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B cell M-CLL clones
retain selection against
replacement mutations in
their immunoglobulin gene
framework regions
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Introduction: Chronic lymphocytic leukemia (CLL) is the most common adult

leukemia, accounting for 30–40% of all adult leukemias. The dynamics of B-

lymphocyte CLL clones with mutated immunoglobulin heavy chain variable

region (IgHV) genes in their tumor (M-CLL) can be studied using mutational

lineage trees.

Methods: Here, we used lineage tree-based analyses of somatic hypermutation

(SHM) and selection in M-CLL clones, comparing the dominant (presumably

malignant) clones of 15 CLL patients to their non-dominant (presumably normal)

B cell clones, and to those of healthy control repertoires. This type of analysis,

which was never previously published in CLL, yielded the following novel insights.

Results: CLL dominant clones undergo – or retain – more replacement

mutations that alter amino acid properties such as charge or hydropathy.

Although, as expected, CLL dominant clones undergo weaker selection for

replacement mutations in the complementarity determining regions (CDRs)

and against replacement mutations in the framework regions (FWRs) than

non-dominant clones in the same patients or normal B cell clones in healthy

controls, they surprisingly retain some of the latter selection in their FWRs. Finally,

using machine learning, we show that even the non-dominant clones in CLL

patients differ from healthy control clones in various features, most notably their

expression of higher fractions of transition mutations.

Discussion: Overall, CLL seems to be characterized by significant loosening –

but not a complete loss – of the selection forces operating on B cell clones, and

possibly also by changes in SHM mechanisms.

KEYWORDS

antibody, B lymphocytes, chronic lymphocytic leukemia (CLL), high-throughput
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1 Introduction

Chronic lymphocytic leukemia (CLL) is the most common

adult leukemia and stands for 30–40% of all adult leukemia cases

(1, 2), and 7% of newly diagnosed cases of non-Hodgkin’s

lymphoma (3). B-CLL (henceforth referred to as simply CLL) is a

chronic B-cell malignancy, which typically affects elderly people,

progresses gradually over many years, and involves substantial

innate and adaptive immune system perturbations. Adaptive

response impairments include down-regulation of T-cell function

and defects in antibody-dependent cellular cytotoxicity, and in B

cells – hypogammaglobulinemia and alterations in cell-cell contact

and cytokine release, all of which may contribute to the overall

immune suppression observed in patients (4). Indeed, during the

COVID-19 pandemic, fatality rates for CLL patients were 16.5-fold

more than the median population fatality rates reported worldwide,

and even higher in older patients (5).

It has long been known that CLL genomes show heterogeneity

between patients (6, 7), and that CLL clinical manifestations range

from very indolent to aggressive disease (1). One partitioning of

CLL is based on “stereotypic BCRs”, identified by the IgHV gene

CDR3 region amino acid sequence; stereotypic BCRs can be

assigned to 30% of CLL cases, and were associated with prognosis

(8, 9). More importantly, CLL tumors are classified into two

subgroups based on the presence of somatic hypermutations in

their IgHV, where CLL patients with little to no SHM (98% IgHV

sequence homology to germline) are defined as unmutated CLL (U-

CLL), and CLL with SHM (less than 98% IgHV sequence

homology) are defined as mutated CLL (M-CLL) (10). M-CLL

patients have a better prognosis than those with U-CLL, as U-CLL is

considerably more aggressive and less susceptible to chemo-

immunotherapy (2, 8). This manuscript focuses solely on M-CLL

(henceforth referred to simply as CLL). Although the mutational

imprint on CLL cell IgHV genes has first been considered static,

there is now clear evidence that, in a subgroup of cases, rearranged

Ig genes are subject to ongoing mutational pressure (8). In such

cases, the study of CLL clonal dynamics using Ig gene high-

throughput sequencing (HTS) can yield important insights.

Since 2008, Adaptive Immune Receptor Repertoire HTS (AIRR-

seq) has generated data sets of up to billions of reads (11, 12), and

has, indeed, led to new insights into affinity maturation. BCR-seq

has many applications (13), including broadly neutralizing antibody

identification (14), vaccine response studies (15), B-cell migration

and development tracking within the body (16) and disease

diagnosis (17). In particular, Stamatopoulos and colleagues used

HTS to sequence more than 200 CLL patient repertoires and

demonstrated that one quarter of the CLL patients include

multiple clones with unrelated, productively rearranged IgHV

genes (18). The extensive amount of data that arise from AIRR-

seq can also be analyzed using machine learning (ML) methods, e.g.

for classification of B cell subpopulations, “public” vs. “private”

clones, and more (19–21).

