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As a relatively rare population of cancer cells existing in the tumor

microenvironment, cancer stem cells (CSCs) possess properties of immune

privilege to evade the attack of immune system, regulated by the

microenvironment of CSCs, the so-called CSCs niche. The bidirectional

interaction of CSCs with tumor microenvironment (TME) components favors

an immunosuppressive shelter for CSCs ’ survival and maintenance.

Gastrointestinal cancer stem cells (GCSCs) are broadly regarded to be

intimately involved in tumor initiation, progression, metastasis and recurrence,

with elevated tumor resistance to conventional therapies, which pose a major

hindrance to the clinical efficacy for treated patients with gastrointestinal

malignancies. Thus, a multitude of efforts have been made to combat and

eradicate GCSCs within the tumor mass. Among diverse methods of targeting

CSCs in gastrointestinal malignancies, immunotherapy represents a promising

strategy. And the better understanding of GCSCs immunomodulation and

immunoresistance mechanisms is beneficial to guide and design novel

GCSCs-specific immunotherapies with enhanced immune response and

clinical efficacy. In this review, we have gathered available and updated

information to present an overview of the immunoevasion features harbored

by cancer stem cells, and we focus on the description of immune escape

strategies utilized by CSCs and microenvironmental regulations underlying

CSCs immuno-suppression in the context of gastrointestinal malignancies.

Importantly, this review offers deep insights into recent advances of CSC-

targeting immunotherapeutic approaches in gastrointestinal cancers.

KEYWORDS

cancer stem cells, immunotherapy, gastrointestinal malignancies, anti-tumor therapy,
immune evasion
1 Introduction

Gastrointestinal malignancies mainly including colorectal cancer, gastric cancer,

pancreatic cancer, liver cancer and esophageal cancer, are still serious public health

problems with worldwide concern. According to GLOBOCAN 2020 report, colorectal

cancer (CRC) ranks as the second greatest cause of cancer-related mortality globally (1). In
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the United States, CRC has been estimated as the second deadliest

cancer type among men and women combined and it ranks third

for incidence in both men and women (2). Despite different

therapeutic tools like surgery, radiotherapy, and chemotherapy, a

certain number of patients still face unremarkable and unfavorable

clinical outcomes owing to therapeutic resistance, tumor metastasis

and recurrence. Alternatively, immunotherapies such as cancer

vaccines, immune checkpoint inhibitors and adoptive cell transfer

can stimulate anti-tumor immune responses to acquire long-term

efficacy. Therefore, immunotherapy has become an optimal

treatment modality for the favorable prognosis of patients with

gastrointestinal malignancies.

Cancer stem cells also referred to as tumor initiating cells (TICs)

or cancer progenitor cells, are a small group of unlimitedly

proliferative tumor cells endowed with tumorigenicity along with

stem cell-like traits like self-renewal, proliferation, quiescence and

differentiation. It was reported that CSCs were first identified from

acute myeloid leukemia (AML) by Bonnet and Dick in the late 1990s

(3). Subsequently, researchers further found the existence of CSCs in

multiple solid tumor types including cancers of the colorectal (4, 5),

pancreas (6), liver (7, 8), gastric (9), brain (10, 11), breast (12–15),

prostate (16), lung (17), bladder (18) and melanoma (19). Notably,

cancer stem cells in gastrointestinal cancers were first detected in

2007 in colorectal cancer (5). Different biomarkers of gastrointestinal

cancer stem cell can be used for identification and antitumor

therapies (20–22) (Figure 1). GCSCs are located in a specialized

environment called “niche”, which can support and maintain the

properties of immune privilege harbored by GCSCs. The properties

and the suppressive environment enable GCSCs to be resistant to

conventional treatment strategies. According to the accumulated

evidence, GCSCs possess therapeutic resistance through several

mechanisms including the maintenance of senescence, increased

DNA repair capacity and redox capacity, drug efflux, and

epithelial-mesenchymal transition (EMT) (23, 24). Therefore,

targeting GCSCs is a promising method.
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GCSCs are capable of evading immune system impairment

through adopting a series of smart strategies and interacting with

the tumor microenvironment. In the context of gastrointestinal

cancers, enough consideration has been given to elucidating the

relevant strategies CSCs adopted to evade immune attacks,

which contribute to therapy insensitivity and drug resistance.

Additionally, this review offers a current understanding of GCSCs

and their niche with a special emphasis on bidirectional crosstalk.

To precisely target GCSCs, this review highlights various immune-

targeted therapies against gastrointestinal cancers for the purpose of

exploring more effective GCSCs-specific targeted therapeutic tools.
2 Immune escape mechanisms
of GCSCs

Certain methods have been adopted by GCSCs to circumvent

the attack of immune system, enhance their own survival and

facilitate tumor initiation, about which we will discuss as the

followings (Figure 2). GCSCs can not only downregulate relevant

molecules expression to suppress T cells response and NK cells-

mediated cytotoxicity, but also exhibit increased levels of immune

checkpoint molecules expression to support immune evasion.
2.1 Reduced expression of MHC-I and
natural killer ligands

