B,

TNFSF9, ICAM4, and SLC7A2, was normalized by GAPDH. Fold

differences were calculated for each group with normalized

CT values.
frontiersin.org

http://TIDE.dfci.harvard.edu/
https://doi.org/10.3389/fonc.2023.1118152
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gao et al. 10.3389/fonc.2023.1118152
2.15 Cell transfection

Full-length SLC7A2 cDNA was synthesized and cloned into the

pCS-CG vector (Addgene, Cambridge, MA, USA). shRNA

sequences specifically against CCL20 (shCCL20) and control-

shRNA against luciferase (shCtrl) were expressed from pLKO.1-

puro (Addgene, Cambridge, MA, USA). Production of lentiviral

particles using HEK-293T cells and subsequent infection of Huh7

and SMMC7721 cells were performed according to the

manual instructions.
2.16 In vivo tumorigenicity

14 male nude mice (5-week-old) were purchased from Beijing

Vital River Laboratory Animal Technology Co., Ltd. (Beijing,

China). SMMC7721 (1×107) stably transfected with shCtrl or

shCCL20/overSLC7A2 was subcutaneously injected into the right

gluteal region of each nide mice (n=7). After tumor formed, the

tumor volume was calculated every 3 days on the basis of

the formula: volume(mm3)=width2 (mm2) *length (mm)/2. All
Frontiers in Oncology 05
the mice were euthanized and the formed tumors were weighted

after 30 days. The animal experiment was approved by the Animal

Care Committee of Chengdu Medical College.
2.17 Statistical analysis

All analyses were completed on the strength of R language

(Version 4.2.1). Student’s t-test, chi-squared test, or Wilcoxon test

was applied to compare the differences between groups. Spearman’s

correlation test was performed to evaluate the correlation between

variables. p-value of <0.05 was deemed as statistically positive.
3 Results

3.1 Workflow of study

The study flowchart is revealed in Figure 1, which precise

procedure is as follows: First, RNA sequencing from the TCGA

database for 179 virus-related HCC sufferers was obtained, as well
FIGURE 1

workflow of the study. Virus-related HCCs extracted from TCGA database and 200 inflammation-relevant markers from the Molecular Signatures
database were analyzed to identify IRG DEGs. Next, consenus clustering was used to classify inflammation subgroups. The prognostic model was
constructed and validated in multiple ways and proved to be stable and reliable. Therefore, based on this model, we also performed analysis about
immunological characteristics, drug sensitivity and the correlation between IRGs and Tumor Microenvironment.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1118152
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gao et al. 10.3389/fonc.2023.1118152
as 200 IRGs from the Molecular Signatures database. t-SNE, was

applied to sort or condense patients into diverse clusters, based on

200 IRGs and IRG DEGs were identified from survival analysis.

Next, consenus clustering was classified inflammation subgroups to

analyze immune infiltration. Furthermore, a prognostic

inflammation-associated model was established, and its

corresponding stability was verified with various methods.

Ultimately, immunological characteristics and drug sensitivity

analysis extended on the idea of clinical application, while the

correlation between IRGs and tumor microenvironment in virus-

related HCC was attested.
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3.2 Identification and functional
enrichment analysis of inflammation-
related differentially expressed genes in
virus-associated HCC

The expression matrix of 200 IRGs was adopted to compute the

euclidean distance between any two patients from 179 virus-related

HCCs, and t-SNE algorithm was further condensed the euclidean

distance into two-dimensional points. Subsequently, three clusters

with virus-related HCC patients were generated and each patient

was assigned to its closest (Figure 2A), namely 81, 57, and 41
DA B

E

F

C

FIGURE 2

Identification and analysis of inflammation-related differentially expressed genes in virus-related HCC. (A) Dot plot for three distinct clusters
identified by t-SNE algorithm based on 200 inflammation hallmark genes. (B) Kaplan-Meier plot of overall survival for patients in three clusters.
(C) Heatmap showing expression profiles for inflammation-related DEGs with comparison between cluster I (inflammationhigh) and cluster II
(inflammationlow) groups. (D) The Protein-protein interaction (PPI) network between 47 differentially expressed inflammation-related genes (IRGs).
(E) Gene Ontology (GO) and (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for IRGs. Adjusted p < 0.01 and p < 0.05
were considered significant.
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patients in distinct clusters (Cluster I, Cluster II, and Cluster III),