A B cell clone is a cell lineage that includes all the descendants of

a founder B cell, all of which share a unique IgHV rearrangement;

clonal diversification is best modeled by lineage trees. IgHV gene
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SHM and selection – including those in malignant clones, if any –

are more precisely analyzed on IgHV gene lineage trees, because

mutations are more correctly defined relative to the closest known

ancestors, and thus mutation counts – and all the analyses relying

on them, including selection analysis, in which CDR3s can only be

included if using lineage trees – and lineage tree topologies are more

correct on lineage trees (22). Using lineage trees, Abraham and

colleagues found evidence of intraclonal diversification of

characteristic clones in light chain amyloidosis patients,

concluding the pathogenic plasma cells are probably derived from

a precursor population in which SHM is ongoing (23). Zuckerman

et al. used lineage tree-based mutation analysis to find that follicular

lymphoma (FL), diffuse large B cell lymphoma (DLBCL), and

primary central nervous system lymphoma repertoires have

similar mutation frequencies and do not undergo positive

selection for replacement mutations in their CDRs (24), using the

focused binomial test (25) rather than relying on previously

published tests for selection, which have all been shown to

generate false positives (26, 27). The transformation of FL into

DLBCL has been followed using clonal lineage trees to show that, in

some cases, therapy eradicates a DLBCL clone but a new one

develops from remnants of the original FL clone (28, 29). Lineage

tree analysis of dominant clones from mucosa-associated lymphoid

tissue lymphoma showed higher diversification and longer

mutational histories compared with chronic gastritis or with

gastric DLBCL (30); gastric DLBCL may originate from gastritis,

mucosa-associated lymphoid tissue lymphoma or de novo, and, like

CLL, may sometimes contain more than one dominant clone (31).

Green et al. used lineage trees to distinguish early versus late genetic

events in follicula lymphoma (32). Béguelin and colleagues used

lineage tree analysis to show evidence of reduced efficacy of affinity

maturation in mice with EZH2 mutations, which initiate

lymphomagenesis (33). Finally, Kedmi et al. showed that the use

of lineage trees is necessary for detection of minimal residual disease

in a DLBCL patient, prior to its detection by PET-CT (34). In this

work, we aimed to study the SHM and selection (if any)

mechanisms that operate on CLL clones using IgHV gene lineage

tree-based analyses and machine learning methods, which to the

best of our knowledge have never been previously applied to CLL.

Such analysis can yield novel insights, as demonstrated by our most

important finding, i.e. that while CLL dominant clones undergo

weaker selection for replacement mutations in their CDRs, they

retain some selection (albeit weaker than that in healthy controls

and non-dominant clones) against replacement mutations in

their FWRs.
2 Methods

2.1 Datasets

IgHV gene sequences from peripheral blood samples of 16 M-

CLL patients were obtained for routine diagnosis of mutated vs.

unmutated CLL cases. Only M-CLL samples were chosen for this

study. Sample data are summarized in Table 1. Buffy coats were
frontiersin.org
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taken, and DNA was extracted directly from the buffy coat of each

sample. IgHV gene libraries were produced using the

LymphoTrack® kit (Dx IGHFR1 Assay Panel for MiSeq, Catalog

#91210039, In vivoscribe, San Diego, CA, USA). Sequencing was

performed using the MiSeq V300 kit (Illumina, San Diego, CA,

USA) according to the manufacturer’s protocol. The use of the

resulting IgHV sequence data (without any clinical or other

identifying data) was approved by the Sheba Medical Center and

Israeli Ministry of Health review boards.

For comparison with CLL patient repertoires, we used IgHV

sequences from three blood samples of healthy individuals (35),

which are publicly available, and were downloaded by us as part of a

different study. Since CLL is most common in elderly patients, we

chose the samples of the three eldest healthy individuals for this

comparison; healthy control (HC) sample data are summarized in

Table 2. For negative controls in the selection analysis (see below),

we used lineage trees composed only of sequences containing a

frame shift, taken from the same CLL patients, as these sequences
Frontiers in Oncology 03
most likely represent non-productively rearranged, non-

expressed alleles.
2.2 Data processing steps

We preprocessed the sequences using pRESTO version 0.5.13

(36). The preprocessing included assembly of paired ends and

quality filtering by (i) trimming low quality edges, (ii) filtering

out reads with an average Phred score lower than 25, and (iii)

masking bases with Phred scores lower than 20. Sequences with

more than 10 masked or missing bases were removed. Since the

sequencing kit manufacturer does not consent to reveal the primer

sequences, we removed 30 nucleotides from both ends of each

sequence. Next, identical sequences were collapsed, and only

sequences with two copies or more were selected for analysis; this

is standard practice meant to reduce the chance of including PCR

and sequencing errors in cases such as this, where unique molecular
TABLE 2 Healthy repertoire samples.