A growing number of studies highlight that CSCs exhibit

reduced expression of the components that participate in

antigen processing and presentation, for instance, the major

histocompatibility complex class I (MHC- I) molecules (HLA-A,

B, C) and the antigen processing machinery (APM) molecules,

suggesting CSCs ability to avoid the recognition and activation of

CD8+ T lymphocytes. Such a phenomenon was observed in CSCs
FIGURE 1

Summary of GCSC biomarkers. GCSC, gastrointestinal cancer stem cell.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1114621
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


An et al. 10.3389/fonc.2023.1114621
from glioblastoma (25), melanoma (26), lung cancer (27), head and

neck squamous cell carcinoma (28, 29), and colorectal cancer (30,

31), rather than the non-CSCs counterparts. Importantly, CSCs

with a decreased level of MHC-I expression are vulnerable to NK

cells. For example, CRC CICs characteristic of lower MHC-I

expression was found to show higher NK cell susceptibility due to

high levels of NK-cell-activating receptor ligands (30).

Nevertheless, CSCs can also evade NK cells-mediated killing by

tuning the expression of NK cell activating and inhibitory receptors

(32). It was observed that STAT3 could suppress NK cell-mediated

immunosurveillance through downregulating natural killer group 2,

member D receptor ligands (NKG2DL) in HT29 colorectal cancer

cell line, and STAT3 neutralization activated NK cells via the

induction of MHC class I chain-related protein A (MICA), which

is the recognition receptor of NK cells (33). In addition, one study

showed NK cell-mediated cytotoxicity can be attenuated through

upregulating carcinoembryonic antigen-related cell adhesion

molecule 1 (CEACAM1) of EpCAMhigh liver CSCs (34). Using

anti-CEACAM1 antibody can inhibit EpCAMhigh CSCs in

hepatocellular carcinoma (HCC).
2.2 Elevated expression of immune
checkpoint molecules

It has been found that PD-1 ligand (PD-L1), also known as

B7H1 or CD274, is overexpressed on CSCs from CRC (35–37), head

and neck squamous cell carcinoma (38), and gastric cancer (39),

contributing to immune evasion of CSCs (40). EMT induced PD-L1

expressed on CSCs via EMT/b-catenin/STT3/PD-L1 signaling axis,
and targeting EMT/b-catenin/STT3/PD-L1 axis may downregulate
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PD-L1 (40). In colorectal cancer, PD-L1 can trigger CSC-like

characteristics and chemoresistance in CRC cells (41). PD-L1

overexpressed on CD133+ colorectal CSCs and EMT enable CSCs

to invade and metastasize (37). Moreover, PD-L1 was found to be

overexpressed on CD133+CD44+ colorectal CSCs, and it promoted

CSCs expansion and self-renewal via PD-L1- activated HMGA1-

dependent signaling pathways (36). In gastric cancer, B7-H1

expressed in Lgr5+ gastric CSCs can enhance CSC proliferation

and tumor formation by binding with PD-1 on T cells (39). Besides,

B7-H3 was reported to be expressed on ovarian cancer initiating

cells (CICs), and applying B7-H3-specific monoclonal antibody

376.96 resulted in the reduction of CICs content in vitro (42).

Based on the existing evidence, the “don’t eat me” signal CD47 has

been reported to exhibit elevated levels of CSCs from liver cancer (43,

44), pancreatic cancer (45), esophageal squamous cell carcinoma

(ESCC) (46), lung cancer (47) and other cancer types. CD47 can

inhibit the phagocytic activity of macrophages to cancer stem cells by

interacting with signal regulatory protein a (SIRP-a) on phagocytic

cells. In addition, Michele Cioffi et al. (45) demonstrated that anti-

CD47 treatment induced pancreatic CSCs apoptosis apart from being

phagocytized bymacrophages. The upregulation of CD47 assists CSCs

to escape destruction from the immune system. In ESCC, researchers

found CD47+ CD133+ ESCC cells with CSC-like characteristics can be

veritably eliminated after anti-CD47 treatment (46). It has been found

that 4-methylumbelliferone (4Mu), the hyaluronan synthesis

inhibitor, plays a role in promoting phagocytosis via downregulating

CD47 expression on hepatic CSCs, and potentiating cytotoxic-specific

T cell response against HCC induced by interleukin-12 (48).

Additionally, suppression of CD47 preferentially expressed on liver

TICs reduced HCC CSC-like properties including self-renewal and

chemoresistance (43).
BA

FIGURE 2

Schematic representing gastrointestinal cancer stem cells and their niche. (A) GCSC niche contains diverse cell types such as dendritic cells (DCs),
tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), cancer-associated
mesenchymal stem cells (MSCs) and lymphocytes, along with various secreted factors such as cytokines and chemokines. In order to create and
maintain an immunosuppressive environment, GCSCs recruit different cells to the niche and modulate the behaviors of these cells through
producing a wide variety of soluble factors. (B) Immune evasion mechanisms of GCSC including the downregulation of HLA and NKG2DL and the
upregulation of PD-L1 and CD47. GCSC, gastrointestinal cancer stem cell; DC, dendritic cell; TAM, tumor-associated macrophage; CAF, cancer-
associated fibroblast; MDSC, myeloid-derived suppressor cell; MSC, mesenchymal stem cell; ECM, extracellular matrix; HLA, human leukocyte
antigen-A; SIRPa, signal regulatory protein alpha; TCR, T cell receptor; NKG2D, natural killer group 2D; NKG2DL, natural killer group 2D ligand.
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3 Microenvironmental regulations
of GCSCs

