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Identifying key transcription
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correlation network and
Cox regression analyses
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Introduction: Lung cancer is one of the most common cancers and a significant

cause of cancer-related deaths. Non-small cell lung cancer (NSCLC) accounts

for about 85% of all lung cancer cases. Therefore, it is crucial to identify effective

diagnostic and therapeutic methods. In addition, transcription factors are

essential for eukaryotic cells to regulate their gene expression, and aberrant

expression transcription factors are an important step in the process of

oncogenesis in NSCLC.

Methods: Differentially expressed transcription factors between NSCLC and

normal tissues by analyzing mRNA profiling from The Cancer Genome Atlas

(TCGA) database programwere identified. Weighted correlation network analysis

(WGCNA) and line plot of least absolute shrinkage and selection operator

(LASSO) were performed to find prognosis-related transcription factors. The

cellular functions of transcription factors were performed by 5-ethynyl-2'-

deoxyuridine (EdU) assay, wound healing assay, cell invasion assay in lung

cancer cells.

Results: We identified 725 differentially expressed transcription factors between

NSCLC and normal tissues. Three highly related modules for survival were

discovered, and transcription factors highly associated with survival were

obtained by using WGCNA. Then line plot of LASSO was applied to screen

transcription factors related to prognosis and build a prognostic model.
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Consequently, SETDB2, SNAI3, SCML4, and ZNF540 were identified as

prognosis-related transcription factors and validated in multiple databases. The

low expression of these hub genes in NSCLC was associated with poor

prognosis. The deletions of both SETDB2 and SNAI3 were found to promote

proliferation, invasion, and stemness in lung cancer cells. Furthermore, there

were significant differences in the proportions of 22 immune cells between the

high- and low-score groups.

Discussion: Therefore, our study identified the transcription factors involved in

regulating NSCLC, and we constructed a panel for the prediction of prognosis

and immune infiltration to inform the clinical application of transcription factor

analysis in the prevention and treatment of NSCLC.
KEYWORDS

Transcription Factors, WGCNA, Cox regression analysis, LASSO analysis, Immune
infiltration, NSCLC
1 Introduction

Lung cancer is the leading cause of cancer-related morbidity and

mortality. It is estimated that there will be nearly 2.4 million new lung

and bronchus cancer cases and 1.3 million deaths per year,

accounting for nearly 21.4% of cancer-related deaths (1). Non-

small cell lung cancer (NSCLC) accounts for approximately 85% of

lung cancer cases (2), and it mainly includes lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC) (3). Surgical

treatment is currently the most important means of achieving local

disease control and curing stage I–III and oligometastatic NSCLC (4).

Low-dose chest computed tomography (CT) in patients with NSCLC

has reduced lung cancer mortality by approximately 6.7%. The use of

immune checkpoint inhibitors (CPIs) has profoundly promoted the

development of novel, effective NSCLC treatments (5). Despite

therapeutic advances in surgery, chemotherapy, immunotherapy,

and radiation, prognoses of patients with advanced NSCLC

remains unsatisfactory (5, 6). Recent studies have shown different

driver gene mutations and gene expression characteristics in NSCLC

(7). Molecular characterization and utility of immunohistochemistry

biomarkers in NSCLC precision medicine are a focus of current

research (7). Particularly, RNA-sequencing (RNA-seq) is vital in

cancer outlining because of the rapid development of next-

generation genome-sequencing technology.

Tumors are cells with unlimited proliferation ability, and they are

surrounded by the tumor microenvironment (TME) (8). The TME

comprises diverse elements, including cancer cells, immune cells,

tumor-associated fibroblasts, and various inflammatory cytokines

secreted by these cells, such as interleukin 6 (IL6), vascular

endothelial growth factor (VEGF), transforming growth factor b1
(TGF-b), and cytochrome P450 family 1 subfamily B member 1

(CYP1B) (9, 10). Tumor initiation and progression are largely

affected by TME dynamics and spatial and temporal heterogeneity
02
(11, 12), and the TME plays a vital role in NSCLC (13). Treatment of

NSCLC has been revolutionized by applying programmed cell death

1 (PD-1)- and programmed cell death 1 ligand 1 (PD-L1)-related

immune CPIs (14). The PD-1/PD-L1 inhibitors are the standard first-

line treatments for metastatic NSCLC (15).

With the continuous development of treatments, immunotherapy

resistance is a problem that must be urgently solved (16). A key strategy

in counteracting CPI resistance is modulation of immunosuppressive

TME. The TME is a mediator of the interaction between tumor and

immune cells with multiple important roles, and it affects the response

to immunotherapy (17). Resistance to inhibitors of immune

examination is suppressed by regulating factors and receptors in the

TME. For example, ectopic expression of tumor-associated

macrophages (TAM) receptors in NSCLC may contribute to an

immunosuppressive, tumor-promoting TME; TAM receptor

inhibitors (TAM RI) convert immunosuppressive TMEs into

immunostimulatory TMEs to overcome CPI resistance in NSCLC

(14). Lefitolimod, an agonist of Toll-like receptor 9 that promotes

innate and adaptive immune responses, converts non-immunogenic

(“cold”) tumors into immunogenic (“hot”) tumors. Lefitolimod and

CPI combination produces synergistic antitumor potency (18). C-C

Motif Chemokine Receptor 4 (CCR4) inhibitors, which mediate tumor

trafficking of regulatory T cells (Tregs), lead to decreased Treg

frequency and increased antitumor activity; however, CCR4

inhibitors are used in combination with CPI to improve antitumor

efficacy (16). Consequently, exploring the regulatory mechanism of

TME is crucial for clarifying the mechanism of tumorigenesis and

addressing the problems of immunotherapy sensitivity and

drug resistance.