Sample name Sex Age # Unique sequences after processing # Clones # Clones with 2 or more sequences

H45_3 F 45 169,243 67,346 24,841

H45_4 F 45 257,571 171,620 35,946

H50_7 F 50 118,472 50,453 18,404

Overall 545,286 289,419 79,191
TABLE 1 CLL patient dataset.

Sample
name # Sequences in raw data # Unique sequences after processing # Clones # Clones with 2 or more sequences

INDEX2_S1 1,040,682 9,373 182 100

INDEX3_S2 489,773 8,456 365 343

INDEX4_S3 763,818 4,014 53 17

INDEX5_S4 546,554 4,654 40 24

INDEX6_S5 1,147,666 15,969 684 652

INDEX7_S6* 657,167 25,750 2,473 1,840

INDEX8_S7 1,421,821 11,620 52 38

INDEX9_S8 382,498 2,330 21 12

INDEX10_S9 1,167,134 56,998 6,797 6,390

INDEX12_S10 736,105 9,554 96 87

INDEX13_S11 967,315 6,056 86 70

INDEX14_S12 686,510 8,563 26 16

INDEX15_S13 726,865 6,306 70 58

INDEX16_S14 547,240 2,688 243 129

INDEX18_S15 749,263 3,817 20 15

INDEX19_S16 945,151 4,896 70 55

Overall 12,975,562 181,044 11,278 9,846
* This sample contained several large clones, so that the dominant clone could not be identified with certainty; hence this sample was omitted from the study.
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identifiers UMIs were not used. Further precautions we took to

minimize such errors were: (a) Using only one copy of each set of

identical sequences in the lineage tree analysis; sequence copy

numbers weren’t used in any of our analyses. (b) Omitting

“clones” that contain only one unique sequence (regardless of its

copy number) from the analysis.

We further processed the selected sequences using Change-O

version 0.4.6 (37) and in-house custom scripts. The processing

included annotation of the sequences with the IMGT/GENE-DB

(38) reference germline sequences from July 1, 2021, and removal of

sequences annotated as non-functional (those with frame-shifts or

stop codons); dynamic clonal assignment according to V and J

segment annotation and junction (CDR3) similarity (the numbers

of clones in each sample are given in Table 1); and assessments of

sampling depth and of the clonal size distributions of each

repertoire. Putative germline sequences for each clone were

created based on the same IMGT/GENE-DB database and the

clonal consensus in junction regions, and clones with more than

two unique sequences were sent to IgTree© (39) for lineage tree

construction. Sample Lineage trees are shown in Figure 1 and Figure

S1. Note that the only times a lineage tree node may represent more

than one sequence is when these unique sequences differ by

mutation(s) that fall in sequence margins, and these margins were

further trimmed by IgTree© because one or more sequences in the

clone lacked information on those margins.

To focus on the malignant clones in CLL patient repertoires, we

separated the largest (dominant) clone from each repertoire,

assuming it is the malignant clone. As internal controls, we used

the non-dominant clones from the same patients, under the

assumption that these are normal B cell clones (although they

may be reactive to the tumor itself). This assumption was based on

the knowledge that all B cell populations are composed of clones;

even naïve B cells divide a few times before settling into a resting

state, and may later perform homeostatic cell divisions (41). One
Frontiers in Oncology 04
sample included several large clones, and hence was omitted from

the study (Table 1), to avoid the possibility of including a second

CLL clone in the “non-dominant” control group. The healthy

control repertoires served as external controls; for the sake of

studying SHM and antigen-driven selection, if any, clones that

were reactive at the time of sampling are the most valuable controls.
2.3 Lineage tree-based analyses

2.3.1 Tree-based mutation analyses
Lineage tree-based mutation analyses were performed using our

program IgTreeZ (22), based on the linkage of tree nodes to their

corresponding sequences. IgTreeZ traverses all tree nodes, counts

all the observed mutations, and characterizes each mutation by its

sequence location (CDR/FWR, based on IMGT region definitions

(42)) and type (source nucleotide, transition/transversion,

replacement/silent); if it was a replacement mutation, the

program also characterized the pre- and post-mutation amino

acids based on IMGT physicochemical amino acid classes (43, 44).

2.3.2 Selection analysis
Selection analysis was done using ShazaM (37, 45), which is

based on the focused binomial test (25). The numbers of silent and

replacement mutations in the CDRs and FWRs for all sequences in

each tree received from IgTreeZ were sent to ShazaM, together with

the corresponding clonal germline sequence and the CDR3 length

of each tree. Using ShazaM, we calculated the expected mutation

frequency in each region of each sequence, estimated the selection

strength for each tree, and compared the selection scores of the

different lineage tree repertoires. CDR3s were included in the

analysis by modifying ShazaM’s region definition parameter

according to each tree’s CDR3 length and calculating the
A

B

FIGURE 1

Lineage trees from CLL patients. (A) One of the smallest trees from expanded, dominant clones. Due to its size, we had to split the figure into partly
overlapping segments. (B) One of the largest trees from presumably normal, non-dominant clones. A gray node represents the root, and a white
node – a hypothetical split node. Numbers next to edges denote numbers of mutations; edges with no adjacent numbers represent one mutation.
The trees were drawn using IgTreeZ (22) and Graphviz (40). More representative trees of all sizes are given in Figure S1.
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expected mutation frequency for each clonal germline

sequence separately.