respectively. OS analysis displayed that the most significant

differences consisted between cluster I and cluster II. Thus,

patients in Cluster II yield the best OS while those in Cluster I

had the worst prognosis outcome (Figure 2B), indicating that

Cluster II and Cluster I might represent the lowest and highest

status of inflammation. Accordingly, sufferers in Cluster I and

Cluster II were classified into “ inflammationhigh” and

“inflammationlow” groups, separately. To obtain inflammation-

related DEGs, expression profiles were compared between the

inflammationhigh and inflammationlow groups, leading to a total

of 47 inflammation-related DEGs identified (Figure 2C). Next, A

PPI network was constructed, composed of 84 nodes. Among all

nodes, 10 hub genes, including CCL20, IL1B, CCL2, CCL22,

TIMP1, LIF, TLR3, F3, LTA, and PLAUR were distinguished

(Figure 2D). Further research found that the DEGs were mostly

enriched in immune response, integral component of membrane,

and signaling receptor activity (Figure 2E; Table S3). KEGG analysis

also demonstrated that these DEGs were closely related to pathways

in inflammation, such as IL-17 signaling pathway, TNF signaling

pathway, and NF-kappa B signaling pathway (Figure 2F; Table S3).
3.3 Subtypes classification based on
inflammation-related gene signatures

The relevance network of IRGs interactions, regulator

relationships, and corresponding survival status in virus-related

HCC patients was presented in Figure 3A and Table S4. To further

conclude the relation between expression profiles of IRGs and HCC

subtypes, a consensus clustering analysis was conducted to separate

patients into different gene clusters based on the expression levels of

the IRGs (Figure 3B). Three discrepant patterns were determined:

98 cases in Cluster 1, 53 cases in Cluster 2, and 28 cases in Cluster 3

(Figure 3C). Afterwards, OS status of the three patterns was

revealed, contributing to a consequential difference observed

(Figure 3D). Additionally, the genomic expression and

clinicopathological features of three clusters were displayed in

Figure 3E, identifying a substantial difference between IRGs

expression and clinical characters.
3.4 Discrepancies in TME infiltration
for inflammation patterns in
virus-related HCCs

The CIBERSORT and ESTIMATE algorithms were

implemented to confirm the activity or enrichment levels for

immune cells in virus-related HCCs (Table S5). The heatmap of

three independent immune cell infiltration (ICI) subtypes was

presented in view of 179 tumor samples with matched ICI

profiles from TCGA-LIHC (Figure 4A). The expression of three

vital ICPs (PD-1, PD-L1, and CTLA-4) was obviously distinct
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among three clusters. In virtue of the role of TME scores for

evaluating the abundance of immune and stromal elements in

TME, the ESTIMATE algorithm was further executed to estimate

the TME scores, involving stromal score, immune score, and

estimate score, in three clusters, the results of which turned out

sufferers in cluster 3 yielded superior TME scores (Figures 4B, C). In

addition, we explored if the three subclasses generated various tumor

immune microenvironments (TIME) (Figure 4D). Indeed, the

immune-high subgroup had high infiltration levels of Eosinophils,

Macrophages M0, Macrophages M1, and Neutrophils, while the

cluster 1 had remarkable enrichment of resting mast cells.
3.5 Development and validation of
prognostic IRG score

Firstly, Univariate Cox regression analysis was utilized on the

virus-associated HCC groups, demonstrating that 13 prognosis-

related IRGs were correlated with OS (Figure 5A; Table S6). To

prevent model overfitting, LASSO penalized Cox regression

modeling and GMM model were simultaneously conducted to

filter the vital DEGs, which were positively associated with the

prognosis of HCC patients. With the joint method, a novel

prognostic gene model with six hub genes (ADORA2B, CCL20,

ICAM4, MEP1A, SLC7A2, and TNFSF9) was constructed

(Figures 5B–E). Then, we computed risk score using the following

formula: risk score =∑iCoefficient (mRNAi) × Expression(mRNAi),

where i, stands for the expression of six key IRGs. In line with the

median risk score, samples were clustered into low- and high-risk

subgroups. The distribution patterns from PCA analysis illustrated

that patients could be distinguished into high- and low-risk classes

(Figure 5F). Also, the risk plot of IRG score proved that OS time

decreased while mortality rise, as IRG score increased. And survival

analysis testified that samples in the low-risk cluster produced

significantly longer OS time in comparison with that of the high-

risk patients (Figure 5I, P<0.01, log-rank test) (Figures 5G–I; Figure

S1). Moreover, the expressive relationship among them and

heatmap of selected genes were displayed in Figure 5J and

Figure 5K, respectively. To comprehend the relationship between

immune subtypes and IRG score, an alluvial diagram was drawn for

clusters with distinct risk-subgroups, and accompanying survival

status (Figure 5L). The outcomes demonstrated that cluster 3 with

higher IRG score was most likely associated with death. Whereas

the cluster 1 exhibited a lower IRG score and best prognosis status.