Transcription initiation in eukaryotic cells is a complex process

involving binding transcription factors (TFs) (19). Transcription

factors have been implicated in each stage of the development and

progression of various human tumors. Many studies have shown
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that TFs play critical roles in cancer; for example, they influence

the activity of genes involved in immunological response, immune

cell infiltration, and the cell cycle (19, 20). Moreover, TFs can be

products of oncogenes or tumor suppressor genes. Epithelial-

mesenchymal transition (EMT)-activating TFs promote

tumorigenesis and cancer invasion in cell lines and xenograft

mice models (21). Recent studies have shown that some TFs

predict the prognosis of patients with malignant tumors. Other

studies have shown that forkhead box TFs affect the EMT and

regulate hormones and the immune system, affecting tumor

development, metastasis, and drug resistance (22). Manshouri

et al. reported that ZEB1, the TF of the EMT, recruits the

nucleosome remodeling and deacetylase complex in NSCLC, acts

as a transcriptional suppressor, and transcriptionally inhibits

TBC1D2b expression, promoting the E-cadherin degradation and

mesenchymal tumor transition (23). Mollaoglu et al. reported that

tumor-associated neutrophils in NSCLC recruit SOX2 to mediate

CXCL5 expression and regulate the TME (24). While TFs have

attracted much attention in tumor research, their roles in tumor

prognosis remain unclear.

Weighted correlation network analysis (WGCNA) is used to

identify clusters (modules) of highly related genes. It can be used to

evaluate gene interconnectivity in the module and convert gene

expression profile data into co-expression modules, allowing for the

construction of a gene regulatory network. There are five steps in

WGCNA: constructing a gene co-expression network, identifying

modules, relating modules to external information, studying

module relationships, and finding the key drivers of interesting

modules (25). This method is widely used in research of many

cancers, including pancreatic (26), lung (27), and liver cancers (28).

However, differential expression analysis only considers each gene’s

expression, whereas gene network analysis considers the

connections between genes, building a more comprehensive

network of tumor regulatory mechanisms (29).

In the present study, a prognostic model of NSCLC based on

cancer-related TFs and the effect of TFs on NSCLC prognosis was
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constructed. The mRNA expression of NSCLC using The Cancer

Genome Atlas (TCGA) dataset was analyzed. Based on the TCGA-

NSCLC gene expression profile, differential genes were obtained

through differential expression analysis between cancer and normal

samples. A panel of five survival-associated TFs was identified. This

study will be significant in the exploration of TFs related to the

prognosis of potential NSCLC and the role of TFs in NSCLC.
2 Materials and methods

2.1 Antibodies and reagents

Antibodies used in this study included Vimentin (#5741), SLUG

(#9585), b-catenin (#8480), and Anti-rabbit Alexa Fluor® 594

Conjugate (#8889) from Cell Signaling Technology and MMP9

(10375-2-AP), SNAI1 (13099-1-AP), SNAI3 (21350-1-AP), and

SETDB2 (14428-1-AP) from Proteintech. The siRNAs were

obtained from Shanghai GenePharma.
2.2 Cell culture and transfection

The cell lines were purchased from American Type Culture

Collection (ATCC). The cell lines BEAS-2B, A549, HCC827,

H1299, H1975, EPLC-272H, H226, H157, and H2170 were

cultured in a humidified incubator at 5% CO2 and 37°C using

RPMI1640 medium with 10% fetal bovine serum (FBS) and 1%

Pen-Strep penicillin-streptomycin (Gibco). Transfections were

performed with RNAiMAX Reagent (Invitrogen) according to the

manufacturer’s instructions. Each experiment was performed at

least three times. siRNA against SETDB2 (5’-GUGUACGCU

GUCUAGAUGATT-3’), siRNA against SNAI3 (5’-GACGCAG

AGAGAAAUCAAUTT-3’) and siRNA negative control (5’-UUC

UCCGAACGUGUCACGUTT-3 ’ ) were obta ined from

Shanghai GenePharma.
FIGURE 1

Workflow of data analysis.
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2.3 Database

The research route is shown in Figure 1. The TCGA dataset

referenced in the study is available in a public repository from UCSC

Xena (https://xena.ucsc.edu/), including transcriptome expression

RNA-seq and clinical data of 1076 NSCLCs. The expression profile

and survival information of patients with NSCLC, including 130

samples, were downloaded from the UCSC database (https://

ucscpublic.xenahubs.net). Transcription factor sets were defined

using Trrust (https://www.grnpedia.org/trrust/), CISBP (http://

cisbp.ccbr.utoronto.ca/index.php), and JASPAR (http://

jaspar.genereg.net/). In total, 1942 (after de-redundancy) human

TFs were downloaded from the database for subsequent analysis.