2.3.3 Tree topology analysis
Seven graphical shape properties of IgV gene lineage trees were

found to be most strongly influenced with B cell response

parameters, such as activation, division, mutation and death rates

and selection thresholds (46). The seven tree shape properties are:

(i) trunk length (the number of mutations from the root node,

which represents the pre-mutation sequence, to the first split node),

(ii) the minimum root to leaf path (i.e. the minimum number of

mutations per leaf), (iii) the minimum root to split node path

(which equals the trunk when there is one), (iv) the number of

children emerging from the root (a node’s “children” are defined

here as those representing sequences that differ from the parent

node by a single mutation), (v) the average number of children per

node, (vi) the average distance from the first split node to any leaf,

and (vii) the minimum fork to fork distance (that is, the distance

between two consecutive splits on the same path). IgTreeZ (22)

calculates these variables for each tree and enables us to and

compared the results between groups.

2.3.4 Tree drawing
To visually illustrate lineage tree shapes (Figure 1 and Figure

S1), we created drawings using the graph description language

DOT, as implemented in Graphviz (40). Node (sequence) names

were omitted for better tree visualization.

2.3.5 Tree trunk removal
To exclude as much as possible of the pre-transformation

mutation and selection history of each lymphoma clone from

some of the analyses, we removed the trunks from the trees in all

groups, and assigned the first split node of each “trunkless” tree to

be the new root node. Trees that originally had no trunks were

removed from the trunkless analyses, so the data are not biased, as

such trees did not contain enough information regarding their

diversification history. However, since the latter step left only three

trees for analysis, we performed most analyses both with and

without tree trunks and compared the results.
2.4 Statistical analyses

Comparisons between lymphoma lineage tree characteristics

against those of healthy repertoires, which included more than

50,000 trees, were done based on the average measurements per

patient/subject, to overcome the bias of the healthy control dataset

being so much larger (in terms of numbers of trees) than the other

datasets. For each comparison, the assumptions of normal data

distribution and variance homogeneity were tested using the

Shapiro test and the Levene test, correspondingly. If the data were

normally distributed and had homogenous variances, Student’s t-

test or its paired version were used. Otherwise, the non-parametric

Mann–Whitney U-test, or the Wilcoxon test for paired

comparisons, were used. To correct for multiple comparisons, we
Frontiers in Oncology 05
used Benjamini and Hochberg’s False detection rate (FDR) method

(47). Only differences with p-values lower than the FDR-corrected

a were considered to be significant.
2.5 Machine learning classification models

We used all the results of lineage tree-based mutation analyses of

the CLL non-dominant and healthy control clones as input for our ML

models. Data in all columns which included simple mutation counts

were normalized by dividing them by the total number of mutations in

each tree, to receive the frequency of each mutation type. Columns

listing median and average replacement distances and CDR3 lengths

were not normalized. We also excluded FWR1 mutation counts from

the analysis, as it may be influenced by the sequencing. Since we had

almost tenfold more healthy control clones than non-dominant clones

in CLL patient samples (Tables 1, 2), the dataset was balanced using the

SMOTetomek algorithm (48) – a combination of oversampling the

CLL data by synthesizing new examples based on the structure and

composition of the real non-dominant clones using SMOTE (49), and

under-sampling of the healthy control data using the TOMEK

algorithm (50). Three ML models were built using Python’s Scikit-

learn package (51) – a Support Vector Machine (SVM), a Random

Forest and an XGBoost model. The F1-score, which is the harmonic

mean of model precision and recall, was used as a model performance

metric, in order to account for both measures.
3 Results

3.1 Dominant CLL clones undergo, or
retain, more replacement mutations that
alter amino acid physical properties

To examine CLL clone diversification, we first compared trees

of dominant and non-dominant clones in CLL samples (each group

separately) with trees of healthy controls, and found that dominant

CLL clones include significantly more mutations per clone than

non-dominant clones in the same patients (Figure 2A, p < 0.01,

Wilcoxon paired test and FDR correction), or than clones from

healthy control repertoires (p < 0.01, Mann Whitney test and FDR

correction). Since tumor clone lineage tree ‘trunks’ may contain

mutations that had occurred prior to malignant transformation, we

also performed all analyses on the trees after trunk removal, as

described in the Methods section. The above-described differences

were also found in the trunkless tree analysis (Figure 2B, p < 0.05 for

both comparisons, Wilcoxon paired test and FDR correction); the

higher p-values in trunkless analysis vs. analysis with trunks may

result from the decreased numbers of data points due to the

exclusion of original trunkless trees. In contrast, when we

compared the numbers of mutations per sequence, we found that

dominant clones have fewer mutations per sequence than non-

dominant (p < 0.01, Wilcoxon paired test and FDR correction) and

healthy repertoire clones (p < 0.01, Mann Whitney test and FDR

correction). These differences were also found in the trunkless trees,
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with larger p-values. This results in the highly branched rather than

