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The metastatic niche formation:
focus on extracellular vesicle-
mediated dialogue between
lung cancer cells and
the microenvironment

Francesca Pontis, Luca Roz, Orazio Fortunato*

and Giulia Bertolini

Epigenomics and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
Lung cancer is the deadliest cancer in the world, with the majority of patients

presenting with advanced or metastatic disease at first diagnosis. The lungs are

also one of the most common sites of metastasis from lung cancer and other

tumors. Understanding the mechanisms that regulate metastasis formation from

primary lung cancer and in the lungs is therefore fundamental unmet clinical

need. One of the first steps during the establishment of lung cancer metastases

includes the formation of the pre-metastatic niche (PMN) at distant organs,

which may occur even during the early phases of cancer development. The PMN

is established through intricate cross-talk between primary tumor-secreted

factors and stromal components at distant sites. Mechanisms controlling

primary tumor escape and seeding of distant organs rely on specific properties

of tumor cells but are also tightly regulated by interactions with stromal cells at

the metastatic niche that finally dictate the success of metastasis establishment.

Here, we summarize themechanisms underlying pre-metastatic niche formation

starting from how lung primary tumor cells modulate distant sites through the

release of several factors, focusing on Extracellular Vesicles (EVs). In this context,

we highlight the role of lung cancer-derived EVs in the modulation of tumor

immune escape. Then, we illustrate the complexity of Circulating Tumor Cells

(CTCs) that represent the seeds of metastasis and how interactions with stromal

and immune cells can help their metastatic dissemination. Finally, we evaluate

the contribution of EVs in dictating metastasis development at the PMN through

stimulation of proliferation and control of disseminated tumor cell dormancy.

Overall, we present an overview of different steps in the lung cancer metastatic

cascade, focusing on the EV-mediated interactions between tumor cells and

stromal/immune cells.

KEYWORDS

extracellular vesicles (EV), premetastatic niche, lung cancer, dormancy (seed), CTC
(circulation tumor cells)
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1 The lungs as source and target
of metastases

Lung cancer is one of the most common cancers and is still the

leading cause of cancer-related deaths. Indeed, as reported by

GLOBOCAN, lung cancer is the second most prevalent neoplasm

and the main cause of cancer mortality, with 2.2 million newly

diagnosed cases and 1.8 million deaths in 2020. In most countries,

the 5-year survival rate of lung cancer patients is only 10% to 20%:

stratifying by disease stage, only 60% of stage IB, 50% of stage II,

and 40% of stage IIIA patients survive more than 5 years (1). The

lack of symptoms in the initial stages makes early diagnosis difficult,

often delaying lung cancer detection at an advanced or widely

metastatic stage (2).

Several efforts have been made to improve the therapeutic

management of advanced lung cancer including specific target

therapies against driver mutations and, more recently, the

introduction of immunotherapies alone or in combination with

standard chemotherapy. Immune-checkpoint inhibitors (ICI) have

demonstrated efficacy in the treatment of advanced lung cancer

even though a sizable proportion of patients, unfortunately, do not

respond to treatment or have a durable response. Despite treatment

improvement, the 5-year survival rate for advanced lung cancer

remains very low overall (6%) (3).

The survival rate of lung cancer patients is strongly affected by

the presence of advanced or metastatic disease which often occurs

quickly or is already present at diagnosis. It has been estimated that

almost 70% of the total lung cancer-related deaths are a

consequence of metastatic spread, thus representing an extremely

relevant clinical and social issue (1). Moreover, despite the common

belief that metastatic dissemination might be related to late-stage

disease, cancer cell dissemination could be an early event in cancer

progression (4, 5).

One of the earliest events of the metastatic process is the escape

of cancer cells from the primary tumor, often linked to the

acquisition of mesenchymal and invasive properties through the

induction of the epithelial-to-mesenchymal transition process

(EMT), allowing cancer cells to intravasate into the lymphatic or

blood circulatory systems. Then, cancer cells traveling in the

circulation, alone or within a cluster of cells, can reach distant

sites where they can extravasate and grow as metastatic lesions. All

these processes require a complex network of communications

among different cell types and tissues. In the attempt to fully

elucidate the metastatic process and the crosstalk among different

cellular players, experimental studies have often focused on cancer

dissemination to the lungs since it represents one of the most

frequent sites of metastasis from many tumor types, including

carcinomas of the breast, colon, kidney, melanoma, and lung

cancer itself (6). In fact, it must be emphasized that primary lung

cancer also frequently metastasizes to the lung: indeed, lung cancer

is the tumor that contributes most to the incidence rate of

synchronous lung metastases (41%), followed by colon and

rectum (10%), kidney (7%), pancreas (7%) and breast (6%) (7).

The preferential sites for lung cancer-derived metastasis at

diagnosis are lung (49.0-59.2%), brain (29.9-41.9%), bone (28.5-
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38.8%), liver (13.2-26.3%), and adrenal gland (10.1-24.1%) (8). In

detail, among the most frequent form of lung cancer, non-small cell

lung cancer (NSCLC), different histological subtypes can

preferentially metastasize to specific organs: squamous cell lung

carcinoma (SCLC) often spreads to the liver whereas

adenocarcinoma most frequently spreads to brain. Moreover,

specific genetic alterations could influence the metastatic pattern as

in the presence of EGFR mutations which have been linked to brain

metastasis in NSCLC (9). These differences in metastatic tropism for

lung cancer subtypes may also reflect different interactions between

tumor cells and specific microenvironments (6).

This clinical evidence underlines the need to further elucidate

the mechanisms behind lung cancer tropism to certain organs.

Additionally, information gathered on the pulmonary ‘soil’ as

permissive or restrictive for the growth of cancer cells of different

origins may also provide important insights into understanding

lung cancer metastatization to the lung. Therefore, besides

discussing evidence focused on lung cancer metastasis, we will

also review studies on the main mechanisms regarding lung

metastasis originating from different primary tumors.
2 Dissemination and
(pre)-metastatic niches

The first hypothesis suggesting that metastatic dissemination

was not a “matter of chance”, was postulated in 1889 by Stephen

Paget who noted in 735 cases of advanced breast cancer that not all

organs were equally apt to receive “particles” from the primary

tumor and develop metastasis (10).