Data from 130 samples from UCSC were used to verify the

efficacy of the TFs prognostic scores. After standardizing the

maximum and minimum data values, a log-rank test was

performed on the overall survival (OS) data, and a Kaplan–Meier

curve was drawn. p < 0.05 was considered a statistically significant

correlation. The survival receiver operating characteristic (ROC)

software package was used to plot the ROC curve, observe the

prognostic efficacy with 5-year survival as the threshold, and

calculate the area under the curve (AUC) score. The ROC curve

was used to describe the sensitivity and specificity of the survival

prediction based on the TFs score.
2.4 Differential gene expression

Differentially expressed genes (DEGs) between normal and

tumor samples were estimated using the limma R package. Using

a Bayesian approach to computation, candidate DEGs were

identified by p < 0.05 and |fold-change| > 1.5. After determining

the intersection with the TF set, the “pheatmap” R package was used

to draw a heatmap of partial differential TF gene expression in

tumor and normal tissues. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed using the Database for Annotation,

Visualization, and Integrated Discovery (DAVID: https://

david.ncifcrf.gov/).
2.5 Co-expression network construction

The “WGCNA” R package (25) was used to perform co-expression

network analysis on TCGA containing differentially expressed TFs.

First, no abnormal samples were found during sample clustering. A

picksoft threshold was used to select the optimal soft threshold b for

subsequent network construction; the expression profile was analyzed

using scale-free clustering and a dynamic shearing tree to identify co-

expressed gene modules. The co-expression network matrix

calculation was used on the Pearson correlation. In addition, the

relationship between these gene modules and clinical phenotypes

was positioned the module as a survival module; the genes of these

modules were used as candidate prognostic-related TFs.
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2.6 Cox regression and line plot of
least absolute shrinkage and selection
operator regression

For the cancer samples of TCGA-NSCLC (997 samples after

removing the no-OS data), the TF genes were analyzed using Cox

single-factor survival analysis based on the survival package; the

prognostic genes with single-factor significance (p < 0.05) were

selected as candidate genes. The Kaplan–Meier method was used to

establish survival curves, and the log-rank test was used to calculate

the significance of the differences. Forest plot software was to plot a

prognostic forest plot of the Cox single-factor results of related

genes. Subsequently, prognosis-related TFs were included in the

LASSO regression analysis using the “glmnet” R package to obtain

the prognostic-related TFs, obtain the corresponding genes’

regression factor parameters, and build a TFs prognosis model

based on this. Finally, Cox proportional hazards regression was

used to analyze the independent predictive power of the TFs score.
2.7 Quantitative reverse transcription PCR

Total cellular RNA was extracted from cells using an RNA-

Quick Purification Kit (Yishan Biotechnology). cDNA was prepared

using a Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel,

Switzerland). Reverse transcriptase polymerase chain reaction of the

selected genes was performed by reverse transcriptase polymerase

chain reaction using ABI QuantStudio 5 (Applied Biosystems). In

addition, SYBR Green fluorescence was measured and quantified

using the comparative Ct method (2-DDCt), with GAPDH

expression as an internal control. The assay was performed in

triplicate, and the primers used are listed in Table 1.
2.8 EdU assay

Cells were inoculated into 12-well plates. Next, the cells

were processed using the EdU cell proliferation kit (C10310

RiboBio). Finally, the assay was performed with a fluorescent

microscope. The whole process was carried out according to the

manufacturer’s instructions.
2.9 Wound healing assay

Cells were taken at logarithmic growth stage, spread in a 6-well

plate, and waited for the cells to grow above 95% confluence for

scratching. Cells were washed 3 times with PBS and photographed;

at this point the photo was taken for 0 h. The cells were added to the

medium and incubated, and the healing of the scratches was

observed and photographed. The images were used to analyze the

percentage of healing of the scratches. Images at time zero (0 h) and

at 24 or 36 h (D h) were captured. The area of wound was quantified

by Image J software. The percentage of wound closure: percentage

of wound closure = [(A (0 h) – A (D h)/A (0 h)] × 100%, A (0 h) is
frontiersin.org
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the area of wound measured immediately after scratching, and A

(D h) is the area of wound measured 24 or 36 h after scratching.
2.10 Cell invasion assay

Transwell chamber filters were wrapped with Matrigel (BD

Biosciences, Franklin Lakes, NJ). Lung cancer cells transfected with

specific siRNAs were suspended in serum-free medium, and the

cells were seeded into the upper chamber of the Transwell. The

lower chamber was filled with medium containing 10% FBS. After

24 h of incubation, the cells were fixed with methanol and stained

with crystal violet solution, after which the cells in the upper

chamber were wiped off with a cotton swab and the remaining

cells were photographed. Five high-power fields of view were taken

for each small chamber selection.
2.11 Immunofluorescence staining

Cells were cultured in confocal-specific dishes until 85%

confluence was reached, when they were fixed in 2%

paraformaldehyde fixative, after which the cells were washed 3

times with PBS. Cells were treated with 0.2% triton x-100 for 5 min

at 25°C, washed 3 times with PBS, and closed with 0.8% bovine

serum albumin for 1 h at 25°C. Cells were incubated overnight or

for 1 h at 25°C by primary antibody and then they were washed 2

times (10 min each) at 25°C with 0.1% triton x-100. Cells were

incubated for 1 h with the addition of secondary antibody, and 0.1%

triton x-100 was added to wash twice for 10 min each time at 25°C.