A time-dependent ROC curve was further performed and the area

under the curve (AUC) reached 0.805, 0.7, and 0.718 at 1, 3, and 5

years, respectively (Figure 5M). Besides, the ROC curve explained

that the predictive OS accuracy of IRG score was superior to other

clinical parameters (Age, gender, Alcohol consumption, Neoplasm

histologic grade, and TNM stage and age) (Figure 5N). Tremendous

differences in the IRG score of three clusters were discovered

(Figure 5O), implying a higher IRG score may be relevant with

immune activation-associated features.
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3.6 Independent prognostic value of
IRG score

To explore the relation between the IRG score and

clinicopathological Characteristics, the interaction between IRG

score and multitudinous clinical parameters (Age, Alcohol

consumption, gender, TNM stage, Fetoprotein, Radiation therapy
Frontiers in Oncology 08
and survival status) was discussed (Figures S2A–F). We perceived

that IRG scores increased along with the stage III-IV and higher

level of fetoprotein. And Univariate and multivariate Cox regression

analyses were further conducted to guesstimate the accuracy of the

risk model and disclose whether IRG score could be considered as

an independent prognostic factor for patients’ prognosis.

Accordingly, Univariate Cox regression analysis revealed that
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FIGURE 3

IRG subgroups divided by consistent clustering and its corresponding clinicopathological and biological characteristics. (A) The correlation in
inflammation-related gene expression. (B) Consensus clustering of 179 sufferers from virus-related TCGA-LIHC cohorts based on the IRG DEGs.
Consensus matrix for optimal k = 3. (C) Principal component analysis (PCA) of TCGA database for optimal k = 3. (D) Kaplan-Meier analysis for overall
survival (OS) curves of patients in distinct clusters. (E) Differences in clinicopathologic characteristics and expression levels of IRGs between the three
distinct subgroups.
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both the IRG score and the stage were significantly correlated with

OS of the patient (Table S7). Furthermore, to uncover the

prognostic significance of IRG score in virus-related HCC

patients, the patients were assigned into different subgroups based

on above clinical parameters. Totally, the high-risk patient’s

survival was generally poorer compared to low-risk patients

(Figures S2A–F).
3.7 Establishment of nomogram model

As disclosed in Figure 6A, a nomogram was reciprocally

constructed on the foundation of IRG scores, combined with

clinical features. Followly, calibration curves defined the reliability

and accuracy of nomogram to predict 3-, and 5-year prognosis

(Figures 6B–D). As shown in Figures 6E–H, the AUC values were as

expected, implying this nomogram had an excellent predictive

ability for prognosis. Moreover, we also found that this

prognostic model with diverse clinical factors presented more net

benefits for predicting the prognosis.
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3.8 Estimation of relation between TME
and ICPs in inequable sectionalizations

We aimed to assess the relevance between IRG score and

immune cells abundance with the CIBERSORT algorithm. As

depicted in Figure 7A and Figure S3, the IRG score was

significantly associated with the infiltration of B cells memory,

Eosinophils, Mast cells activated, Monocytes, Plasma cells, T cells

CD4 memory activated, T cells CD4 memory resting, B cells naive,

Macrophages M2, Dendritic cells activated, NK cells resting, T cells

CD4 naive, T cells gamma delta, T cells CD8, and T cells follicular

helper, while the negative performance appeared in relationship

with IRG score and Dendritic cells resting, Macrophages M0, and

Neutrophils. Then, the correlation between immune cell infiltration

and expression status of six genes incorporated with the prognostic

model construction was analyzed in Figure 7B. Also, high-risk

patients experienced higher EstimateScore and StromalScore

levels than those in low-risk group (p<0.05) (Figure 7C).