Starting from this first evidence, Ewing and colleagues tried to

explain the link between metastatic dissemination and the

mechanical dynamics of hematogenous flow (11). Then, other

studies have been conducted in the field concluding that certain

organs were generally more susceptible to metastases than others

(12). Finally, the now well-known “seed and soil” theory was put

forward: tumor cells (“the seeds”) require an appropriate local

microenvironment (“ the soil”) to effectively grow as

metastatic lesions.

Several efforts were then made to address the many open

questions about how the primary tumor interacts with distant

organs during the metastatic process (13). In this regard, a

seminal work by Kaplan et al. in 2005 introduced the concept of

“pre-metastatic niche” (PMN). This work demonstrated for the first

time that the early recruitment of bone marrow-derived cells

(BMDC) to the lungs caused microenvironmental changes and

the creation of a pro-metastatic environment before the homing

of circulating tumor cells (CTC) (14). These findings support the

concept that primary tumors can shape the microenvironment of

distant organs before tumor cell colonization. Although similar to

Paget’s and Ewing’s theories, the concept of the PMN is more

complex since it postulates the potential of some factors derived

from primary tumors to precondition specific organs, making them

suitable sites for metastases. Indeed, it’s now clear that primary

tumors actively prime stromal cells at distant organs to generate a
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supportive environment for the recruitment, implantation, survival,

and outgrowth of tumor cells (14–17).

In a general view, the establishment of the PMN is a

multifaceted and multi-step process characterized by the

requirement of fine-tuned communication between different sites

and microenvironment players (11, 15). As recently reviewed by

Peinado et al. (11), the establishment of PMN occurs through

sequential steps: first, the blood vessels of the future site of

metastasis lose their integrity in a phenomenon called “vascular

leakage”, causing increased permeability and allowing the entrance

of cells and macromolecules, which usually cannot otherwise

penetrate the endothelial barrier. Next, other local stromal cells

undergo a wide range of alterations; among them, fibroblasts play a

central role through the deposition and remodeling of the

extracellular matrix (ECM) or the secretion of molecules for

immune cell recruitment and/or modulation (18, 19). The

ensuing vascular and stroma rearrangement induces the

recruitment of non-resident cells, mostly BMDC, that in

combination with other deregulated immune cells generate a

supportive environment for disseminated tumor cells and for

subsequent metastasis outgrowth (11, 15, 20).

Several studies have described molecular and cellular effectors

of this “systemic effect” connecting communication among different

tissues (the site of the primary tumor, the bone marrow, and the site

of metastasis) and proving the central role of tumor-derived

extracellular vesicles (EVs) in PMN establishment (11). Since the

role of other soluble factors, such as cytokines and growth factors, in

the formation of the PMN was already well described (21), in this

review we will focus on EVs, with a particular interest in the

metastatic lung cancer setting.
3 Extracellular vesicles

Originally described simply as “waste operators”, EVs have

recently gained attention for their role as key players in cell-cell

communication (22). EVs are a large and heterogeneous group of

cell-derived membranous vesicles secreted by almost all cell types

(23, 24). Their family comprises several vesicles different in features

(mainly in their size) and biogenesis. Despite the controversial and

still evolving classification, EVs can be broadly subdivided into

small EVs (sEV, also known as exosomes) derived from

multivesicular bodies of late endosomes (~50–150 nm in

diameter), and microvesicles (MVs or ectosomes) which originate

through extracellular membrane budding (from ~100 nm up to 1

μm in diameter) (22, 25).

The bioactive cargo of EV comprises mostly transmembrane

proteins, lipids, and nucleic acids as DNA and RNA (mRNAs, long

non-coding RNAs, and miRNAs) (26–28). Although it is still

unclear how proteins and nucleic acids are actively sorted or

packaged into EVs, it is well established that the cargo of EVs is

systematically integrated into the EVs through a strictly controlled

process. In this regard, it has been proposed the involvement of the

proteins of the Endosomal Sorting Complex Required for Transport

(ESCRT) both in EV biogenesis and in particular during

multivesicular bodies (MVBs) and intra-luminal vesicles (ILVs)
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formation and release (29–31). Indeed, the ESCRT-associated

proteins Alix and TSG101 were found inside EVs, corroborating

the role of ESCR complexes during cargo packaging. Even though

the entire process is not yet fully understood, there is consensus

about the requirement for some post-transcriptional modifications

such as ubiquitination, SUMOylation, ISGylation, Phosphorylation,

and Glycosylation (reviewed in detail by Sushma Anand and

colleagues (32)) during the selective incorporation of cargo

components. Indeed, the ESCRT complexes were found to be

actively involved in the incorporation of ubiquitinated proteins

inside EVs (33, 34) and the aforementioned Alix appears to play an

active role in this process, sorting both proteins and miRNAs inside

EVs (35, 36).

The content of EVs is cell-specific and reflects the physiological

status of the cell of origin (37). For this reason, the presence of

specific markers on the surface of EVs can be used to identify the

cell type responsible for their release. For example, the tumor

antigen 5T4 was detected in EVs from prostate cancer cell

cultures and patients’ urinary-EV, but not in urinary EVs from

healthy donors highlighting their specific tumor origin (38). In this

scenario multiplex bead-based platforms allow simultaneous

detection of several markers on EVs surface linked to the cell of

origin. For instance, it has been demonstrated that NK cells-derived

EVs are characterized by CD2, CD8, and CD56 markers whereas

platelet-derived EVs lack CD2 and CD8 but are enriched in platelet

markers such as CD41b, CD42a, and CD61 (39).