Finally, fluoroshield with 4′,6-diamidino-2-phenylindole (DAPI)

was added to cover the bottom of the dish. The mean fluorescence

intensity (MFI) of cells was calculated from Image J software.
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2.12 Western blotting

Cell-culture dishes were placed on ice, and cells were washed with

ice-cold PBS. Cells were added to ice-cold Radio Immunoprecipitation

Assay (RIPA) lysate and lysed at 4°C for 10 min, vortexing every 5

min. The BCA was quantified, and protein lysate was added to the

loading buffer for 10 minutes at 95°C. Electrophoresis was carried out

at 80 V until bromophenol blue ran through the top layer of the gel,

followed by a shift to 120 V until bromophenol blue ran out of the

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) gel. To transfer the proteins from the gel to the membrane,

the polyvinylidene fluoride (PVDF) was activated with methanol for 1

min and rinsed with transfer buffer in a “sandwich” filter paper and

sponge configuration, sponge–filter paper–gel-membrane filter

paper–sponge. The PVDF membrane was placed in 5% skimmed

milk for 1 h at 25°C. The PVDF membranes were washed with tris

buffered saline with tween 20 (TBST), and then primary antibody

(diluted in primary antibody diluent) was added and incubated

overnight at 4°C. The membranes were washed 3 times in TBST for

5 minutes each time, secondary antibody prepared in 5% skimmed

milk was added, and the membranes were incubated for 1 h at 25°C in

a gentle mix. Membranes were washed 3 times in TBST for 5 minutes

each time. Chemiluminescence images were obtained using a

darkroom development technique. Western Blot signal was

quantified using the Image J software.
2.13 Statistical analysis

GraphPad Prism (version 8.0) was used to analyze the data from

our study. Results are expressed as the mean ± SD of at least three

individuals. Student’s t-test was used to compare differences

between the two groups. Survival curves were plotted using the
TABLE 1 The primers of select genes.

Gene Forward primer Reverse primer

ETV1 GGCCCCAGGCAGTTTTATGAT GATCCTCGCCGTTGGTATGT

SCML4 TCACTCCACGCCTATGAAGAT GGGTTTCCGCCCTCTTTTC

SETDB2 ACCACCCCGAGAGCATCTGAACT TGTGGTCGCCTGGTTACATCTGC

SNAI3 ACTGCGACAAGGAGTACACC GAGTGCGTTTGCAGATGGG

ZNF540 AGTGTATGCGGACAACTTACCC AGGTTTCTTACCTGCATGAGTTC

MMP9 CGCAGACATCGTCATCCAGT AACCGAGTTGGAACCACGAC

Vimentin AGGCAAAGCAGGAGTCCACTGA ATCTGGCGTTCCAGGGACTCAT

b-catenin AAAGCGGCTGTTAGTCACTGG CGAGTCATTGCATACTGTCCAT

SNAI1 TGCCCTCAAGATGCACATCCGA GGGACAGGAGAAGGGCTTCTC

SLUG ATCTGCGGCAAGGCGTTTTCCA GAGCCCTCAGATTTGACCTGTC

SOX2 GCCTGGGCGCCGAGTGGA GGGCGAGCCGTTCATGTAGGTCTG

OCT4 ATCACCCTGGGATATACACAG CTGCTTTGCATATCTCCTGA

NANOG TCTGGACACTGGCTGAATCCT CGCTGATTAGGCTCCAACCAT

GAPDH GTCAACGGATTTGGTCGTAT GTCAACGGATTTGGTCGTAT
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FIGURE 2

Identification of differentially expressed TFs in NSCLC and normal tissues. (A) Volcano plot of differentially expressed TFs. Red points: upregulated
genes; Blue points: downregulated genes. (B) Heatmap of the top upregulated TFs. Green square group: normal tissues; pink square: tumor tissue.
(C) Functional annotation of the TFs using Gene Ontology (GO) term. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
of differential TFs.
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Kaplan–Meier “survival” package in R (version 3.4.3). Log-rank test

was used to assess statistical significance. Statistical significance was

set at p < 0.05.
3 Results

3.1 Identifying differentially expressed TFs
in NSCLCs and normal samples

Data containing 1017 NSCLC and 59 normal samples from the

TCGA dataset with clinical and RNA-seq datasets were used.