“long” shape of the CLL trees (Figure 1 and Figure S1), which, in our

experience, is typical not only in CLL but also in other B cell GC-

derived lymphomas. We hypothesize that the combination of high

numbers of mutations per tree with low numbers of mutations per

sequence result from having a population of malignant cells

constantly dividing and generating new mutants, which do not

get to mutate further because the cells still retain some selection

against deleterious mutations, as further investigated and

discussed below.

The average physico-chemical distance between pre- and post-

replacement mutation amino acid, measured by Sneath’s index (52),

was larger in dominant clones than in non-dominant or healthy

repertoire clones (both p < 0.01, Mann Whitney test and FDR

correction). Indeed, comparisons of several individual components

of the Sneath index – that is, the frequencies of changes in several

different amino acid properties – revealed that dominant clones

tend to undergo, or retain, more replacement mutations that alter

the amino acid charge, volume, and/or hydropathy more often than

non-dominant clones and healthy repertoires (Figure 3).

The excluded, original trunkless dominant trees tend to have

significantly more mutations per tree (p < 0.01, paired t test), than

the dominant clone trees with trunks (Figure S2). The numbers of

mutations per tree were also higher in originally trunkless dominant
Frontiers in Oncology 06
trees compared to trunk-including trees (p < 0.01, Mann Whitney

test). Finally, the average physico-chemical distance between pre-

and post-mutation amino acids in replacement mutations was

higher in originally trunkless dominant trees compared to trunk-

including trees (p < 0.05, MannWhitney test). The latter differences

may be due to the time it took for each CLL clone to develop until

the sample was taken. Since every mutation requires cell replication

to be completed, slower-growing clones, whether normal, pre-

malignant or tumor clones, will gather fewer mutations. In

addition, as long as the cells are sensitive to some level of

selection, cells with harmful BCR mutations will eventually die,

and thus such cells will produce fewer progeny overall. Slower-

growing tumors are also likely to be detected after growing for a

longer time, as it would take longer for symptoms to manifest in the

patient. As a result of all these considerations, we assume that earlier

branches of slow-growing clones have a lower chance of being

picked up in the sample, and thus slower-growing clones are more

likely to have both longer lineage tree trunks. Overall, the results

presented in this section demonstrate that M-CLL tumors have very

heterogenous diversification histories, and the presence of trunks in

most lineage trees of these clones suggests that they may have been

subject to some degree of selection against harmful BCR mutations,

not only before the malignant transformation but also following it,

even up to the time of sampling.
A

B

FIGURE 2

Dominant CLL clones undergo – or retain – more mutations, in particular replacement mutations, than non-dominant or healthy control clones.
(A) Trees with trunks; (B) trunkless trees. The average physico-chemical distance was calculated between pre- and post- replacement mutation
amino acids based on Sneath’s index (52). The paired T-test or the Wilcoxon paired test were used when comparing between dominant and
non-dominant clones in the same patients, and Student’s T-test or Mann-Whitney test – between patient and healthy control clones, depending on
whether the data were distributed normally or not. ∗p < 0.05, ∗∗p < 0.01.
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3.2 Lineage tree topologies suggest that
CLL dominant clones retain some
sensitivity to selection

Next, lineage tree topologies were studied, as another way to

examine clonal diversification; here, we only present lineage tree

shape properties for which significant differences between groups

were detected. Trees from dominant CLL clones were found to have

significantly shorter trunks than trees from non-dominant clones in

the same patients (Figure S3A; p < 0.01, Wilcoxon paired sample

test and FDR correction) and from healthy controls clones (p < 0.01,

Mann-Whitney t test and FDR correction). The minimum root to

leaf path (i.e., the minimum number of mutations per leaf) and the

minimum root to fork path were significantly shorter in trees from

dominant clones than in those from non-dominant (p < 0.01 for

both, Wilcoxon paired sample test and FDR correction) or healthy

control clones (p < 0.05 and p < 0.01, respectively, Mann-Whitney t

test and FDR correction). In the original simulation study described

in the methods section on which our interpretations are based (46),
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these lineage tree “length” measures were inversely influenced by

initial clone affinity and selection strength, which makes intuitive

sense, because (a) the higher the initial affinity, the fewer mutations

are needed (if at all) for the BCR to reach the optimal shape for

binding its cognate antigenic epitope (i.e. where any mutation

would decrease the affinity, see also (53)); and (b) the more

stringent antigen-driven selection is, the fewer mutations will

survive. It is harder to interpret the shapes of tumor clones;

however, their shorter branches suggest that CLL cells retain some

sensitivity to selection.