Meanwhile, IRG score was positively associated with the

expression of a series of immune checkpoints (such as CD200,
D
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FIGURE 4

Correlation between IRG subgroups and tumor microenvironment in virus-related liver cancer (TCGA cohort). (A) heatmap displaying clustering of
tumor-infiltrating immune cells in TCGA cohort. Rows represent tumor-infiltrating immune cells, and columns represent samples. (B) Expression
levels of PD-1, PD-L1, and CTLA-4 in the three virus-related HCC subgroups. (C) Comparison of TME scores among IRG subgroups. (D) Abundance
of 23 infiltrating immune cell types in the three virus-related HCC subgroups. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not significant.
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CD70, and PDCD1) (Figure 7E) and the enrichment scores of

immunotherapy response-related gene signatures (Figure 7D).

Furthermore, we assessed the relationship between ICPs and risk

group, demonstrating that ICPs (PD-1, LAIR1, and VTCN1, et al)

were inconsistently distributed in two risk clusters (Figure 7F).
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3.9 IRG score-based tumor
microenvironment, and stemness analyses

Present studies declared that ICP inhibitors were favorable to

populations with increased TMB or higher MSI, uncovering that
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FIGURE 5

Construction of an inflammation-related risk model to predict the OS of virus-related HCC patients. (A) 13 prognosis-related IRGs screened by
univariate Cox regression analysis (p<0.05). (B) The tuning parameter (l) in the LASSO model is chosen by the minimum criterion. (C) LASSO
coefficient distribution of 13 inflammation-related IRGs. (D) The pattern of the logistic regression model correlated with the AUC scores and was
identified by a Gaussian mixture model. There are nine clusters of 8191 combinations. (E) Venn diagram of the shared genes by comparing LASSO
model to GMM model. (F-H) Principal component analysis, risk score distribution, and survival status distribution for virus-related HCCs from TCGA-
LIHC database. (I) Kaplan-Meier analysis of the OS between the high group and low group. (J) Co-expression network of the hub IRGs. (K)
Expression patterns of 6 hub prognostic IRGs in high- and low-risk groups. (L) Alluvial diagram of subgroup distributions in groups with different IRG
scores and clinical outcomes. (M) ROC curves for 1 year, 3 years and 5 years. (N) ROC analysis showed that the predictive accuracy of IRG was
superior to other clinical features. (O) Differences in IRG score between the three gene clusters.
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TMB and MSI were both ponderable indexes for predicting tumor

immune response (38, 39). As Figure 8A demonstrated, that TMB

in the low-risk cluster was higher than high-risk cluster suggested

that immunotherapy provided more benefits for patients with high

risk. And a negative correlation was drawn between IRG score and

TMB in spite of the meaningless value (R=-0.15, p=0.08, Figure 8B).

To explore the impact of TMB status on prognosis in virus-related

HCC patients, we also conducted survival analysis in various TMB

classes. No significant difference of prognosis was revealed between

High-TMB patients and low-TMB patients (Figure 8C). However,

the survival analysis for combination of TMB and IRG score for

virus-related HCC patients drew a conclusion that the prognostic

benefit in the high-TMB group was eliminated by IRG score

(Figure 8D). The measurement of RNA stemness score (RNAss)

could represent cancer stemness, based on mRNA expression (40,

41). The relevance of IRG score and CSC score was presented in

Figure 8E. Likewise, lower IRG score was connected with MSI-H

pattern, while higher IRG score was linked with the microsatellite

stable (MSS) pattern (Figure 8F), which also illustrated that low-risk
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patients may be more susceptive to immunotherapy. Meanwhile,

genomic alterations in high and low groups were further analyzed.

A rough similarity in the kinds of the top 30 genes with the highest

mutation frequency between the low and high groups emerged

(Figures 8G, H).
3.10 Drug sensitivity analysis

TIDE scores and IPS scores were conducted to make prediction

for sufferers’ responsiveness for appraising the immune response of

virus-related HCC patients. Analysis results in Figures 9A,B

revealed that patients at low-risk generated a lower TIDE score

and a higher IPS score, which demonstrated that they may suffer

more sensitivity from immunotherapy (42, 43). In the following,

aimed at analyzing the clinical application of IRG model, we

calculated the alterations in terms of drug sensitivity between

diverse risk clusters, reflecting that 5-fluorouracil, AZ628,

AZD7762, Bortezomib, Camptothecin, Cisplatin, Cyclopamine,
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FIGURE 6