As widely regarded, the tumor microenvironment CSCs reside

in has been termed as “CSCs niche” and accumulated studies

indicate that there exists complicated interplay between CSCs and

the tumor microenvironment (TME), playing a pivotal role in

tumor invasiveness and progression. Studies have uncovered that

different microenvironmental regulation factors collaborate with

GCSCs to sustain their immunosuppression properties. Especially,

GCSCs interact with different cells in the TME composed of

dendritic cells (DCs), tumor-associated macrophages (TAMs),

cancer-associated fibroblasts (CAFs), myeloid-derived suppressor

cells (MDSCs), cancer-associated mesenchymal stem cells (MSCs),

regulatory T cells (Tregs), along with other cell types (Figure 2).
3.1 Dendritic cells

As the most important antigen-presenting cell subtype to T

lymphocytes responsible for initiating immune responses, DCs can

connect innate immune system with adaptive immune system.

However, CSCs alter DC phenotypes and render them

immunosuppressive, thus impeding the activation of T cells and

anti-tumor immune responses. In colon cancer, a previous study

indicated that DCs-secreted CXCL1 enhanced cell migration, EMT

and cancer metastatic ability as well as increasing expression of

oncogene (PTHLH, TYRP1, FOXO1, TCF4 and ZNF880), CSC-

related transcriptional factors (Nanog, Oct4 and Sox2) and miR-

105 (49).
3.2 Tumor-associated macrophages

TAMs are divided into M1 pro-inflammatory phenotype and

M2 pro-tumorigenic phenotype. In gastrointestinal cancer, CSCs

promote TAMs recruitment by secreting CC chemokine family

members (CCL2, CCL5), CXC chemokine family members

(CXCL5, CXCL12), and soluble proteins like colony-stimulating

factor1 (CSF1), MIC-1, LOX and VEGF (50). CSCs can also

stimulate TAMs polarization into M2 phenotype by secreting IL-

13, IL-34, CSF2, TGF-b, osteoactivin and exosomes (50). In turn, as

the predominant immune cell type within CSCs niche, infiltrated

TAMs can enhance CSCs properties and facilize CSCs maintenance

through the secretion of various cytokines and soluble molecules

including CCL8, CCL17, CCL22, IL-6, IL-18, TGF-b, hCAP-18/LL-
37, S100A9, MFG-E8 and extracellular vesicles (50). For example, in

hepatocellular carcinoma, TGF-b produced by TAMs induced NF-

kB, AKT and STAT3 signaling pathways in CSCs, thus enhancing

HCC stemness and epithelial to mesenchymal transition (51).

Besides, TAMs-secreted IL-6 promoted CD44+ HCC CSCs

expansion via STAT3 (52). In colorectal cancer, transforming

growth factor-b (TGF-b) can promote stem cell-like properties

(53). In pancreatic cancer, CSCs were detected to overexpress TGF-

b superfamily members Nodal and Activin, which drive self-
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renewal and in vivo tumorigenicity (54). TAMs produce leucine

leucine-37 (LL-37) to respond to CSCs-secreted TGF-b1, Nodal and
Activin A, leading to PDAC progression and metastasis, which can

be inhibited by targeting the LL-37 receptors FPR2 and P2X7R (55).
3.3 Cancer-associated fibroblasts

CAFs regulate CSCs properties to support tumor growth

through specific factors and pathways in gastrointestinal cancers

such as gastric (56), colorectal (57, 58) and liver cancers (59, 60).

Reciprocally, CSCs will enhance the proliferation and maintain the

immunosuppressive phenotype of CAFs (61). Recently, it has been

reported that cancer-associated fibroblasts (CAFs) exert an effect on

educating MDSCs and thus promoting stemness of intrahepatic

cholangiocarcinoma through the LTB4-BLT2 axis (62). CAFs can

enhance the self-renewal and the frequency of PDAC CSCs via

integrin-FAK signaling (63). NRG1 secreted by CAFs promotes the

self-renewal of gastric CSCs through the activation of NF-kB
signaling (64). Furthermore, a recent study uncovered that CAFs

can promote cancer stemness through the osteopontin/secreted

phosphoprotein 1-CD44 axis in pancreatic cancer (65). CAFs-

secreted hepatocyte growth factor (HGF) and IL-6 were reported

to enhance the stemness of CD24+ HCC cells through STAT3

signaling (59). CAFs can sustain the stemness of gastric CSCs via

acting on TGF-b signaling (56). HGF secreted by CAFs can regulate

CSCs stemness of hepatocellular carcinoma and colorectal cancer

by activating c-Met/FRA1/HEY1 signaling, Wnt/b-catenin and

PI3K signaling, respectively (60, 66).
3.4 Myeloid-derived suppressor cells

MDSCs are categorized into monocytic MDSCs (M-MDSCs)

and polymorphonuclear MDSCs (PMN-MDSCs). They are

essential cellular components mediating immunosuppression.