CLL clone lineage trees are not only shorter but also much more

branched, as demonstrated by the following findings. The numbers

of leaves (branch endpoint nodes) per tree were significantly larger

in dominant clones, with a median of 537 leaves per tree, rather

than 1 in non-dominant and healthy control clonal trees, as most

normal B cell clones are represented in the peripheral blood by one

or very few sequences. The numbers of children emerging from the

tree root, and the average number of children per node, were

significantly larger in trees from dominant clones than in those
A B

C D

FIGURE 3

Dominant clones undergo or retain more replacement mutations that alter amino acid properties. Shown are percentages of replacement mutations in
all trees that change the amino acid (A) charge, (B) hydropathy, or (C) volume, and (D) the distributions of mutations among CDRs in all trees. Significant
differences were also found in mutations that change amino acid polarity, chemical group, and the tendency to donate and accept hydrogen (not
shown). The Wilcoxon paired test was used when comparing between dominant and non-dominant clones in the same patients, and the Mann-Whitney
test – between patient and normal healthy controls, as the data were not normally distributed. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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from non-dominant (Figure S3B; p < 0.01, Wilcoxon paired sample

test and FDR correction) or healthy control clones (p < 0.05, Mann-

Whitney t test and FDR correction). The median number of

children emerging from the root was 342 descendant nodes in

dominant trees and 1 descendant node in non-dominant and

healthy control trees. In the original simulation study (46), these

lineage tree “branching”measures were directly influenced by initial

clone affinity – the higher the initial affinity, the more success in

forming additional branches, as explained above – and the average

number of children per node was inversely influenced by selection

strength, again because selection would “trim” lower-affinity

branches. To interpret the shapes of CLL clones, we should

ignore initial (presumably pre-transformation) clonal affinity, and

only refer to the highly branched shapes of the observed clonal trees.

These shapes suggest that whatever selection acts on the IgHV

mutants is weak enough to allow a constantly dividing and mutating

tumor cell population to continuously replenish the dominant clone

cells in the blood. Finally, the trunkless analysis showed similar

trends to those in the trunk-including analysis (Figures S3C, D),

though with lower statistical significance due to the smaller

group sizes.
3.3 CLL dominant clones undergo weaker
selection for replacement mutations in the
CDRs, but retain selection against
replacement mutations in the FWRs

To directly test which, if any, type of selection has been acting

on the mutated CLL and control clones and to what extent, IgTreeZ

mutation counts in the FWR and CDR regions were used as input

for the ShazaM R package (37, 45). We also created a cohort of non-

selected control clones by assigning all sequences in each repertoire

– functional and non-functional – into clones, and constructing

lineage trees from the clones that included only out-of-frame IgHV

sequences, presumably representing un-productively rearranged,

non-expressed IgHV alleles. Selection scores measured on all four

clonal repertoires show that dominant clones undergo the weakest

selection – or none at all – for replacement mutations in the CDRs,

similar to the non-productive clones (Figures 4A, B), compared to

that in non-dominant or healthy control clones (p < 0.001,

Student’s T-test with FDR correction for multiple comparisons).

In contrast, in the FWRs, dominant clones clearly undergo selection

against replacement mutations (as their selection scores

significantly differ from those of the non-selected clones; the

latter have scores that do not significantly differ from the case of

no selection, depicted by the zero line), although it is weaker than

the same selection observed in non-dominant clones and in healthy

repertoires (p < 0.001, Student’s T-test with FDR correction for

multiple comparisons). Selection scores in non-dominant clones

were similar in both CDRs and FWRs to those in healthy

repertoires. Overall, these results suggest that the selection that

operates on CLL clones is not completely abolished, but is certainly

different from that in normal repertoires. The selection against

replacement mutations in the FWRs may represent a need for (at
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least partial) maintenance of the structural integrity of the B cell

receptor, as discussed below.