EVs have been successfully purified frommany body fluids such

as blood, urine, pleural effusions, ascites, and bronchoalveolar fluid

(40), so they represent an interesting and non-invasive source of

biomarkers for specific disease detection

The EV’s cargo is protected from enzymatic degradation by the

phospholipidic bilayer allowing delivery of their content to recipient

cells without any alteration (41). Once released, EVs can modify the

physiological state of near or distant recipient cells by adhesion,

fusion, and transfer of cargo components. The process of EV uptake

by recipient cells is not yet fully understood but it occurs mainly in

two possible ways: internalization by endo- and/or phagocytosis or

by direct fusion with the membrane of the target cell. In both cases,

the EV content is released into the cytosol of recipient cells. As a

potential third mechanism of bioactive action, EVs can activate

downstream signaling via receptor-ligand interaction on target cells

(42). Several EV components (tetraspanins, integrins, or adhesion

molecules) have been described as mediators of the binding between

EVs and recipient cells (43). Indeed, the presence of specific

integrins on the surface of cancer cell-derived EVs has been

highlighted as responsible for the EV-cell interactions in different

organs also during the PMN formation (28). Moreover, a specific

pattern of tetraspanins on EVs has been shown to drive EV uptake

by selected target cells, as indicated for example by the requirement

of Tspan8 for the interaction between EVs and endothelial

cells (44).

Following EVs uptake, their biological active cargo is released

intracellularly to regulate in an autocrine and/or paracrine fashion

multiple cellular processes including cell proliferation, survival, and

potentially even transformation (43). Indeed, due to their ability to

‘deliver’ messages between different cells, EVs have been linked to
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all stages of cancer development, progression, and particularly to

metastasis formation (45). Tumor-derived EVs indeed regulate

different features of malignant cells such as proliferation (46),

EMT (47), abnormal apoptosis (48), and metastatic spread (49).
3.1 Extracellular vesicles and (pre)-
metastatic niche formation

As mentioned before, metastasis generation is a multistep

process, beginning from the dissemination of primary tumor cells

to the final colonization of distant organs. This process requires the

acquisition of different properties and overcoming several hurdles

making the overall frequency of metastasis a relatively rare event

compared to the number of cells that leave the primary tumor.

Firstly, by losing cell-cell contact and adhesion to the surrounding

extracellular matrix (50) cancer cells start to invade neighboring

tissues (51). Then, disseminating cancer cells enter the blood or

lymphatic vessels and travel into the circulation where they must

withstand several unfavorable conditions such as immune

surveillance and anoikis (52). Cells able to survive in the

circulation must finally extravasate through the endothelium and

colonize the foreign parenchyma of distant organs to form

metastasis (53, 54).

Primary tumor-derived EVs are supposed to be involved in all

the steps of tumor dissemination and metastasis (55). Indeed,

tumor derived-EVs sustain the metastatic cascade acting as

mediators of intracellular communication between the tumor and

the microenvironment. The first evidence of the involvement of

tumor-derived-EVs in PMN formation was reported by Jung et

colleagues in 2009, demonstrating that pancreatic cancer-associated

exosomes actively participate in the establishment of lymphatic and

lung PMNs in rodents (56). Using models of pancreatic

adenocarcinoma, the authors demonstrated that highly metastatic

tumor cells expressing CD44v were able to produce a soluble matrix

which in cooperation with tumor-derived EVs altered stromal

features of pre-metastatic organs. Indeed, concomitant in vivo

administration of matrix+EVs from highly metastatic cells caused

an increase in lymphocyte infiltration and endothelial cell activation

that concurred in enhancing the metastatic potential of poorly

metastatic cells (CD44v KO).

After that, several studies highlighted the involvement of EVs

and their cargo in this process (57); however, only a few studies

focused on the role of EVs from lung cancer cells in the formation of

lung-PMN, which represents the first site of lung metastatization (7,

58–60). Therefore, we will highlight the studies reporting on lung

metastasis from other primary tumors (breast, colorectal cancer,

and melanoma) to describe the interplay between tumor-derived

EVs and lung pre-metastatic microenvironment.

3.1.1 EV-mediated modulation of stromal cells
One of the earliest events in metastatic niche formation is the

increase of vascular permeability to facilitate cell extravasation. The

modulation of the endothelial compartment during PMN

formation was already demonstrated in the seminal paper by Jung
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et al. in rat pancreatic adenocarcinoma models: the authors

reported an increased expression of genes involved in endothelial

regulation (uPAR, VEGFR1, VEGFR2) induced by EVs secreted by

highly metastatic cancer cells. Notably, alterations of the endothelial

wall at the pre-metastatic lungs (hyper-permeability, altered

morphology of vascular endothelium, and breakdown of the

vascular basement membrane) were also noticed in other animal

experimental models (61).

Vessel leakiness at pre-metastatic sites caused by primary

tumor-secreted factors was reported in several papers. In this

regard, Peinado and colleagues first demonstrated the

involvement of melanoma derived-EVs in the induction of

endothelial leakiness at the pre-metastatic sites (lung). Indeed, the

authors showed that endothelial permeability, assessed in vivo using

fluorescent dextran, was markedly increased after treatment with

EVs from metastatic cell lines compared with treatment with EVs

from non-metastatic cell lines. The authors suggested that TNF-a,
up-regulated in lung tissue soon after EV administration, could play

a pivotal role in this process (26). Then, other studies investigated

the interplay between cancer EVs and endothelial cells. Indeed it has

been reported that EVs derived from lung cancer or breast cancer

cells carrying miR-23a and miR-105 respectively, increased vascular

permeability and facilitated cancer cell colonization by targeting the

tight junction protein ZO-1 (62, 63). Moreover, cancer-derived EVs

can activate the endothelium and promote lung PMN formation

through the upregulation of MMP2, MMP9, and VEGFR1 (64).

Importantly, the perturbation of the lung endothelial wall by

tumor-EVs was also demonstrated in a model of hepatocellular

carcinoma (HCC), where tumor-EVs carrying Nidogen 1 (NID1)

enhanced angiogenesis and pulmonary endothelial permeability

(65). In the same study, the authors also highlighted that NID1+-

EVs activate fibroblasts that in turn facilitated lung colonization by

secreting the tumor necrosis factor receptor 1 (TNFR1). Another

study reported the role of pancreatic cancer Tspan8-EVs in

modulating both lung endothelial cells and fibroblasts to favor

metastatization (66). Interestingly, miR-122 cargoed by breast

cancer-EVs can impair the glucose consumption of lung

fibroblasts, resulting in increased microenvironmental availability

of glucose that supports metastatic cell proliferation (67).