Substantial evidence has revealed MDSCs are closely linked with

cancer stemness maintenance (67, 68). In esophageal squamous cell

carcinoma (ESCC), MDSCs can activate NEDD9 to enhance cancer

stemness with the involvement of Notch signaling (69). By the

activation of STAT3, MDSCs can enlarge ALDH1(Bright) CSCs

population derived from pancreatic cancer (70). Additionally, a

previous study showed MDSCs can confer breast cancer cells stem-

like properties (71).
3.5 Cancer-associated mesenchymal
stem cells

MSCs produce diverse cytokines to facilize CSCs restoration in

the TME (72, 73). They can support the reacquisition and

maintenance of gastric CSCs by the activations of the WNT and

TGF-b signaling pathways (72). In addition, MSCs derived from

gastric cancer can secrete IL-6 and IL-8 to trigger TAMs

polarization into M2 macrophages through the JAK2/STAT3

signaling pathway (74).
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3.6 Regulatory T cells

As a subtype of CD4+ T cells, Treg cells are capable of

promoting cancer progression by negatively regulating

immune response. CSCs recruit Treg cells into the tumor

microenvironment through releasing relevant factors such as

CCL1, CCL2 and CCL5. In turn, Treg cells contribute to the

formation of immunosuppressive tumor environment. In one

study of CRC, it has been found that IL-17-expressing Treg cells

can induce cancer-initiating cells (75).

It is revealed that CSCs modulate immune cells behaviors by

secreting various immunosuppressive cytokines and soluble factors

like IL-4, IL-6, IL-8, IL-10, IL-13, and TGF-b (76–78). IL-4 was

detected to be overexpressed on CICs isolated from CRC,

representing one important actor that affects T lymphocytes-

mediated anti-tumor activity (30). IL-4 signaling blockade can be

regarded as a useful target of CRC CICs. Similarly, it was

demonstrated that disrupting IL-8/CXCR1 signaling involved in

pancreatic CSCs stemness would lead to the reduction of CSCs

population (76). Furthermore, TGF-b stimulates the differentiation

of regulatory T cells (Treg) and promotes fibrosis to make negative

effects on effector T-cell proliferation and infiltration (78, 79). In

addition to CSCs, TGF-b can also be produced by TAMs, CAFs,

lymphocytes and mesenchymal stem cells (MSCs) (80–82).

Collectively, this compelling evidence implicates the complex
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crosstalk between GCSCs and cells in the TME plays a vital part

in the regulation of GCSCs.
4 Immunotherapeutic
approaches against CSCs in
gastrointestinal malignancies

In the last recent decades, cancer immunotherapy has obtained

enormous attention. Considering that GCSCs play a critical role in

drug resistance and therapeutic failure, immunotherapeutic

approaches that target GCSCs can be a promising research field.

Diverse anti-GCSC immunotherapeutic approaches have been

designed and developed including antibody-mediated

immunotherapy, immune cell-based immunotherapy, vaccines

and oncolytic virotherapy (Figure 3). Preclinical studies and

clinical trials associated with multiple immunotherapies targeting

GCSCs have been listed in Tables 1, 2, respectively.
4.1 GCSCs biomarkers

Various biomarkers have been applied for CSCs-targeting therapeutic

strategies. Representative biomarkers for CSCs identification in

gastrointestinal malignancies are summarized in Figure 1.
B C

D E

A

FIGURE 3

Overview of major immunotherapies targeting gastrointestinal cancer stem cells. (A) Antibody-mediated immunotherapies including antibody
targeting GCSC specific biomarker, bispecific antibody and antibody-drug conjugate (ADC). (B) T cell-based immunotherapy. (C) NK cell-based
immunotherapy. (D) Vaccines targeting GCSC. (E) Oncolytic virotherapy targeting GCSC. GCSC, gastrointestinal cancer stem cell; CAR, chimeric
antigen receptor.
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CD133 (human prominin-1), a kind of glycoprotein with five

transmembrane regions, has been identified as a valid CSC marker

in gastrointestinal cancers including gastric, liver, colorectal,

pancreatic cancers (106–109) and other cancers like lung (110),

brain (10), and prostate cancers (16). In hepatocellular carcinoma,

CD133 was reported to facilitate CSC-like features by stabilizing

EGFR-AKT signaling (111).
Frontiers in Oncology 06
CD24, a mucin-like cell surface glycoprotein, has been regarded

as a “don’t eat me” signal (112). By binding to inhibitory receptor

sialic-acid-binding Ig-like lectin 10 (Siglec-10), CD24 overexpressed

on liver CSCs prevents macrophage phagocytosis. J Ke et al. (113)

demonstrated that CD24+ subpopulation of colon cancer cell

lines showed CSCs properties like self-renewal capacity and

tumorigenicity ability compared to CD24- cancer cells.
TABLE 1 Preclinical studies of immune-mediated therapies targeting GCSCs.

Immunological strategy Cancer types Effects References

Antibody

Anti-CD44 monoclonal antibody Recurrent pancreatic
ductal adenocarcinoma
(PDAC)

Reduced PDAC CSCs in mice carrying PDAC-
derived xenografts previously treated with
gemcitabine.

(83)

Anti-CD133 monoclonal antibody CMab-43 Colon cancer Inhibited tumor development in xenograft mouse
model.