Dominant CLL clone trees with trunks removed still seem to

undergo selection for replacement mutations in the CDRs, and

selection against replacement mutations in the FWRs, similarly to

trees from healthy repertoires (Figures 4C, D). Dominant trees that

originally had no trunks, however, undergo weak – if any – selection

in the CDRs, with indistinguishable scores from those measured on

the fully non-productive clones. These results further illustrate CLL

tumor heterogeneity, and emphasize the need for trunk removal

from tumor clone trees, as many replacement mutations in tree

trunks must have been selected (for or against), so including the

pre-transformation mutation history in lymphoma clone analysis

may confound the results.
3.4 Machine learning reveals potential SHM
impairments even in non-dominant
patient clones

In the past, we have shown that IgTreeZ extensive mutation

counts can be used as input for ML models, to further elucidate the

mutation mechanism in DLBCL clones (22). In the current study,

we compared only patient non-dominant clones to healthy control

clones; malignant clone data were not included in the ML models,

as the purpose of the ML models was to identify traces of potential

CLL patient-specific (rather than tumor-specific) impairments in

SHM or antigen-driven selection, rather than to distinguish

between patient and healthy control clones.

To perform the most unbiased analysis we could, we first

normalized the mutation counts by dividing the specific mutation

counts by the total number of mutations in each tree to receive the

frequency of each mutation type. Second, since our dataset was

extremely imbalanced, with almost tenfold healthy control clones

than non-dominant clones in CLL patient samples (Tables 1, 2), we

balanced the dataset using the SMOTetomek algorithm (48). Third,

we built three different machine learning models – a Support Vector

Machine (SVM), a Random Forest and an XGBoost model – to

classify the revised datasets.

All three classification models exhibited very high accuracy;

Random Forest presented the best performance with F1-scores of

0.962 and 0.961 for HC and non-dominant trees, respectively, and

SVM the worst, with F1-scores of 0.831 and 0.836 for HC and non-

dominant trees (Figure 5A). XGBoost performed almost as well as

Random Forest (Figure 5B). To assess the relevance of specific input

parameters to this classification – and thus to learn which features

of SHM are specific to non-dominant clones from CLL patients

rather than to their tumors – we calculated the feature importance

scores of the Random Forest and XGBoost models. The transition

mutation frequency was found to be the best predictor, accounting

for 0.08 of the separation in Random Forest (Figure 5C) and 0.15 of

the separation in XGBoost (Figure 5D). Indeed, transition mutation

frequencies in the CLL non-dominant clones tended to be higher

than those in healthy controls (Figure 5E). Overall, these results

suggest either that the presence of CLL malignant clone(s)
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influences SHM or selection of non-dominant B cell clones, or that

some slight impairments in one of these mechanisms were present

prior to malignancy detection, and may have even contributed to

malignant transformation.
4 Discussion

CLL is a chronic disease, and M-CLL tumor clones may

accumulate mutations in their IgHV genes for many years. For

these reasons, we assumed that dominant clones would show

different mutation characteristics than healthy control clones.

Messmer and colleagues, who performed sequence-based
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mutational analysis of representative CLL IgHV gene sequences

from the dominant clones of 172 CLL patients, found that

dominant CLL sequences include more mutations than non-

dominant ones (54); Petrova et al. used isotype-resolved BCR

sequencing and indicated a distinct evolution of malignant CLL

clones relative to clones from healthy volunteers (55). However,

neither study characterized these mutations. Using IgHV lineage

tree-based analyses, we found that dominant CLL clones undergo –

or retain –more IgHV replacement mutations that alter amino acid

physico-chemical properties than non-dominant or healthy control

clones. Supporting the mutation analysis results, dominant CLL

clone lineage trees possess tumor-typical, highly branched

topologies, which correlate with weaker – but present – selection.
A B

C D

FIGURE 4

CLL dominant clones retain some selection against replacement mutations in the FWRs. (A) The probability density functions of the selection scores
for dominant CLL clones in comparison to non-dominant clones in the same patients, or healthy donor clones, and to fully non-productive clones,
calculated on the lineage tree-based mutation counts of the same data. Positive values indicate selection for, and negative values – selection
against, replacement mutations. (B) Means and 95% confidence intervals of the selection scores plotted in (A). (C, D) CLL dominant clones without
trunks exhibit weaker selection than dominant clones with trunks, both for replacement mutations in the CDRs and against replacement mutations
in the FWRs. (C) Same as (A) for trunkless trees. (D). Means and 95% confidence intervals of selection scores of the selection scores plotted in (C).
The line at Selection Score=0 is shown to indicate when the results are indistinguishable from the case of no selection operating on the clones.
Both graphs were plotted using ShazaM (37, 45) based on the focused binomial test (25). ∗∗∗p < 0.001, Student’s T-test with FDR correction for
multiple comparisons.
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Since it is difficult to distinguish between the effects of

impairments in SHM vs. selection, we used the focused binomial

test, which to our knowledge is the only correct test for selection

used on lymphomas to date, and found that CLL dominant clones

undergo almost no selection for replacement mutations in their

IgHV gene CDRs. However, dominant clones clearly maintain some

selection against replacement mutations in their FWRs, although

this selection is weaker than that observed in normal healthy

controls. Similar alterations in IgHV selection were also found in

our studies of other Ig gene mutating B cell malignancies (24, 29,

30). Our finding that CLL clones retain the selection against

replacement mutations in their IgHV FWRs indicates a need for

IgH transcription, translation, and proper protein folding, and

agrees with previous studies showing that CLL tumor clones

depend on some type of signals from the BCR complex (56–59).