Interestingly, miR-122 was found to be selectively incorporated

and enriched in NSCLC cell lines-EVs (68), suggesting a possible

role of these EVs also in lung cancer metastasis.

3.1.2 Immunoregulatory activity of EVs
The lung metastatic niche is a complex microenvironment

comprising several stromal and immune cells, which include T

cells, monocytes, neutrophils, NK cells, and macrophages. Immune

cells could potentially target tumor cells and prevent their growth

and dissemination: cancer cell-derived EVs in turn contribute to the

escape from the anti-tumor activity of immune cells.

One relevant example is represented by lung cancer-derived

EVs carrying programmed death ligand 1 (PD-L1) on their surface.

The binding of PD-L1 to PD-1 expressed on cytotoxic T cells

inactivates their function promoting tumor growth and metastasis

(69). Moreover, the presence of PD-L1 on lung cancer-derived EVs
frontiersin.org

https://doi.org/10.3389/fonc.2023.1116783
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pontis et al. 10.3389/fonc.2023.1116783
suppresses the differentiation and maturation of dendritic cells

(DCs) in mouse models. Exosomes can induce the expansion of T

regulatory cells and this effect can be abolished by blocking PD-L1

(70). In another paper, circulating EVs isolated from the plasma of

lung cancer patients were shown to display high levels of EGFR on

their surface able to induce tolerogenic DCs that promote tumor-

specific T regulatory cells (71). Furthermore, lung cancer cells under

hypoxic conditions release microvesicles with high amounts of

TGF-b and miR-23 able to block the cytotoxic activity of NK cells

in vitro and in vivo (72). In addition, exosomal miR-21/29a released

by lung cancer cells activates TLR7 and TLR8 on macrophages

triggering the NF-kB pathway and release of inflammatory

cytokines that sustain tumor growth and metastasis (73). A study

conducted using both mouse models and cell lines showed that

primary tumor-derived exosomal RNAs mediate the activation of

TLR3 in lung epithelial cells inducing chemokines release that in

turn recruit neutrophils from bone marrow to the PMN site (59).

One of the main limitations of these studies is the frequent use of

EVs from cancer cell lines, which are normally tested at much higher

concentrations compared to the relative abundance of tumor EVs in

the blood of cancer patients: therefore it should be stressed the need

to scale down the concentration of cancer cell line-derived EVs to

properly mimic the role of tumor EVs in organ intercommunication

(like pre-metastatic niche formation) occurring in cancer patients.

EVs are released also as a consequence of the crosstalk between

the tumor and its microenvironment and could influence cells at

distant organs. Therefore, it could be very relevant to evaluate the

cellular origin of EVs from the primary tumor and its

microenvironment; the isolation of EVs from fresh tissue samples

and their characterization using a multiplexing approach will be

helpful in identifying EVs originating from different cell types.

Moreover, based on antibodies selective for surface markers, EVs

released from different cells of origin could also be sorted and used

to better understand the mechanisms and the major players

involved in the first steps of lung metastatization.
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4 Role of EVs in cancer cell-tumor
microenvironment crosstalk at
primary tumor sites

EVs are involved in the acquisition of mesenchymal and more

aggressive phenotypes by lung cancer cells (Table 1, Figure 1). In

this context a prominent role is played by cells endowed with

increased tumor-forming potential: the existence of a subset of

cancer stem-like cells (CSC) able to sustain primary tumors and

initiate distant metastasis has been extensively demonstrated in

both hematological and solid tumors, including lung cancer in

which CSC have been identified by the expression of CD133 marker

by different groups (84, 85). Expression of CSC markers in primary

tumors has been shown to correlate with worst prognosis and

metastasis occurrence. Recently, some evidence also highlights the

importance of CSC-derived EVs in mediating aggressive phenotype

of tumors or in corrupting surrounding and distant stroma cells to

promote tumor progression (86). Indeed, in different tumor types, it

has been demonstrated that CSC- EV cargo can induce non-tumor

cells to gain stem-like features through the induction of EMT which

in turn promotes chemotherapy resistance and metastasis

formation (83, 87, 88). Different bioactive molecules carried in

CSC-derived EVs have been shown to mediate such effects, among

which stemness-related proteins or activators of stem-related

signaling (89, 90) and RNA molecules (91).

In lung cancer, it has been demonstrated that CSC-derived

exosomes can enhance the invasive and pro-metastatic properties of

lung cancer cells by transferring miR-210-3p that binds and down-

modulates fibroblast growth factor receptor-like 1 (FGFRL1),

inducing a mesenchymal phenotype (74).

Interactions among different subsets of cancer cells can also be

mediated by EVs: metastatic cell-derived EVs can stimulate the

acquisition of aggressive behavior in recipient cells. Indeed,

exosomes isolated from metastatic small-cell lung cancer cells
TABLE 1 Extracellular vesicles as modulators of phenotype of primary tumor.