A Nomogram model’ s Construction. (A) Nomogram combining pathological stage and risk score predicts 3-, and 5-years overall survival. (B–D)
Calibration curves test the agreement between actual and predicted results at 1, 3, and 5 years. (E, F) Clinicopathological features and the predictive
accuracy of the nomograms compared for 3−, and 5−year OS in virus-related HCC, respectively. (G, H) The DCA curves of the nomograms at 3−,
and 5−year OS in HCC, separately.
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Dasatinib, Docetaxel, MG-132, Nilotinib, Obatoclax Mesylate,

Paclitaxel, PHA-665752, Sunitinib, Vinblastine, Vorinostat, and

VX-680 yielded advantageous effectiveness for low-risk

patients (Figure 9C).
3.11 Validation of the expression levels of
hub genes in vitro experiment

qRT-PCR was applied to verify the mRNA expression levels of

six hub genes in plasma samples from 58 virus-related HCC

patients and 50 normal people. The unpaired t-test was
Frontiers in Oncology 12
performed to compute the differences between the virus-related

HCC plasma samples and normal plasma samples. And plasma

samples validated that the significant differences existed in the

expression levels of CCL20, and SLC7A2 between HCC and

normal tissues, that is, CCL20 was highly expressed in most HCC

plasma samples while the expression of SLC7A2 was significantly

higher in normal plasma samples than in virus-related HCC plasma

samples (Figure 10A). Subsequently, we extracted total RNA from

different tumor cell lines (SMMC7721, Huh7, HepG2, and

HCCLM3) and the normal liver cell lines (WLR68, and LO2) to

measure the mRNA expression levels of CCL20, and SLC7A2. qRT-

PCR assays were implemented and the results showed that the
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FIGURE 7

Immune signatures of different risk groups. (A) Correlations between IRG and immune cell types. (B) The correlations of immune cell infiltration and
the hub six genes in the risk model. (C) Comparison of immune-related scores between low-risk and high-risk groups. (D) the association between
IRG and the enrichment scores of immunotherapy response-related gene signatures or (E) IRG and the expression of many immune checkpoints.
(F) The differentially expressed immune checkpoint-related genes between the high- and low risk groups. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001, ns, not significant.
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mRNA expression levels of CCL20 were significantly higher in liver

cancer cells, like SMMC7721, Huh7, HepG2, and HCCLM3, than in

normal cells, such as WLR68, and LO2. However, the consequence

for SLC7A2 expression level was adverse (Figures 10B, C).
3.12 CCL20 knockdown combined with
SLC7A2 overexpression inhibited
tumor growth in vivo

To observe the function of CCL20 and SLC7A2 during

hepatocarcinogenesis, CCL20 was silenced by transfection with

shCCL20 in SMMC7721 cells. In addition, SLC7A2 was further

overexpressed based on the SMMC7721 cells with silence of CCL20.

First, we successfully constructed two lentiviral vectors harboring

shRNA-CCL20-1, and shRNA-CCL20-2, respectively, and

established two stable knockdown cell lines in SMMC-7721. The

two different shRNAs, especially shRNA-CCL20-2, effectively

knocked down the expression of CCL20. Also, SLC7A2

overexpression was indicated in vitro (Figures 10D, E).

Afterwards, we examined the effect of shCCL20, overSLC7A2,

and shCCL20/overSLC7A2 on the morphology of SMMC7721

cells. Compared with control cells, shCCL20 cells, and

overSLC7A2 cells, showing a spindle-like shape with scattered
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growth, cells with knockdown of CCL20 combined with SLC7A2

overexpression induced a cobblestone-like appearance with the

significant dispersion change (Figure 10F). Furthermore, the

study established nude mouse tumor xenograft models injected by

SMMC7721 cells that were transfected with shCtrl or shCCL20/

overSLC7A2. Tumor volume was measured every 3 days

(Figure 10G). We found that CCL20 knockdown combined with

SLC7A2 overexpression significantly lessened the tumor volume

(Figure 10H). After 30 days, we measured the tumor weight and

observed that tumor weight was distinctly lowered by CCL20

knockdown combined with SLC7A2 overexpression (Figures 10I, J).
4 Discussion

Due to several factors, like vaccination policies and migration,

virus infection sustains a health problem publicly and globally with

changing epidemiology (44). Presently, virus infection has been

documented by an incremental risk of developing chronic HBV

infection (CHB), progression to liver fibrosis and end-stage liver

disease (ESLD) and evolution of HCC (45). Despite great

improvements in the matter of HCC treatment, tumor

recidivation triggered by metastasis and drug resistance are still

unamiable to HCC sufferers (46, 47). Thus, if we could make early
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FIGURE 8