(84)

Asymmetric BiAb consisting of monomer of
chimeric AC133 (CD133 mAb) and single chain of
humanized OKT3

Colorectal cancer Inhibited CD133high colorectal cancer cells and
tumor growth by arming activated T cells in vitro
and in vivo.

(85)

Antibody-
drug
conjugate
(ADC)

Anti-CD133-drug conjugate (AC133-vcMMAF) Hepatocellular cancer,
gastric cancer

Inhibited CD133+ CSCs growth and delayed
tumor growth in mouse models.

(86)

Anti-LGR5-drug conjugate Colon cancer Suppressed tumorigenesis of CSCs and extended
survival in mouse models.

(87)

Anti-5T4-drug conjugate (H6-DM4) Colorectal cancer Eliminated colorectal CICs in vitro and in vivo. (88)

Anti-CD24 antibody G7mAb conjugated with
doxorubicin (G7mAb-DOX)

Hepatocellular
carcinoma

Inhibited tumor growth in hepatocellular
carcinoma-bearing mice.

(89)

hG7-BM3-VcMMAE conjugate Hepatocellular
carcinoma

Inhibited the proliferation of tumor cells and the
growth of tumor in vivo.

(90)

Immune cell-
based therapy

CTLs specific for OR7C1 peptide Colon cancer Inhibited tumor growth in a CTL adoptive
transfer mouse model.

(91)

CTLs specific for ASB4 Colorectal cancer Prevented tumor growth in a mouse model. (92)

Anti-EpCAM CAR-T Colorectal cancer with
peritoneal metastasis

Delayed tumor progression in mouse models. (93)

CAR-NK-92 cells against EpCAM+ cancer cells plus
regorafenib

Colorectal cancer Enhanced tumor growth suppression in a mouse
model.

(94)

NK cells activated by CD133 Gastric cancer Killed gastric CSCs in an NKG2D-dependent
manner.

(95)

CSCs antigen loaded DC-CIK cells Liver cancer Suppressed CSCs growth in vivo and inhibited
tumor growth in mouse models.

(96)

CIK cells bound with anti-CD3/anti-CD133 BsAb
(BsAb-CIK)

Pancreatic cancer,
hepatic cancer

Inhibited CD133 high CSCs and tumor growth in
vitro and in vivo.

(97)

Vaccine

DC vaccine pulsed with CSC-derived DRibbles Colorectal carcinoma Suppressed cancer growth and prolonged the
survival of mice.

(98)

DC vaccine loaded with Panc-1 CSCs lysates Pancreatic cancer Elicited antitumor immune killing in vitro. (99)

Oncolytic
virotherapy

CD133-targeted oncolytic adenovirus (AdML-
TYML)

Colorectal cancer Inhibited tumor formation in mouse models. (100)

AdNuPARmE1A Pancreatic cancer Reduced CSCs in vitro and inhibited tumor
formation in mouse models.

(101)

Ad/TRAIL-E1 Esophageal cancer Killed CSCs and suppressed tumor growth in
mouse models.

(102)

OBP-301 Gastric cancer Killed quiescent CD133+ stem-like cells. (103)

GP73-regulated oncolytic adenovirus GD55 Liver cancer Killed liver CSCs in vitro and in vivo. (104)

Cancer-favoring oncolytic vaccinia virus (CVV) Colon cancer Suppressed stem-like cells of colon cancer. (105)
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The epithelial cell adhesion molecule (EpCAM, CD326) is a

multi-functional transmembrane glycoprotein overexpressed in

normal epithelial cell and epithelial carcinomas such as cancers of

pancreas, colon, stomach, lung, ovarian and so on (114, 115).

Functionally, it plays a significant role in modulating intercellular

cell-adhesion, cell signaling, proliferation, epithelial-to-

mesenchymal transition and stemness of cancer cells (114, 116,

117), known to be a marker for CSCs in liver cancer and colorectal

cancer (118, 119). In a recent study, researchers identified a high-

risk tumor subtype of hepatocellular carcinoma using intratumoral

EpCAM+ cancer stem cell (120).

In addition to well-known identified CSC biomarkers, other

novel and potential GCSC biomarkers also have been found.

Doublecortin-like kinase1 (DCLK1) is mentioned as a CSC

marker of gastrointestinal cancers such as colon cancer (121,

122), pancreatic cancer (123) and liver cancer (124). One recent
Frontiers in Oncology 07
study stated that DCLK1 can also express on cholangiocarcinoma

(CCA) CSC subpopulations of iCCACD133+ and pCCALGR5+

(125). Glypican-3 (GPC3) was reported to mediate the CSC

properties like self-renewal, cell cycle progression, and tumor

formation via autophagy induction in hepatocellular carcinoma,

implicating it as a novel liver CSC marker (126). Moreover, heat

shock protein DNAJB8 has been found to be a novel CSC/CIC

antigen in CRC (127). As the melanoma antigen gene (MAGE)

family number, MAGE-A9 exhibits a higher level of expression in

EpCAM+ HCC cells, contributing to the stemness of hepatocellular

carcinoma (128).