Differential analysis was performed to find differentially expressed

genes (DEGs) between normal and NSCLC samples, with the

criteria of |fold change| >1.5 and p < 0.05; 8840 DEGs were

identified. In total, 725 TFs (Supplemental Table 1) were

identified as NSCLC-related TFs (Figure 2A), of which the top

200 TFs were upregulated in NSCLC compared to normal tissues.

The heatmap of the top 200 differentially expressed TFs is shown in

Figure 2B. To further determine the function of these TFs, GO and

KEGG pathway annotations were used to analyze the 725

differential TFs. These genes could be enriched in tumor

malignancy-related GO biological processes, containing cell

differentiation, proliferation, apoptosis, stemness, and

angiogenesis (Figure 2C). Moreover, KEGG pathway enrichment

analysis showed that 725 genes were involved in many pathways,

including tumor transcriptional regulation interrelated to

oncogenesis and development, the Hippo signaling pathway,

TGF-b signaling pathway, cell cycle, immune-related Th17 cell

differentiation, and Th1 and Th2 cell differentiation (Figure 2D).
3.2 Construction of NSCLC co-expression
module via WGCNA

We used WGCNA to build a co-expression network and

modules of NSCLC-correlated differentially expressed TFs. A co-

expression network was constructed with several modules. A scale-

free network evaluation coefficient threshold > 0.9 was selected to

make the co-expression network conform to the scale-free network

standard. The 725 transcription factors were subjected to clustering

analysis to classify them into six modules (Figures 3A, B) (Table 2).

The six modules were divided into two categories: green, brown,

and yellow made up one category, while the other category included

blue and turquoise (Supplemental Table 2). Internal modules in the

same category were positively correlated (Figure 3C). The

correlation analysis of each module and clinical data was

performed to find transcription factor modules that are highly

correlated with clinical survival. There was a correlation between

the gene significance of OS and module membership of the green

module (cor = −0.071, p = 0.03). The OS time negatively correlated

with “brown” (cor = −0.063, p = 0.05) and “yellow” (cor = −0.087,

p = 0.006) (Figure 3D). The module membership of the green

module was significantly related to the gene significance of the OS,

and the module membership of the brown and yellow modules was

significantly related to the gene significance of the OS time
Frontiers in Oncology 07
(Figure 3E). Therefore, 118 genes contained in these three

modules (green, brown, and yellow) were selected as candidate

survival-related TFs for further analysis. 118 genes were enriched in

many immune-related pathways, including T-cell differentiation,

lymphocyte differentiation, and T-cell cytokine production.

Furthermore, the potential regulatory molecular functions of

these TFs were found to involve their classical functions,

including enhancer binding, histone deacetylation, nuclear

receptor activity, and histone acetyltransferase (Figures 3F, G)

(Supplemental Table 3).
3.3 Construction of Prognostic TFs
in NSCLC

To search for TFs with key roles in the NSCLC prognosis, Cox

single-factor regression analysis was performed on the above 118

key TFs; 9 TFs significantly (p < 0.05) related to survival were

selected (Figure 4A). According to previous research, 21 genes

highly related to NSCLC cell proliferation and OS of patients

with NSCLC in the study were added, including 11 potential

tumor suppressor genes (AFF3, AhR, AR, CBFA2T3, CHD4,

KANK2, NR3C2, PTEN, PRDM16, RB1, and STK11) and 10

potential oncogenes (BARX1, DLX6, ELF3, EN1, ETV1, FOXBE1,

IRX4, IRX5, and SALL1) (30). We performed LASSO regression

analysis for these 30 TFs. Finally, five prognostic-related TFs

(SETDB2, SNAI3, SCML4, ZNF540, and ETV1) were screened

using LASSO regression (Figure 4B). The LASSO regression

coefficients of each gene were shown in Figure 4C. Subsequently,

clinical data were analyzed in relation to TFs scores, and the analysis

revealed that the number of packs smoked per year (p = 0.003017),

gender (p = 2.899365e-08), pathological stage TNM (T: p =

0.0004997501, N: p = 0. 006496752, M: p = 0.004497751), and

targeted molecular therapy (p = 0.02204301) had significant

differences in the distribution of clinical characteristics in the

high and low TFs score groups. Conversely, there was no

significant trend in other clinical characteristics (Figure 4D).

Furthermore, in the ROC analysis score for prognosis, the 3-

year survival AUC value was 0.868, and that for the 5-year survival

was 0.731 in the ROC curve (Figure 4E). To verify the prognostic

model’s validity, the prognostic performance of the TFs score on

another set of UCSC (https://ucscpublic.xenahubs.net) data

containing 130 samples from NSCLC was analyzed. The TFs

score was shown to have a predictive function for the survival of

NSCLC patients (p < 0.037) (Figure 4F).

Finally, Cox multifactor regression was used to analyze the

independent predictive performance of the model and explore

the effect of other clinical factors on the prognosis in the TF

score. We evaluated the prognostic value of the five TFs

according to score, age, sex, number of packs smoked per year, N

stage, radiotherapy, and targeted therapy. Univariate regression

analysis showed that the TFs score was significantly associated

with OS (HR = 1.2869, p = 0.0195); multivariate regression analysis

showed that the TFs score was significantly correlated with OS

(HR = 1.2681, p = 0.0348) (Figures 5A, B). The nomogram

quantified the contribution of individual factors to clinical
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FIGURE 3