Risk signature-based tumor mutation burden (TMB), microsatellite instability (MSI), stemness analyses, and somatic mutation features. (A) The
difference in TMB between the high- and low-risk groups. (B) Spearman’s correlation analyses between IRG and TMB. (C) Kaplan-Meier analysis of
the OS between the low- and high-TMB groups. (D) The comparison of OS among four subgroups stratified by both TMB and IRG score. (E)
Correlation between IRG and mRNAsi scores (RNAss). (F) Relationships between IRG and MSI. The waterfall plot showing the differences in somatic
genomic mutation between (G) the high- and (H) low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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diagnosis and predict the therapeutic effect with a small number of

biomarkers, the HCC sufferers would benefit a lot from the risk

warning. Previous studies indicated that serum biomarkers,

including circulating tumor cells or nucleic acids, and the

combination of retinol and retinal panel had preeminent accuracy

for HCC prognosis (48, 49). Also, inflammatory response-

associated biomarkers in serum, such as medium-granulocyte

ratio, platelet-lymphoid ratio and lymphoid-monocyte ratio, have

an excellent performance to predict HCC prognosis (50).

Accumulative evidence has testified the inevitable relationship

between inflammation and intrinsic immunity (51), illustrating

that inflammation targeting may serve a vital role to facilitate

tumor immunotherapy. However, numerous reports have only

emphasized a single inflammatory-related marker or a specific

immune cell subtype. Besides, few studies concentrated on the

association between inflammation and virus-related HCC. Hence,

it is indispensable to clarify the holistic impact and TME infiltration

characters regulated by the combinatorial action of disparate IRGs.

All the IRGs based on Molecular Signatures Database (MSigDB)

were accumulated and several HCC datasets, were applied

systematically and comprehensively to filtrate the hub IRG DEGs

to establish an inflammation-related model, for probing the

distinction of risk models in immune cell infiltration, immune

checkpoints, and drug sensitivity to offer clinical prognostic

information and guide treatment for virus-related HCC patients.

In this study, 47 inflammation-related signatures were identified

and analyzed in TCGA-LIHC database. The candidates were mainly

enriched in immune response, IL-17 signaling pathway, TNF signaling

pathway, and NF-kappa B signaling pathway. Consistent with other

studies (52–55), Chronic inflammation and the presence of

inflammatory cells (mainly macrophages) at the tumor site are

highly correlated with specific malignancies. Also, cytokines,

incorporating tumor necrosis factor (TNF) and Interleukins (IL), can

regulate host responses to infection, immune, inflammation, and
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trauma. Besides, nuclear factor-kappa B (NF-kappa B) comprised of

a series of transcription factors regulate the expression of numerous

genes included in inflammation and cell proliferation. The results

explain that inflammation converts not only inflammatory cells but

also alters cytokines to act in collaboration with specific cytokine

inhibitors and soluble cytokine receptors to regulate the immune

response. Based on these signatures, consensus clustering analysis

proved that patients could be divided into three clusters, and there

were significant distinctions in the OS among them. The findings

revealed that inflammation in virus-related HCC is heterogeneous and

sufferers with diverse inflammatory patterns have disparate prognoses.

Subsequently, through the combination of univariable Cox

regression analysis, GMM, and LASSO Cox regression analysis, we

screened 6 survival-related key signatures, including Meprin A Alpha

(MEP1A), CC chemokine ligand 2 (CCL2), Adenosine A2b receptor

subtype (ADORA2B), Tumor necrosis factor superfamily member 9

(TNFSF9), Intracellular adhesion molecule 4 (ICAM4), and Solute

carrier family 7 member 2 (SLC7A2). They all had been reported to be

involved in inflammation or HCC progression previously (56–61).

MEP1A, a zinc metalloprotease, was reported to participate in the

regulation of inflammatory response and fibrosis. Further analyses

verified that MEP1A played a crucial role to regulate cytoskeletal events

and accelerated HCC cell proliferation, migration, and invasion (62).