Tumor intrinsic

EV’s Cargo Origin Function Ref

miR-210 Cancer Stem Cells Activation of FGFRL1 and metastasis (74)

TGF-b/IL-10 Metastatic cancer cells Increase of proliferation and migration (75)

Vimentin Metastatic cancer cells Induction of EMT (47)

miR-499-5p Metastatic cancer cells Induction of EMT, proliferation and migration (76)

miR-1260b Lung cancer cells Modulation of sFRP1 and SMAD to increase invasiveness (77)

Tetraspanin 8 Metastatic lung cancer cells Promote invasiveness (78)

HGF Metastatic lung cancer cells Promote migration and proliferation through c-Met (79)

Tumor extrinsic

miR-223 Platelets Promote invasion (80)

CD41 Platelets Increase migration and cytokine release (81)

FasL CD8 T cells Stimulate metastasis (82)
frontiers
in.org

https://doi.org/10.3389/fonc.2023.1116783
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pontis et al. 10.3389/fonc.2023.1116783
increased cancer cell proliferation and migration compared to non-

metastatic cells through the release of EV-derived TGF-b and IL-10

(75). Moreover, exosomes released by metastatic lung cancers can

induce EMT in normal epithelial cells by transferring vimentin (47).

miRNA-499a-5p, highly enriched in EVs from metastatic lung

cancer cells, modulates the mTOR pathway in recipient lung

cancer cells with concomitant induction of proliferation, EMT,

and migration (76). The presence of miR-1260b in lung cancer-

derived EVs promotes the invasive capacity of lung tumor cells

through the modulation of the sFRP1 and SMAD4 pathway (77).

Additionally, Tetraspanin 8 on the surface of EVs stimulates the

invasiveness of both human and mouse lung cancer cells in in vitro

studies (78). Interestingly, EVs can also be able to promote

proliferation and migration of lung cancer cells by transferring

HGF and concomitant activation of c-Met (79). Tumoral-derived

exosomes detected in the pleura exudates carry enzymes for

leukotriene (LT) biosynthesis that can act on lung cancer cells

promoting their migration and proliferation (92).

Exosomes from cancer cells can be exploited as a

communication tool with local and distant normal cells to

generate a micro-environment suitable for their proliferation/

invasion. For instance, lung cancer cell-derived exosomes were

able to induce a pro-inflammatory phenotype in mesenchymal

stem cells that in turn support tumor growth (93).

Similarly, exosomes from immune/stroma cells can in turn

contribute to the induction of aggressive properties in recipient

tumor cells. Microvesicles released by activated platelets in
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patients with lung cancer are also involved in metastatic

outgrowth. Indeed, these vesicles are enriched in miR-223

compared to healthy donors and this miRNA promotes cell

invasion through the inhibition of erythrocyte membrane

protein band 4.1-like 3 (EPB41L3) (80). Another study revealed

that microvesicles from tumor-educated platelets enhance the

migration of lung cancer cell lines and increase the release of

angiogenic factors such as VEGF, MMP-9, and IL-8. The authors

demonstrated also that the presence of integrin CD41 inside EVs

can enhance the metastatic potential of murine lung cancer cells

(81). In addition, activated CD8 T cells release exosomes

expressing FasL that can modulate MMP-9 expression in cancer

cells and consequently lung metastasis (82).
5 The journey of circulating tumor
cells to the activated PMN

Primary tumors constantly shed millions of cells per day into

the bloodstream, an event that also occurs at the early stages of the

disease (94). Circulating tumor cells (CTC) represent the seed of

metastasis and their targeting in the circulation, or once landed at

the PMN, represents a challenging but crucial requirement to

counteract metastasis formation. Despite the very low number of

CTCs that can be detected in the blood of patients at specific time

points (1 CTC:107 leukocytes), these cells are characterized by

extreme heterogeneity, detected at genomic, transcriptomic, and
FIGURE 1

Functional role of EVs in the microenvironment of lung cancer. Extracellular vesicles (EV) from different cell types can contribute actively to prompt
tumor growth and metastatic dissemination. The EV-mediated delivery of bioactive molecules, such as miRNAs and proteins, from different cell
types to cancer cells has been linked to the induction of pro-metastatic features and chemoresistance. This intercellular communication within the
tumor may occur both via intrinsic (between cancer cells) and extrinsic (e.g. between immune cells and cancer cells) EV exchange. EVs from lung
cancer-stem-like cells (CSC) increase migration and invasion of lung cancer cells (83). Similarly, EVs from lung cancer tumor cells carrying the
hepatocyte growth factor (HGF) (79) and miR-1260b (77) can increase cancer cell epithelial-mesenchymal transition (EMT) and migration,
respectively. Moreover, proliferation, EMT, and migration capabilities of non-metastatic lung cancer cells and non-tumoral lung epithelial cells can
be increased by metastatic cells derived EV enriched in TGF- and IL-10 (75), vimentin (47) and miRNA-499a-5p (76). The growth and metastatic
potential of tumor cells can be also modulated by non-tumoral-EVs. EV from CD8 T cells can increase the cell metastatic behavior by FasL (82).
Platelets also play a fundamental role in promoting cell invasion and angiogenesis by releasing EV-containing miR-223 (80) and CD41 (81),
respectively. This image was created with BioRender.
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functional levels which greatly limits their in-depth study and

characterization (95).

Considering the great number of CTCs released by primary

tumors during development and expansion, the efficiency of

metastatic seeding is extremely rare, with an estimated success

rate of 0,001% (96). This observation subtends that only very few

CTCs can survive in the circulation, reach PMN and initiate

metastasis. Rising evidence is emerging highlighting that the

metastatic potential of CTCs is largely confined to the cell subset

endowed with stemness and mesenchymal traits that could succeed

to carry out all the steps of the metastatic cascade (97–99). Recent

technological advances in single-cell sequencing strategies have

allowed a better understanding of CTC heterogeneity in different

tumor types and confirmed, in preclinical models and patient

samples, the activation of stemness programs in CTCs, strongly

supporting the existence of a rare subpopulation of stem-like cancer

cells guiding tumor spread and metastasis initiation (100–102).

CTCs can enter the circulation as single cells or, occasionally, as

clusters of tumor cells alone or associated with immune cells or

stroma cells, such as neutrophils or cancer-associated fibroblasts

(103). Clusters of tumor cells, held together by cell-cell junctions

(104) or cytoskeletal proteins (105) can be shed from primary

tumors; alternatively, clusters can be formed in the circulation by

single CTC aggregation through homophilic interactions (106).

Several studies have demonstrated in different tumor types that

clusters and in particular heterotypic clusters, comprising CTCs and

immune/stroma cells, possess the highest metastatic ability (104)

and their detection in patients’ blood predicts worst outcome (104,

107–109).