Construction of NSCLC co-expression module via WGCNA. (A) Analysis of network topology for various soft-threshold powers. Left: The relationship
between the soft threshold b and the scale-free network topology R2, where the threshold is set to 0.9 for R2 and the b value standard is the
corresponding b value when R2 reaches 0.9 for the first time. Right: Relationship between the soft threshold b and connectivity. (B) Clustering
dendrograms of TFs with dissimilarity based on topological overlap with assigned module colors. (C) Heatmap visualization of correlations between
modules. (D) Analysis of module-NSCLC clinical data relationships. (E) Co-expression analysis of gene, brown, and yellow significance (GS) and
module membership (MM). (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of 118 TFs. (G) Functional annotation of 118
TFs using Gene Ontology (GO) term. MF, molecular function; CC, cellular component; BP: biological process.
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prognosis to verify the model’s validity, which had good predictive

power (Figure 5C) (Supplemental Table 4).
3.4 Analysis of immune infiltration

One important function of the immune system is to recognize

and subsequently destroy tumors. In recent years, progress in tumor

treatment has benefited from research involving immunotherapy

(31–33). Therefore, TME plays a vital role in diagnosing and

treating tumors. According to the TCGA-NSCLC dataset, we

analyzed the differences in the immune microenvironment

between the high- and low-score groups (Figure 6A). Using

CIBERSORT calculations, significant differences were found in

the infiltration levels of 22 immune cells in the high- and low-

score groups. The immune cells with significant differences were

memory B cells, naive CD4 T cells, resting memory CD4 T cells,

regulatory T cells, resting natural killer (NK) cells, activated NK

cells, monocytes, M0 macrophages, M1 macrophages, resting

dendritic cells, activated dendritic cells, resting mast cells,

activated mast cells, eosinophils, and neutrophils (Figure 6B)

(Supplemental Table 5).
3.5 Gene network of TFs construction and
survival analysis of five TFs

To further explore the expression of the five TFs in clinical

samples, LUAD and LUSC data from TCGA were used to compare

their expression in normal and NSCLC samples. The results showed

that the expression levels of SETDB2, SNAI3, SCML4, ZNF540, and

ETV1 in LUAD (Figure 7A) and LUSC (Figure 7B) were

significantly lower than those in normal tissues. Meanwhile,

survival analysis of each TF showed that lower SETDB2, SNAI3,

SCML4, and ZNF540 expression was associated with poor prognosis

in lung cancer; higher expression of ETV1 was associated with poor

prognosis in lung cancer via Affymetrix microarray data and via

RNA-seq data (Figures 7C, D) (https://kmplot.com/analysis). It was

worth noting that the expression level of ETV1 in normal tissues

was higher than that in lung cancer tissues; however, patients with

high expression had poor prognoses. This phenomenon suggested

two roles of ETV1 in the occurrence and development of lung

cancer. The TFs likely interacted with other proteins to form
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complexes that activated or inhibited the transcriptional

regulation of genes and downstream genes to function (19).

Therefore, the interaction protein network of the five TFs were

analyzed using STRING (Figure 7E) (Supplemental Table 6)

(https://string-db.org). These data showed that SETDB2, SNAI3,

SCML4, and ZNF540 have tumor suppressor functions in

lung cancer.
3.6 Validating the TFs phenotypes,
functions, and expression in lung cancer

To gain further support for the notion that SETDB2, SNAI3,

SCML4, ZNF540, and ETV1 regulate the malignant phenotypes of

lung cancer through the transcriptional repression of genes,

experiments were performed. First, to further explore the function

of SETDB2, SNAI3, SCML4, ZNF540, and ETV1 in lung cancer cell

lines, the mRNA expression levels in the normal human bronchial

epithelial cell line (BEAS-2B), lung adenocarcinoma cell lines

(A549, HCC827, H1299, and H1975), and lung squamous cell

lines (EPLC-272H, H226, H157, and H2170) were measured

(Figure 8A). Consistent with the results of bioinformatics

analysis, the expression levels of SETDB2 and SNAI3 were higher

in BEAS-2B than in lung cancer cell lines (Figure 8B).

To determine how SETDB2 and SNAI3 regulate the cell

proliferation of NSCLC, EdU assays were performed, which

showed that knockdown of SETDB2 or SNAI3 in A549 cells had

a strong promotion effect on the proliferation of lung cancer cells

(Figure 8C). We then investigated the roles of SETDB2 and SNAI3

in cellular behavior of NSCLC using wound healing and transwell

invasion assay in A549, HCC827, and H1299, which were

transfected with control siRNA, SETDB2 siRNA, or SNAI3

siRNA. The wound healing assay showed that depletion of

SETDB2 or SNAI3 promoted the migration of lung cancer cells

(Figure 8D). Meanwhile, the increased invasion was induced by

knocking-down SETDB2 or SNAI3 (Figure 8E).

We next investigated the possibility of SETDB2 and SNAI3 in

NSCLC metastasis and stemness in vitro. The result of

immunofluorescence assay indicated that metastasis-related

markers (MMP9, Vimentin, b-catenin, SNAI1, and SLUG) were

significantly upregulated with SETDB2 or SNAI3 knockdown in

A549 cells (Figure 8F). The expression of metastasis-related

markers was analyzed by RT-qPCR and Western blotting using

A549 cells transfected with control siRNA, SETDB2 siRNA, or

SNAI3 siRNA. SETDB2 or SNAI3 depletion led to an increase of

metastasis-related markers (Figures 8G, H). In addition, the stem

cell markers (SOX2, OCT4, and NANOG) were upregulated with

the knockdown of SETDB2 or SNAI3 (Figure 8I). These results

show that SETDB2 and SNAI3 inhibit proliferation, migration,

invasive, metastasis, and cell stemness of lung cancer cells.
4 Discussion

Lung cancer is one of the most common cancers all over the

world and has become a major threat to human health due to its
TABLE 2 The number of genes in the coexpression modules.