Also, In HCC patients, CCL2 was highly expressed and regarded as a

prognostic factor. Farther blockade of CCL2/CCR2 signaling restrained

liver tumour growth via stimulating T cell antitumor immune response

(63). ADORA2B functioned as an endogenous feedback loop to

dominate hypoxia-re levant inflammation, which was

transcriptionally induced under hypoxia or inflammation by

hypoxia-inducible transcription factor HIF1A (64). Furthermore,

ADORA2B expression was negatively associated with OS of HCC

patients. Accordingly, compared with control groups, mice treated with

sorafenib in combination with ADORA2B blockage reagents emerged

evident inhibition of tumor progression (65). TNFSF9, also known as
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FIGURE 9

Sensitivity to drugs in virus-related HCC patients with different inflammation-related risk score subgroups. (A) immunophenotype score (IPS) and
(B) tumor immune dysfunction and exclusion (TIDE) in different IRG score groups. (C) Relationships between IRG and chemotherapeutic sensitivity.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant.
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CD137L and 4-1BBL, had been exhibited in cancer immunotherapy in

virtue of the role as a T-cell co-stimulator. Shen YL, et al. considered

that TNFSF9 expression was downregulated in roughly 70% of HCC

tissues. Thus, TNFSF9 may be a tumor suppressor, deemed as a

therapeutic target for HCC (59). As for ICAM4, the studies

uncovered that it was vital for immune synapse formation between

NK cells and HCC cells to advance NK-mediated immunotherapeutic

effects (60). SLC7A2, a member of the solute carrier family, was an

independent risk factor for the prognosis of HCC patients if reduced.

SLC7A2 Upregulation reduced HCC invasion and metastasis, whereas

its downregulation boosted invasion and metastasis. Hence, SLC7A2
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may offer novel mechanistic insight into the cancer-promoting

property of HCC patients (61). The concrete mechanisms about the

signatures in inflammation, immunotherapy, and drug reactivity of

virus-related HCC sustained vague, which was one of the limitations of

the study. We would continue to study them further in the future.

Based on the six genes, IRG score was calculated to construct a

prognostic model for prediction of virus-related HCC patients. IRG

score was obviously relevant to clinicopathological features of virus-

related HCC. After confounding parameters were controlled, the

results attested that IRG score was an independent predictor for

virus-related HCC patients’ prognosis. ROCs further showed its
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FIGURE 10

Validation of expression and tumorigenicity of hub genes. (A) qRT-PCR validation of MEP1A, CCL20, ADORA2B, TNFSF9, ICAM4, and SLC7A2 in HCC
and normal plasmas. (B, C) The mRNA expression level of CCL20 and SLC7A2 in HCC cell lines (SMMC7721, Huh7, HepG2, and HCCLM3) and the
normal liver cell lines (WLR68, and LO2) was indicated by qRT-PCR assays. (D) The protein and (E) mRNA expression of CCL20 and SLC7A2 was
analyzed by western blotting and RT-PCR in stable SMMC-7721 cells expressing-shRNA against luciferase or CCL20 and over SLC7A2. (F)
Morphology of HCC cells after knockdown of CCL20 and overexpression of SLC7A2. (G) Tumorigenicity of SMMC7721-shCtrl cells and SMMC7721-
shCCL20/overSLC7A2 cells in nude mice. (H) Tumor volume was measured every 3 days after tumor formation in nude mice injected with
SMMC7721 cells transfected with shCtrl or shCCL20/overSLC7A2. (I, J) Tumor weight was measured in nude mice injected with SMMC7721 cells
transfected with shCtrl or shCCL20/overSLC7A2 after 30 days. *p < 0.05; **p < 0.01; ***p < 0.005; ****p < 0.0001, ns, not significant.
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prediction robustness for 1-, 3-, and 5-year OS. Thus, IRG score may

generate a reliable capacity to make prediction for sufferers’ prognoses.

The accumulation of gene mutations leaded to carcinogenesis and was

interrelated with inflammation (66). Our findings demonstrated that

an apparent difference existed between low and high IRG score in

terms of genomic alterations. Huo J, et al. confirmed that preferable

prognosis originated from HCC patients with higher TMB (67).

Although it is not imperfectly consistent with our findings to some

extent, the prognostic benefit in the high-TMB group was eliminated

by IRG score after combining TMB and IRG score for survival analysis.