Notably, CSCs accounting for only a small proportion of cancer

tissues have been shown to share several similar biomarker profiles

with normal stem cells, indicating that therapeutic agents targeting

biomarkers may kill healthy normal tissue stem cells instead of

CSCs, which will bring serious problems like drug toxicity and
TABLE 2 Summary of clinical trials using immunological strategies targeting GCSCs.

Immunological strategy Target Tumor type NCT
Number

Phase Status

Antibody

RO5429083 (RG7356) CD44 CD44-expressing malignant solid tumors NCT01358903 I Completed

Catumaxomab (Removab) EpCAM Gastric adenocarcinomas with peritoneal
carcinomatosis

NCT01504256 II Completed

Catumaxomab (Removab) EpCAM EpCAM positive tumor (e.g., gastric, colon),
malignant ascites

NCT00836654 II/III Completed

Catumaxomab (Removab) EpCAM Malignant ascites due to epithelial cancer NCT00822809 III Completed

Catumaxomab (Removab) EpCAM Gastric cancer, gastric adenocarcinoma NCT00464893 II Completed

MT110: anti-EpCAM and anti-CD3
bispecific T-cell engager (BiTE)

EpCAM Solid tumors NCT00635596 I Completed

BNC101: anti-LGR5 humanized mAb LGR5 Colorectal cancer NCT02726334 I Terminated

MCLA-158: bispecific antibody targeting
EGFR and LGR5

LGR5 Advanced/metastatic solid tumors, colorectal
cancer

NCT03526835 I Unknown

CAR-T

EpCAM Advanced solid tumor NCT04151186 n.a. Unknown

EpCAM Advanced gastric cancer with peritoneal
metastasis

NCT03563326 I Recruiting

EpCAM Stomach cancer NCT02725125 n.a. Unknown

EpCAM Liver cancer NCT02729493 n.a. Unknown

EpCAM Colon cancer, esophageal carcinoma, pancreatic
cancer

NCT03013712 I/II Unknown

EpCAM Advanced hepatocellular carcinoma, colorectal
cancer, gastric cancer, pancreatic cancer

NCT05028933 I Recruiting

EpCAM Advanced solid tumors NCT02915445 I Recruiting

CD133 Liver cancer, pancreatic cancer, colorectal cancer,
gastric cancer

NCT02541370 I/II Completed

CAR-NK MUC1 MUC1 positive relapsed or refractory solid tumor NCT02839954 I/II Unknown

Vaccine

DC vaccine loaded with CSC Hepatocellular cancer NCT02089919 I/II Completed

DC vaccine loaded with CSC Colorectal cancer NCT02176746 I/II Completed

DC vaccine loaded with CSC Pancreatic cancer NCT02074046 I/II Completed

Oncolytic
virotherapy

Enadenotucirev Colorectal cancer NCT02636036 I Completed
fr
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tumor recurrence during anticancer treatment (129–131). For

example, LGR5 expression is not restricted to gastric, CRC CSCs,

but it can also be expressed in healthy intestine stem cells. Thus,

identifying unique markers and specific cell surface antigens of

CSCs compared to non-CSCs is of utmost importance to CSC-

directed immunotherapies. Multiple cancer testis antigens were

preferentially expressed in CSCs rather than non-CSCs (132),

suggesting potential antigens for immunotherapy targets.
4.2 Antibody-mediated immunotherapies

With advances in understanding the key role GCSCs plays in

gastrointestinal cancers initiation and development, there is a

growing concern in targeting GCSCs. In order to diminish and

deplete the GCSCs, antibody-mediated treatment modalities have

been developed and tested in diverse studies. For example, a first-in-

human, phase I, two-arm clinical trial (NCT01358903) involving

patients with advanced-stage CD44+ solid tumors showed RG7356

(anti-CD44 monoclonal antibody) can be well tolerated in spite of

its modest clinical efficacy (133). Further, nanoparticles can be

taken as the drug carrier to enhance the efficacy of antibody

immunotherapy. The anti-CD133 antibody-conjugated SN-38-

loaded nanoparticles named CD133Ab-NPs-SN-38 has been

designed to target CD133+ cells in colorectal cancer, and the

results indicated that it could eliminate and suppress cancer

growth and recurrence in an HCT116 xenograft model (134).

The combined use of different biomarkers has demonstrated

enhanced therapeutic effects. For instance, the bispecific and

trifunctional antibody catumaxomab, which can simultaneously

bind to T cells, macrophages, DC, and NK-cells with two antigen-

binding sites including EpCAM and CD3, has been used to treat

CD133+/EpCAM+ epithelial cancer patients suffering from

malignant ascites (135–137). A clinical study (NCT00836654) was

conducted in EpCAM+ cancer patients suffering from malignant

ascites, demonstrating that catumaxomab treatment slowed

deterioration in quality of life (QoL) for patients to achieve a

prolonged survival period (138). In addition, a phase II study

(NCT01504256) indicated the efficacy of catumaxomab in gastric

adenocarcinoma patients with peritoneal carcinomatosis, and

meanwhile, severe side effects regarding catumaxomab were

revealed (139).