Neutrophils are the most common and ‘dangerous’ travel

companions of CTCs. It has been demonstrated that neutrophils

can escort circulating tumor cells and support their proliferation by

enabling cell cycle progression: as a result, once landed at the PMN,

active CTCs have a higher chance to initiate metastasis (109).

Besides neutrophils, other immune cells and stroma cells can

travel in circulation with CTC. For instance, platelets bound to

CTCs can have multiple protective effects, by preventing immune

cells’ recognition and attack of CTCs and by providing factors able

to support CTCs’ survival in unfavorable conditions or conferring

malignant traits, such as acquisition of CSC phenotype,

invasiveness, and drug resistance (110). Macrophages that bind to

CTCs play a crucial role in tumor cell intra and extravasation steps,

supporting CTC seeding and survival at distant sites (111). Finally,

Duda et al. demonstrated that also cancer-associated fibroblasts can

travel into heterotypic CTC cluster that spontaneously spread from

the primary tumor and this interaction greatly help CTCs to

establish distant metastasis (112).

Once landed at the PMN, CTC can interact with (pre)activated

endothelial cells and immune cells that can facilitate their

entrapment and survival. In particular, it has been demonstrated

that neutrophil extracellular traps (NETs) can capture CTC through

a b1-integrin-mediated mechanism and this interaction can sustain

CTC potential in metastasis development (113).

Even though no direct evidence has been reported regarding the

role of EVs in dictating the metastatic behavior of CTCs, it is

conceivable that EVs released by both immune/stroma cells and
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cancer cells can mediate the process leading to CTCs escape from

the primary tumor, survival in circulation and seeding at distant

sites. Indeed, as discussed in the previous paragraphs, EVs released

from stroma and immune cells may participate in the process of

cancer cell intravasation and formation of the metastatic clusters as

well as could mediate the activation of stemness/survival/

proliferative pathways in CTCs. Finally, CTCs attracted to EVs-

primed PMN can find the most favorable soil to initiate metastasis.
6 Dynamics at distant sites: metastatic
niche formation

After the arrival at metastatic sites, disseminating tumor cells

could be eliminated by immune cells or enter a state of dormancy by

exiting proliferative cell cycle (54). Remodeling of lung stromal cells

is a key step to generate a fully competent metastatic niche before or

also after the arrival of CTCs (Figure 2). The recruitment of

immune cells with an immunosuppressive and pro-metastatic

phenotype appears, however, crucial for the development of

metastasis. In a murine model of lung carcinoma, tumor cells

activated through TLR7 are able to recruit myeloid-derived

suppressor cells (MDSCs) via the release of cytokines such as

CCL2 and GM-CSF (114). The expansion of the MDSC pool with

an immunosuppressive phenotype in the lungs leads in turn to

metastatic progression.

Neutrophils emerge as one of the most important immune cells

that could control the metastatic process in lung. The recruitment of

neutrophils by lung epithelial cells activated by tumor-derived

exosomal RNAs-TLR3 binding was recently shown to be an

important step in PMN formation by supporting the growth of

lung cancer cells (59). Interestingly, it has been also demonstrated

that neutrophils reactivate dormant cancer cells by switching their

polarization status. Indeed, stress-activated PMN-MDSCs release

S100A8/S100A9 which can support the reactivation of dormant

tumor cells (115).

In some cases, dormant cells can activate bone-marrow-derived

endothelial progenitor cells by promoting an angiogenic switch that

allows angiogenesis-mediated progression of micro-metastasis to

overt metastasis (116). Since the formation of the metastatic niche is

a process that involves several cell types, further studies are needed

to elucidate the cross-talk between EVs, stroma, and immune cells

at distant organs. Little is known about the role of EVs derived from

other cell types at secondary organs in modulating the environment

for metastatic outgrowth. It could be also possible that EVs control

tumor cell dormancy although this process is not yet fully

understood. An interesting work showed that the presence of

miR-210 and miR-193 inside EVs released by hypoxic bone

marrow-derived cells (BMDC) can increase lung cancer cells

invasion and EMT through the activation of STAT3 pathway

(117). Recruited BMDC contribute to the formation of liver

metastasis from lung cancer by releasing EVs enriched in miR-

92a (118). In the brain, EVs shed by endothelial cells exert a

protective effect on the survival of SCLC cells through the up-

regulation of S100A16 (119).
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Even though it appears clear that EVs derived from cells at the

metastatic niche could regulate the fate of disseminating cells, it is

hard to establish the exact origin of these EVs. Moreover, the

majority of published studies were focused on the ability of EVs to

induce an aggressive phenotype in lung cancer cells while very little

is known regarding EVs-induced mechanisms that regulate the

transition from DTC to full metastasis.
6.1 Dormancy

Along the metastatic cascade, tumor cells that leave the primary

tumor and reach distant organs (disseminated tumor cells, DTCs)

can remain in a quiescent state for a variable amount of time: this

process is often referred to as dormancy and has important clinical

and biological implications (54). Coupled with the evidence that
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dissemination could be a very early event in tumorigenesis (120,

121), the observation that cancer cells can possibly persist as

disseminated tumor cells even for decades has in fact spurred

considerable efforts towards the understanding of biological

mechanisms regulating dormancy and awakening.

From the clinical perspective, dormancy is believed to be the

underlying mechanism subtending late relapses after a prolonged

‘tumor-free’ period following primary tumor removal in particular

in some tumor types, including ER+ breast cancer, melanoma,

prostate, and renal cancer. In this context, the elucidation of

pathways involved in the maintenance of tumor dormancy and,

most importantly, in the reactivation of dormant cells (awakening)

is crucial to implement optimal follow-up strategies (122, 123).

Furthermore, the potential of ‘dormancy-inducing’ therapies to

block or convert minimal residual disease at the level of (few)

DTCs is also being considered: as a paradigm of this concept the

epigenetic regulation of dormancy-inducing nuclear receptor

NR2F1 with all-trans retinoic acid and azacytidine (124) or with

a specific agonist (125) has been shown to induce prolonged

dormancy and reduce metastatic outgrowth in head and neck

squamous cell carcinoma (HNSCC).