Several IgHV repertoire studies used ML for classification – to

discriminate between IgHV in tumors and those in normal tissues

(60), to discriminate between IgHV from celiac patients and healthy
Frontiers in Oncology 10
individuals (61), or to classify relapsing-remitting multiple sclerosis

IgHV CDR3 data from other neurological disease data (62). Here,

we used an extensive list of lineage tree-based mutation

characteristics to build ML models that could identify minor

differences between non-dominant (presumed non-malignant)

clones in CLL patients and healthy control trees. Ignoring the

dominant clone data, we used ML to look for CLL patient-specific

(rather than tumor-specific) impairments in SHM or antigen-

driven selection; such information may yield targets for molecular

research into what pre-disposes people for CLL and possible other

lymphomas. The best ML model classified the non-dominant and

healthy control trees with high accuracy, and indicated that CLL

non-dominant clones have more transition mutations relative to

healthy control clones. Messmer et al. indicated in 2004 that

dominant clone CLL IgHV sequences show preference for

transitions over transversions (54); our analysis shows for the first

time that this preference exists even in the CLL non-dominant

sequences. Although the non-dominant clones we included in this
A B

C D E

FIGURE 5

Machine learning models reveal features distinguishing CLL non-dominant from healthy control clones. (A) Confusion matrices for the Random
forest, XGBoost and SVM models, respectively, all showing high accuracy in classification of the clones. (B) Receiver operating characteristic (ROC)
curves for the three models. Such plots give the true-positive rate (a.k.a. sensitivity, recall or probability of detection) vs. the false-positive rate (a.k.a.
the probability of false alarm, or 1 – the specificity). The larger the area under the curve (AUC), the better the model performance is. (C) Random
forest feature importance scores (proportions of the influence of each feature out of the summed influences of all features), showing which model
features are responsible for most of the separation between data groups. (D) XGBoost feature importance scores. (E) The frequencies of transition
mutations in the two data groups; a p-value could not be determined, as the group size was larger than 5000. Confusion matrices and ROC curves
were created using Python’s scikit-learn package. HC – Healthy controls, Non_dom – Non-dominant CLL clones. RF – Random Forest. XG –

XGBoost, SVM – support vector machine. Transversion, Transition – transversion or transition mutation frequency, respectively. Fwr3 – the
frequency of mutations in the FWR3 region out of all mutations. Amide_source (target) – the frequency of amide amino acid in pre-(post-)
replacement mutation amino acids. Cdr2 (cdr3) – the frequency of mutations in the CDR2 (CDR3) region out of all mutations. Source_c(t) – the
frequency of cytosine (thymine) among all pre-mutation nucleotides. Hydro_donor_target – the frequency of hydrogen donating amino acids
among post-mutation amino acids in replacement mutations. Hydro_donor_acceptor_source – the frequency of hydrogen donating and accepting
amino acids among pre-mutation amino acids in replacement mutations. Negative_source – the frequency of negative amino acids among pre-
mutation amino acids in replacement mutations.
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study were all small, we cannot exclude the possibility that some of

the non-dominant clones we did include were also malignant. There

could either be branches of the main tumor that have mutated so far

away from it that our algorithm couldn’t identify them as related to

the main clone, or unrelated CLL or different tumors in the same

patient. However, at least some of the non-dominant clones must

have been from normal B cells, so we believe that this finding is

worth looking into. It is possible that the balance between

transitions, which are created via simple replication over AID-

introduced uracils, and transversions, which are created by several

other DNA repair mechanisms, is disrupted in CLL patients (63–

65), and that this disruption is somehow linked to the malignancy.

In summary, we present IgHV sequence lineage tree-based

analysis of 15 M-CLL patient tumors, in comparison with the

same patients’ non-dominant and with healthy control B cell

clones, and show for the first time that (a) selection against

replacement mutations is impaired in, but not completely

abolished in the FWRs of, CLL dominant clones; SHM

mechanisms may also be impaired in some way in CLL clones.

(b) Even the non-dominant clones in CLL patients differ from those

of healthy controls in various ways, the most notable being that they

express higher fractions of transition mutations than healthy

control clones. Performing a similar but larger scale study will

allow a better understanding of IgHV SHM and selection in M-CLL,

and may shed light on the clinical significance of the heterogeneity

of M-CLL; the same methods would also be useful for studying any

other tumor-related evolutionary processes that can be studied

using lineage trees.
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