Apart from the common antibodies against GCSCs biomarkers,

antibody-drug conjugate (ADC)-directed immunotherapy has been

developed as a favorable therapeutic approach. Comprised of

antibody with exquisite specificity and cytotoxic drug with cell-

killing efficiency, ADC is an innovative antitumor weapon to fight

against GCSCs, as evidenced by the accumulating studies. L M

Smith et al. used anti-CD133 ADC, AC133-vcMMAF to eradicate

CD133+ tumor cells including CSCs in hepatocellular and gastric

cancers (86). In addition, LGR5-targeted ADCs were effective in the

eradication of LGR5+ gastrointestinal cancers and the suppression

of tumor progression (87, 140). Trophoblast glycoprotein 5T4

expression exhibits an increased level in colorectal CICs

compared with non-CICs, and an anti-5T4 antibody in

combination with potent microtubule inhibitor DM4 showed
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powerful efficacy against colorectal CICs in vitro and in vivo (88).

Further, in preclinical models of hepatocellular carcinoma, anti-

CD24 ADCs including CD24 antibody-conjugated doxorubicin

G7mAb-DOX and the hG7-BM3-VcMMAE conjugates showed

antitumor activities in vivo (89, 90).
4.3 Immune cell-based immunotherapies

Immune cell-based immunotherapies such as T cell-based

immunotherapy, NK cell-based immunotherapy and cytokine-

induced killer (CIK) cell-based immunotherapy have enormous

potential for the treatment of gastrointestinal cancers.

4.3.1 T cell-based immunotherapy
CSC-primed T cells targeting CSCs strictly depend on the

normal and intact antigen processing and presenting machinery,

and the absence of antigens may lead to the failure of targeting

CSCs. The olfactory receptor family 7 subfamily C member 1

(OR7C1) was identified as a potential functional marker of colon

CICs and its overexpression correlates with poor prognosis of CRC

patients (91). A cytotoxic T lymphocytes (CTL) adoptive transfer

mouse model applying CTLs specific for OR7C1 peptide was

constructed to exert specific cytotoxicity targeting colon CICs.

Another study reported that ankyrin repeat and SOCS box

protein 4 (ASB4) can elicit CD8+ cytotoxic T cell responses

against colorectal CSCs but not non-CSCs because of its specific

and unique expression in CSCs (92). In vivo models, adoptive

transfer of CTLs specific for ASB4 significantly prevented

tumor development.

The chimeric antigen receptor-modified T (CAR-T) cell

immunotherapy can specially recognize and kill cancer cells using

engineered T lymphocytes with the expression of chimeric antigen

receptor (CAR) on their surface. To date, CAR-T immunotherapies

based on specific biomarkers have been explored in a variety of

preclinical studies and clinical trials. Wei Xia Ang et al. established

peritoneal dissemination mouse models of human colorectal cancer

in immunodeficient NSG mice, demonstrating that anti-EpCAM

CAR-T immunotherapy can suppress and delay the development of

peritoneal tumors (93). Another preclinical study of the adoptive

transfer of EpCAM CAR-T cells indicated that the growth and

formation of colon cancers were delayed in vivo mouse model,

without serious adverse effects (141). Clinical trials using EpCAM

targeted CAR-T therapy have been conducted in a broad spectrum

of gastrointestinal cancers, as depicted in Table 2. A phase I trial

(NCT02541370) showed the clinical efficacy and controllable side

effects of autologous CAR-T cell directed CD133 termed CART-133

to treat patients with CD133+ advanced metastasis malignancies,

and it seemed that CART-133 cells exhibited the “on-target, off-

tumor” effect on patients with bile duct stenosis for the reason that

it can target CD133 antigen exposed on the bile duct endothelium

(142). Kai-chao Feng et al. reported EGFR-specific and CD133-

specific CAR-T sequential treatment defined as CAR-T cocktail

immunotherapy in a case of advanced cholangiocarcinoma, in

which the patient achieved certain clinical response, but the

accompanied toxicities should not be ignored (143). In fact, using
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CAR-T therapy can offer optimistic efficacy for cancer treatment,

but we may face much difficulties owing to PD-L1 existence and T

cell exhaustion (144, 145).

4.3.2 NK cell-based immunotherapy
NK cells are able to selectively kill GCSCs through modulating

the expression of activating and inhibitory receptors. For example,

it has been observed that NK cells can kill CD133+ CSCs of colon

and gastric cancers (95, 146). In vivo adoptive NK cells transfer

model of pancreatic cancer, researchers found NK cells can target

CSCs and attack them, leading to the reduction of CSC population

and the delayed tumor progression (147). Moreover, Erik Ames and

colleagues (148) indicated that the combination of NK cell adoptive

immunotherapy with local radiation therapy (RT) had synergistic

effects on CSCs elimination and tumor growth suppression in vitro

and in vivo. RT can sensitize CSCs derived from solid tumors like

pancreatic cancer to NK cells attack by promoting the expression of

NK cell ligands on CSCs. This study provided evidence for adoptive

cell therapy in conjunction with other cytotoxic standard therapies

for complete tumor eradication and long-term clinical benefits in

multiple solid tumors.