Most studies on quiescence have concentrated on tumor types

with clinical evidence of very late relapses (e.g. breast cancer,

melanoma) or with availability of very informative experimental

models (HNSCC). In many cases, the lung was used as the primary

metastatic site mimicking the clinical setting. As explained above

these studies present evidence that could be relevant for primary

lung cancer due to its propensity for local metastatic dissemination.

Interestingly similar transcriptional programs are activated in

quiescent cancer cells from lung and colorectal cancer

highlighting the potential existence of general programs

regulating quiescence in different settings with particular

relevance for pathways controlling stemness and EMT together

with signatures related to TGF-b signaling (126).

Dormancy of cancer cells is regulated both at the cell’s intrinsic

and extrinsic levels and the contribution of the microenvironment

is increasingly recognized as crucial in different phases of induction,

maintenance, and exit from dormancy (127). Interestingly,

interactions within the primary tumors have been shown to

regulate phenotype and fate of dormant disseminated tumor cells

through priming via a TGF-mediated mechanism (128), hypoxia

(129), or even in relation to the time of dissemination from the

primary tumor with specific properties identified in early

disseminating cancer cells (eDCC) (121, 130).

At the cell-intrinsic level several pathways have been identified

as being central for the dormant phenotype in different settings

including the p38/ERK signaling ratio (131), CXCR4 activated Src-

dependent signaling (132), endoplasmic reticulum stress (133),

VCAM1 (134) or BMP-dependent signaling (135). Extracellular

signals that often stimulate or converge on the activation of the

same pathways can be the result of interactions with the

extracellular matrix, stromal cells, and hypoxic or generally

inhospitable microenvironments that can activate stress responses

(136). Importantly, several traits of dormant cells are also similar to

those of (metastatic) cancer stem cells implying potential overlap of
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FIGURE 2

Systemic effects of cancer derived-EVs. Lung cancer tumor-derived
EVs released into the bloodstream can be taken up by several cell
types affecting the features of stroma and immune cells at distant
organs, resulting in cancer progression and metastatization. Indeed,
tumoral EVs released in circulation can interact with different cell
types inducing stromal alterations. For example, tumor-EVs can
transfer miRNAs to increase endothelial wall destabilization and
permeability (61, 62), whereas Tspan8-EV induces angiogenesis (44).
Moreover, Tspan8-EV (66) and tumoral EVs carrying nidogen 1
(NID1) (65) can facilitate lung-premetastatic niche formation and
lung colonization, acting both on endothelial cells and fibroblast and
inducing angiogenesis, endothelial permeability, and cytokines
released by fibroblasts. Fibroblast metabolism is also affected by
miR-122, enriched in tumoral EVs, which induces low glucose
consumption (67). Tumor-EVs can modulate T-cell compartment,
decreasing their cytotoxic activity and inducing the expansion of T-
reg cells (by PDL1-EV), resulting in immunosuppression (69, 70).
PDL1-EVs can also modulate dendritic cell activity decreasing their
differentiation and maturation (70), whereas EGFR-enriched EVs
prompt a tolerogenic phenotype (71). To increase
immunosuppressive environment, tumor EVs can also deliver TGF-b
and miR-23 to natural killer cells blocking their cytotoxic activity
(72). The activation of pro-inflammatory immune cells is also a
feature of pre-metastatic niche formation. Indeed, tumor-EV can
indirectly increase cytokine production in lung epithelial cells that in
turn recruit neutrophils to the lung (59). Moreover, EV-miR-21/29a
released by lung cancer cells increases macrophage cytokines
production to sustain metastasis formation (73). This image was
created with BioRender.
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phenotypes and relying on similar niches, arguing therefore for the

importance of a unified view of different aspects of the metastatic

cascade (137).

Extensive descriptions of the dormancy state have been

provided elsewhere and are beyond the scope of this review (127).

We will briefly summarize the available evidence on the regulation

of dormancy by microenvironmental cues and the potential role of

EVs in this mechanism. While several secreted factors have indeed

been associated with dormancy the contribution of EVs is also

beginning to be unraveled.
6.2 Regulation of dormancy by
microenvironmental cues and EVs

Dormancy appears to be tightly regulated by interactions within

the microenvironment (138). Disseminated cancer cells that reach

distant organs often have to adapt to foreign sites and exploit

existing niches. Modifications of the microenvironment that can

induce pre-metastatic niches discussed previously have therefore

also potential implications for the behavior of dormant cells (11).

As an example, dormant breast cancer cells often reside at the

microvascularnicheswheredormancy is enforced through endothelial

cell-derived thrombospondin (TSP1). In sprouting neo-angiogenesis

however, this effect is reversed via TGFb and periostin-mediated

signaling resulting in an accelerated outgrowth of cancer cells (139).

The perivascular niche has also been shown to provide clues to favor

chemoresistance of DTCs via endothelial-derived von Willebrand

factor (vWF) and VCAM1: disruption of niche interactions through

integrin inhibition resulted in sensitization of DTCs to conventional

therapy also providing intriguing evidence against a fully quiescent

phenotype of DTCs (140). Although dissection of the potential role of

EVs in these interactions was not provided it is interesting to note that

endothelial cells are important producers of exosomes and that both

vWF factor and VCAM1 have been described as part of the

endothelial-derived exosome cargo (141).

In the context of lung cancer, quiescence has been investigated

more broadly with respect to the effects of therapy-induced dormancy

and relapses, which have been recently reviewed (142). It is important

to note that there are however important similarities between the

different phenotypes and similar strategies could be investigated to

target disseminated tumor cells and drug-tolerant persister cells (143).