These findings further demonstrated the prognostic robustness of IRG

score in virus-related HCC patients. Some clinicopathological

characteristics, such as TNM stage, was also identified as an

independent negative prognostic factor for patients. Therefore, we

further constructed a nomogram using IRG score combined with TNM

stage to better predict the survival of patients.

Current reports have ascertained crosstalk between cellular

metabolic writing and TME remodeling (68, 69). Although numerous

HCC patients produced a poor response to immunotherapy, the

improvement of immune response efficiency had been the emphasis

of immune research (70). In the present study, we quantified tumor

inflammation through the calculated IGR score based on the

construction of the IRM, objectively displaying the relationship

between the inflammation reprogramming and immune

microenvironment, aimed at conducting the distinct treatment

methods of the two groups. For instance, CD4+, CD8+, B cells, and

macrophage cells were infiltrated in the high-IRG subgroup. Also,

immune interactions were pivotal characteristics of carcinogenesis and

therapeutic target for HCC. In the TME, stromal cells and immune cells

were the essential elements, which scores were connected with clinical

characteristics and prognosis of HCC sufferers (71). We calculated these

scores with the ESTIMATE algorithm and found that a high IRG score

cluster significantly showed higher ESTIMATE and stromal scores than

a low IRG score cluster. The results suggested that inflammation could

be associated with the involvement of TME, thus regulating neoplastic

occurrence and development. Therefore, to make quantification of

tumor inflammation via the IRM may be beneficial to forecast

immune responses and avert immunosuppressive therapy in sufferers,

who do not respond immunologically.

HCC arises on the background of chronic liver disease. Despite the

development of effective anti-viral therapeutics, HCC is continuing to

rise. Thus, many patients present with advanced disease out with the

criteria for transplant, resection or even locoregional therapy. For

patients who are not candidates of curative treatments, locoregional

therapies such as transarterial chemoembolization (TACE),

transarterial radioembolization (TARE), and stereotactic body

radiation (SBRT) can improve survival and quality of life. Sorafenib,

a multi-kinase VEGF inhibitor, is the most widely used systemic

chemotherapy approved as a first-line agent for unresectable or

advanced HCC. Whilst checkpoint inhibitors are at the forefront of

this revolution, other therapeutics such as inhibitory cytokine blockade,

oncolytic viruses, adoptive cellular therapies and vaccines are emerging

(72, 73). This study identified the potential sensitive drugs for patients

in different IRG score groups, and the combination of these drugs and

targeting angiogenesis may contribute to alleviating drug resistance and

improving clinical outcomes. Furthermore, the effectiveness of
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immunotherapy requires specific biomarkers as a predictive pattern.

TIDE and IPS signatures have been created to evaluate ICIs response.

Accordingly, we observed that virus-related HCC patients with low

IRG scores displayed low TIDE scores. All the above results

demonstrate IRGs is an advantageously predictive tool in precision

immunotherapy for virus-related HCC patients.
5 Conclusion

In conclusion, we have summarized the prognostic role of

inflammation-related regulatory genes in virus-related HCC

patients and then constructed a prognostic model based on IRGs

involving six genes, which can accurately and stably predict survival

and guide individualized treatment decisions in virus-related HCC

patients. We further found that alterations in TME characteristics

may be a potential mechanism of this model to predict the

prognosis of virus-related HCC patients. Although we verified the

stability of the risk model from multiple aspects, there are still some

limitations. First, further studies with a large sample size are

required to draw definitive conclusions. Furthermore, extensive

prospective studies are necessary to gain insight into the

relationship between risk scores and TME in vivo and vitro models.
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SUPPLEMENTARY FIGURE 1

Validation of prognostic models for six inflammation-related signatures. (A–
C) risk score distribution, survival status, the expression level of hub genes,

Principal component analysis, and Kaplan-Meier curves at different risk
groups from ICGA database (A) and GSE84337 database (B). *p < 0.05.

SUPPLEMENTARY FIGURE 2

The correlation analysis of IRG and clinicopathological variables and
corresponding stratification analysis in virus-related HCCs. The correlation

between IRG and (A) Age, (B) Alcohol consumption, (C) Gender, (D) TNM

stage, (E) Fetoprotein, and (F) Radiation therapy and its corresponding OS
analysis. *p < 0.05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE 3

Correlations between IRG and immune cell types.
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