Compared with CAR-T immunotherapy, CAR-NK cell therapy

can reduce on-target toxicity (149, 150). Researchers also

constructed EpCAM targeted second-generation CAR and

transduced it into NK-92 cells using lentiviral vectors, and they

indicated CAR-NK-92 cells can specially kill EpCAM+ colorectal

cancer cells and combination with regorafenib can greatly reduce

tumor growth in NOD/SCID mice with human colorectal xenograft

models (94). A clinical trial (NCT02839954) concerning the

immunotherapy of anti-MUC1 CAR-pNK cells has been

conducted in patients with MUC1+ solid tumors.

4.3.3 CIK cell-based immunotherapy
Furthermore, cytokine-induced killer (CIK) cells loaded with

the anti-CD3/anti-CD133 BsAb (BsAb-CIK) can selectively

eliminate CD133high cancer cells of SW1990 pancreatic cancer cell

line and Hep3B hepatic cancer cell line (97). Moreover, BsAb-CIK

treatment in a mouse model led to the suppression of CD133high

tumor growth. A previous study indicated that the combined

strategy of DCs loaded with liver cancer stem cells (LCSC)

antigens and CIK cells exhibited a significant inhibitory effect on

HCC tumor growth and LCSC growth (96).
4.4 Vaccines

Vaccination based on CSC lysates exhibit efficacious antitumor

ability in preclinical and clinical studies. Mei Guo et al. suggested

that colorectal CSCs lysates-based vaccine served as an effective and

safe anti-colorectal cancer vaccine (151). In this study, molecule

mucin1 (MUC1), a tumor associated antigen overexpressed in

colorectal CSCs in comparison with WT SW620 cells, was

reported to be required for colorectal CSCs-based vaccine to exert
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anti-tumor immunity (151, 152). Furthermore, in a clinical trial

carried out among 90 patients with pancreatic adenocarcinoma in

2014, pancreatic CSC vaccine was preliminarily proved to be safe

and effective (153).

Another strategy, dendritic cells (DCs) based anti-tumor

vaccination is capable of inducing cytotoxic T lymphocytes

activities against CSCs. Several DC-based vaccines have been

devised to cure patients with gastrointestinal cancers. Different

components including RNAs extracted from cancer cells, tumor

lysates, and tumor-derived peptides can be used as antigens to

induce dendritic cells activities. Vahid Bagheri et al. utilized DCs

pulsed with mRNA of gastric CSCs isolated from patients to prime

in vitro effective T cell-mediated immune responses (154).

Similarly, in 2010, Jian-cong Sun et al. developed a DC-based

vaccine loaded with CD133+ HCC cells total RNA, which can

generate antigen-specific cytotoxic T lymphocytes response

targeting HCC CSCs (155). Compared with RNA-loaded DCs,

DCs pulsed with lysates of colon cancer stem cells (CCSCs)

isolated from CD44+ CT-26 colon cancer cells can evoke stronger

anti-tumor immune responses against CCSCs (156). Apart from

that, a recent study applying a D5 melanoma model indicated

ALDH 1A1+1A3 dual peptides-DC vaccine can significantly reduce

ALDHhigh CSCs and enhance anti-PD-L1 efficacy (157).

Recently, tumor-cell derived autophagosomes (Dribbles), which

can serve as a kind of DC-pulsed antigen due to the high

immunogenicity, have been used for DC-based vaccination in

diverse cancers such as oral squamous cell carcinoma (158), head

and neck cancer (159), colorectal carcinoma (98) and hepatocellular

carcinoma (160). Of interest, Changhao Fu et al. obtained defective

ribosomal products-containing autophagosome-rich blebs from

CD44+ colon CSCs and generated DC vaccines pulsed with

CCSC-derived Dribbles, demonstrating the efficient cytotoxic T-

cells immune responses and tumor growth inhibition in mice model

of colorectal carcinoma (98).
4.5 Oncolytic virotherapy

A growing number of evidence has elucidated that oncolytic

viruses (OVs) can potentially kill both differentiated cancer cells

within tumor bulks and CSCs through multiple ways (161). Several

preclinical studies indicated that GCSCs resistant to conventional

treatment modalities can be efficiently eradicated by oncolytic

virotherapy-mediated killing, which have been indicated in Table 1.

As mentioned above, promising preclinical experiments or

clinical trials administering immunotherapy have been conducted

and reported to target GCSCs. Indeed, safe and successful clinical

use of drugs requires further studies and investigations, and it is

equally important to identify specific GCSCs biomarkers. Moreover,

eliminating GCSCs can affect tumor growth, but to achieve

complete elimination of tumor mass, it is a feasible strategy that

combines anti-GCSCs immunotherapy with other anti-tumor

therapies such as chemotherapy and radiotherapy.
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5 Conclusion

Taken together, GCSCs can evade immune attack through

the downregulation of MHC-I and natural killer ligands and the

upregulation of immune checkpoint molecules. And the

immunosuppressive niche provides a supportive room for them to

survive and maintain properties, contributing to the development of

malignant cancers. Current efforts aimed at developing GCSCs-

targeted immunotherapies in gastrointestinal cancers have shown

preclinical and clinical success, but it is always a thought-provoking

question to selectively target GCSCs efficiently and accurately.

In addition, it is a promising and effective method to combine

GCSCs-directed immunotherapy with conventional therapies like

chemotherapy and radiotherapy. Despite these advances, a

tremendous amount of efforts need to be put into the development

of efficacious immunotherapies targeting GCSCs.
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