Module Gene count

Blue 64

Brown 43

Green 36

Turquoise 85

Yellow 39

Grey 458
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FIGURE 4

Constructing prognostic TFs in NSCLC. (A) Univariate Cox regression analysis of TFs. (B) Line plot of least absolute shrinkage and selection operator
(LASSO) regression analysis of 30 TFs in NSCLC. (C) Coefficients of relevant 5 TFs in LASSO regression result. (D) Heatmap of the five prognosis-
related TFs expression profiles combined with clinical traits in the high- and low-score groups. (E) ROC curve of 3- and 5- year survival probability in
NSCLC cancer from the UCSC dataset. (F) Kaplan–Meier analysis of high- and low-score groups for NSCLC from the UCSC dataset.
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high morbidity and mortality (30). In 2001, the 3-year survival rate

of patients with lung cancer was 19%, increasing to 31% in 2015–

2017. This is due to the progress in the diagnosis and treatment of

NSCLC, including more accurate staging and advanced surgical

concepts and techniques (34–37). Therefore, identifying gene

markers related to prognosis and exploring potential NSCLC

targets are crucial efforts in its diagnosis and treatment, and the

discovery of more sensitive and specific biomarkers will improve

the diagnosis and treatment of NSCLC.

In the present study, we screened 725 differentially expressed

TFs in normal lung tissue and NSCLC. In the WGCNA module

analysis of these disease-related TFs, three similar modules were

found to be associated with survival state and survival time, from

which 118 survival phenotype-related TFs were obtained. Nine

survival-related TFs were identified using Cox univariate analysis;
Frontiers in Oncology 11
five survival-related TFs (SETDB2, SNAI3, SCML4, ZNF540, and

ETV1) and the corresponding regression factors were obtained

using LASSO regression analysis.

Accumulating evidence showed that TFs play important roles in

tumorigenesis, metastasis, and tumor immunity (38–40). SETDB2

promoted methylation (transcriptional repression) of histone

H3K9, and SETDB2 was involved in innate immune

inflammation and response. SETDB2 expression was upregulated

in M1 macrophages, which killed tumor cells, but not in M2

macrophages, which promoted tumor growth, invasion, and

metastasis (41, 42). In addition, SETDB2 was also a

glucocorticoid-induced putative epigenetic modifier that promotes

the enrichment of glucocorticoid receptor chromatin, and

glucocorticoids were found to inhibit the growth of lymphoma

(43, 44). SNAI3 is a member of the Snail family. SNAI3 expression
A B

C

FIGURE 5

Predicting the prognosis probability in TCGA-NSCLC. (A) Univariate Cox regression analysis in the NSCLC cohort. (B) Multivariate Cox regression
analysis in the NSCLC cohort. (C) Nomogram line graph for multivariate cox results of the NSCLC cohort.
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was downregulated in multiple tumors compared to normal tissues.

Whereas SNAI3 expression was found to be associated with good

prognosis in breast cancer. SNAI3 had a potential opposite role for

SNAI1 and SNAI2 in tumorigenesis and progression (45). SCML4

expression was shown to correlate with poor prognosis in breast

cancer (46). Studies found that SCML4 potentially regulates the

immune response and is involved in vascular remodeling (46, 47).

ZNF540 is a zinc-finger protein located on chromosome 19; it

interacts with MVP and inhibits the transcriptional activity of the

ERK signaling pathway (48, 49). Some studies showed that CpG

methylation changes in the ZNF540 through renal clear carcinoma

tissue analysis associated with tumor aggressiveness and patient

prognosis (50, 51). The above study showed that ZNF540 is a

potential suppressor gene in tumors. ETV1 has a vital role in

developing the cardiac conduction system, muscle development,

and cerebellar circuit development (52). In prostate cancer,

androgen receptor activation mediates ETV1 expression,
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activating Twist1, leading to EMT and tumor metastasis (53).

Similarly, ETV1 is activated by HER2/Neu in high-risk female

tumors (breast, endometrial, and ovarian cancers), mediating the

malignant tumor phenotype (54, 55). Overexpression of ETV1 in

various tumors mediates cell growth, invasion, and migration in

various tumor cells, leading to tumor progression, metastasis, and

drug resistance (52, 55). Therefore, SETDB2, SNAI3, SCML4, and

ZNF540 are potential suppressors in tumors, and their specific

mechanisms should be further explored.