Interestingly some effects of chemotherapy could also paradoxically

alter the microenvironment towards a tumor (or metastasis)

promoting state (144). We recently described that cisplatin can

induce bone marrow expansion of CCR2+CXCR4+Ly6Chigh

inflammatory monocytes and an increase in lung levels of stromal

SDF-1, theCXCR4 ligand. Recruitment of inflammatorymonocytes in

the lungs generates prometastatic niches for CD133+/CXCR4+

metastasis-initiating cells which can be prevented by a CXCR4

inhibitor (145). In the lungs, the effects of cisplatin are mediated

through the activation of endothelial cells and disruption of a-SMA

endothelial layers highlighting once more the relevance of vascular

niches. Dormancy and reactivation of lung cancer cells following

cisplatin treatment has also been shown to be dependent on a Sox2/

Nanog regulatedmechanism relying on sequential cis and trans ephrin
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type-B receptor 1 (EphB1)-mediated signaling (146). In particular, in

the dormant state, the activity of EphB1 is ligand-independent and this

could provide intriguing speculations regarding potential interactions

within the tumor microenvironment since it has been described that

exosomes could mediate cell-contact independent ephrin signaling to

regulate different mechanisms including axon guidance and tumor

angiogenesis (147, 148). Increased levels of regulator of G protein

signaling 2 (RGS2) activated by chemotherapy-induced-ER stress have

been identified in models of slow cycling/dormant cancer cells from

non-small cell lung cancer cell lines and Patient-Derived Xenografts

(149).RGS2activitydisruptsATF4-mediated translational control and

endows surviving cells with dormancy features and survival potential.

Reversal of this mechanism through RGS2 antagonism sensitized cells

to chemotherapy-induced apoptosis.

Interactions with the extracellular matrix (ECM) are crucial

determinants of cellular behavior and regulate multiple biological

programs including cell fate/determination, proliferation, and

migration (150). ECM signals are active at biochemical,

biophysical, and biomechanical levels and have profound

implications for the generation of functional niches for both

normal and cancer stem cells and consequently also for DTCs.

The recently identified presence of matrix-bound nanovesicles

provides a potential new layer of complexity for the investigation of

interactions within the ECM (151). Alterations of ECM dynamics

have been shown to play crucial roles in reactivation of dormant

cells (6). In a seminal observation, a lung fibrotic environment

enriched in collagen-1 induced reactivation of dormant breast

cancer cells through b1integrin- mediated activation of Src and

focal adhesion kinase (152). The regulation of cytoskeleton

reorganization appears to be a crucial aspect of the transition

from dormancy to proliferation since the targeting of the

reorganization can inhibit metastatic outgrowth in vivo (153).

Intrinsic regulation of ECM composition by tumor cells is also an

important factor as demonstrated by the observations that dormant

cancer cells produce instead a type III collagen-enriched niche

required for sustained dormancy (154). Post-translational

modifications play an additional important role as exemplified by

the observation that collagen glycosylation regulates stemness

phenotype and proliferation in lung cancer (155).

Recently interesting evidence has also appeared regarding the

relevance of microenvironment changes associated with aging

(156). The physiological processes associated with aging have in

fact an important impact on different tissues and may modify local

microenvironments permissive for tumor growth or for

proliferation of dormant cells. According to this hypothesis, a

non-canonical Wnt antagonist produced by aged lung fibroblasts

(sFRP1) was found to induce the awakening of melanoma cells in

the lungs (157). Interestingly a similar secretome (sFRP2 and

WNT5) from aged skin fibroblasts induced instead slow growing

but disseminating melanomas (158) potentially highlighting tissue

and/or time-specific mechanisms. sFRP2 was also shown to be

relevant for alveolar type 1 cells mediated dormancy of breast

cancer cells associated with formation of fibronectin fibrils (159).

Together with the previously discussed evidence that stress-activated

neutrophils can induce reactivationof dormant lung cancer cells (115),

these data suggest that many host-related factors, including aging and
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stress, could be at play to determine the fate of dormant cells.

Interestingly the activation of the glucocorticoid receptor has

recently been shown to be associated with the induction of a

reversible dormant state, associated with resistance to anticancer

drugs suggesting caution for use of glucocorticoids during cancer

therapy and highlighting the complexity of the scenario (160).

Overall further research is warranted on many aspects of tumor-

stroma interactions as determinants of metastatic outgrowth to fully

understand the underlying mechanisms and devise novel therapeutic

strategies targeting the (pre)metastatic niche.
7 Conclusions

Metastatic disease remains the first cause of lung cancer-related

deaths. The complexity of the metastatic cascade steps and the

intricate connections and cross-talk between cancer cells and the

microenvironment constitute challenges for a deeper understating of

advanced disease and the possibility to prevent/counteract it. It’s

becoming clear that the generation of specialized microenvironments

at distant sites, named the pre-metastatic niche (PMN), guides the

propensity of primary cancer cells to colonize specific distant organs

and dictates their success to initiate metastasis.

Primary tumor-secreted factors are able to prime stromal and

immune cells at distant sites thus creating a permissive niche for

circulating tumor cells landing and metastatic colonization. Among

secreted factors, extracellular vesicles have been recently recognized

as central mediators for PMN formation. EVs cargo is composed of

a plethora of bioactive molecules that impact all different steps of

the metastatic cascade. EVs released by primary tumors can induce

vascular leakiness at distant sites, activation of fibroblasts, and

recruitment of BMDC, events that all together concur in PMN

formation. On the other hand, at primary tumor sites EVs released

by both cancer and stromal/immune cells can impact on the

acquisition of invasiveness and stem-like cancer phenotypes and

can favor tumor cells’ intravasation and dissemination.

Circulating tumor cells can be directed by stimuli within the

primary tumor to reach distant organs, where they can interact with

EVs-primed stromal/immune cells which favor their extravasation and

govern cancer cells’ dormancy/awakening, dictating metastatic success.

Here we have reviewed available evidence highlighting the

involvement of EVs in all the different steps of metastasis
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formation in the context of lung cancer. Although the precise role

of EVs has yet to be elucidated for a comprehensive view of the

process, it is clear that they contribute to the successful development

of PMNs and metastasis formation. Therefore, a deeper knowledge

of EVs’ origin and cargo can shed new light on our understanding of

metastatic disease and may allow the identification of novel targets

to prevent lung cancer progression and metastasis formation.
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