The immune infiltration of various immune cells was different

in the high- and low-score groups, including various regulatory T

cells, activated NK cells, monocytes, M0 macrophages, and M1

macrophages, which were important in the TME. Regulatory T cells

were immunosuppressive T cells categorized by the expression of

FOXP3, which hinders effective antitumor immune responses

(56, 57). Furthermore, the gut microbiota regulates intertumoral

infiltration and NK cell activity to promote pancreatic ductal
A

B

FIGURE 6

Immune microenvironment analysis of NSCLC in high- and low-score groups. (A) Proportion of infiltrating immune cells among the 22 groups with
high- and low-TF scores. Different colors represent the cell types. (B) Infiltration ratios of different immune cell types with high- and low-TFs score.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Student’s t-test.
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FIGURE 7

Expression profile and survival analysis of 5 transcription factors (TFs) in NSCLC. (A) Expression profile of 5 TFs (SETDB2, SNAI3, SCML4, ZNF540, and
ETV1) in LUAD. (B) Expression profile of 5 TFs (SETDB2, SNAI3, SCML4, ZNF540, and ETV1) in LUSC. (C) Kaplan–Meier analysis of 5 TFs (SETDB2,
SNAI3, SCML4, ZNF540, and ETV1) using Affymetrix microarray data. (D) Kaplan–Meier analysis of 5 TFs (SETDB2, SNAI3, SCML4, ZNF540, and ETV1)
using RNA-seq data. (E) Analysis of the 5-TFs protein interaction network.
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FIGURE 8

Validating the TFs phenotypes, functions, and expression in lung cancer. (A) SETDB2, SNAI3, SCML4, ZNF540, and ETV1 mRNA expression levels in
the normal human bronchial epithelial cell line (BEAS-2B), lung adenocarcinoma cell lines (A549, HCC827, H1299, and H1975), and lung squamous
cell lines (EPLC-272H, H226, H157, and H2170) using RT-qPCR. Blue box: normal human bronchial epithelial cell line (BEAS-2B). Red box: lung
cancer cell lines. (B) The mRNA expression levels of SETDB2 and SNAI3 in the normal human bronchial epithelial cell line (BEAS-2B), lung
adenocarcinoma cell lines (A549, HCC827, H1299, and H1975), and lung squamous cell lines (EPLC-272H, H226, H157, and H2170) using RT-qPCR.
(C) EdU assays were performed in A549 cells infected with siCtrl, siSETDB2, and siSNAI3. siCtrl, siControl; siSE2, siSETDB2; siSN3, siSNAI3. (D) Wound
healing experiments were performed in A549, HCC827, and H1299 transfected with siCtrl, siSETDB2, and siSNAI3. siCtrl, siControl; siSE2, siSETDB2;
siSN3, siSNAI3. (E) Transwell invasion assays were performed on lung cancer cells (A549, HCC827, and H1299) infected with siCtrl, siSETDB2, and
siSNAI3. siCtrl, siControl; siSE2, siSETDB2; siSN3, siSNAI3. (F) Immunofluorescence staining including MMP9, Vimentin, b-catenin, SNAI1 and SLUG
was performed in A549 cells transfected with siCtrl, siSETDB2 and siSNAI3. Blue fluorescence of DAPI labeled cell nucleus, red fluorescence of
labeled corresponding protein. siCtrl, siControl; siSE2, siSETDB2; siSN3, siSNAI3. MFI, mean fluorescence intensity. (G) The mRNA expression levels
of metastatic markers (MMP9, Vimentin, b-catenin, SNAI1, and SLUG) as well as SNAI3 and SETDB2 were detected by RT-qPCR in A549 cells
transfected with siCtrl, siSETDB2, and siSNAI3. siCtrl, siControl. (H) The protein levels of metastatic markers (MMP9, Vimentin, b-catenin, SNAI1, and
SLUG) as well as SNAI3 and SETDB2 were detected by western blotting in A549 cells transfected with siCtrl, siSETDB2, and siSNAI3. siCtrl, siControl;
siSE2, siSETDB2; siSN3, siSNAI3. (I) The mRNA expression levels of stem cell markers (SOX2, OCT4, and NANOG) in A549 cells transfected with siCtrl,
siSETDB2, and siSNAI3 using RT-qPCR. siCtrl, siControl. (B-E, G, I) Error bar represents mean ± SD of three independent experiments. *p < 0.05,
**p < 0.01. Student’s t-test.
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adenocarcinoma progression. In addition, Tumor-associated

macrophages (TAMs) regulate tumor progression, promoting

lung cancer cells to assume an M2 (TAM-like) phenotype and,

subsequently, EMT and invasion of lung cancer cells (58).

Therefore, this predictive model showed that the two groups of

tumors had different immune cell profiles and infiltration. This

ongoing research intended to predict the effects of immunotherapy

and develop new treatment strategies.

In conclusion, we performed WGCNA analysis on NSCLC-

related TF genes and mined module TF genes related to survival

prognosis, including Cox single factor analysis, to obtain candidate

prognostic risk TF genes. This 5-TF prediction model was validated

using an additional UCSC dataset. Meanwhile, the cohort was

divided into high- and low- score groups according to the model,

and the differences in the proportional distribution of immune cells

between the high- and low- score groups were compared. In

addition, the roles of SETDB2, SNAI3, SCML4, ZNF540, and

ETV1 were validated in multiple datasets and human lung cancer

cell lines. The method provided in this study was beneficial for

screening patients with NSCLC with poor prognoses to achieve

early detection, early treatment, and improved survival. This study

had several limitations, more samples were needed for further

verification and optimization in the future.
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