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Introduction: Gene expression profile of mitochondrial-related genes is not well

deciphered in pediatric acute myeloid leukaemia (AML). We aimed to identify

mitochondria-related differentially expressed genes (DEGs) in pediatric AML with

their prognostic significance.

Methods: Children with de novo AML were included prospectively between July

2016-December 2019. Transcriptomic profiling was done for a subset of samples,

stratified by mtDNA copy number. Top mitochondria-related DEGs were identified

and validated by real-time PCR. A prognostic gene signature risk score was

formulated using DEGs independently predictive of overall survival (OS) in

multivariable analysis. Predictive ability of the risk score was estimated along

with external validation in The Tumor Genome Atlas (TCGA) AML dataset.

Results: In 143 children with AML, twenty mitochondria-related DEGs were

selected for validation, of which 16 were found to be significantly dysregulated.

Upregulation of SDHC (p<0.001), CLIC1 (p=0.013) and downregulation of

SLC25A29 (p<0.001) were independently predictive of inferior OS, and included

for developing prognostic risk score. The risk score model was independently

predictive of survival over and above ELN risk categorization (Harrell’s c-index:

0.675). High-risk patients (risk score above median) had significantly inferior OS

(p<0.001) and event free survival (p<0.001); they were associated with poor-risk

cytogenetics (p=0.021), ELN intermediate/poor risk group (p=0.016), absence of

RUNX1-RUNX1T1 (p=0.027), and not attaining remission (p=0.016). On external

validation, the risk score also predicted OS (p=0.019) in TCGA dataset.
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Discussion: We identified and validated mitochondria-related DEGs with

prognostic impact in pediatric AML and also developed a novel 3-gene based

externally validated gene signature predictive of survival.
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Introduction

Despite recent advancements, the survival in pediatric acute

myeloid leukaemia (AML) continues to remain dismal (1). Various

molecular and genetic alterations are frequently used for risk

stratification, identification of therapeutic targets as well as

predicting disease prognosis in AML (2). Whole genome and

transcriptome sequencing have been extensively used in AML to

identify potential novel molecular targets and developing prognostic

gene signatures to predict survival, relapse and risk stratification (3–

5). However, data on potential mitochondrial genes with impact on

AML are limited.

Dysregulation of mitochondrial pathways have been implicated in

pathogenesis and progression of various malignancies (6). Multiple

studies have reported the role of mitochondrial DNA(mtDNA)

mutations, metabolic pathways and oxidative phosphorylation, on

disease biology and prognosis of AML (7, 8). We have previously

reported the relationship of mutations in mtDNA regulatory region

with mitochondrial gene expression, and their impact on survival in

children with AML (9–11). Considering the impact of mitochondrial

pathways in outcome of AML, it is important to explore tumor cell

heterogeneity in AML with respect to mitochondrial transcriptome

and identify potential therapeutic or prognostic molecular targets.

Recently, we have reported that high mtDNA copy number is

associated with poor outcome in paediatric AML and also identified its

potential regulation through PGC1A (12). In the current study, among

children with AML stratified according to mtDNA copy number, we

identified mitochondria-related differentially expressed genes (DEGs)

through whole transcriptome sequencing. We further validated the

topmost identified mitochondria-related DEGs in a cohort of

paediatric AML patients and formulated a prognostic mitochondrial

gene signature for predicting survival outcome. We then validated this

gene signature in an external cohort of adult AML patients from The

Cancer Genome Atlas (TCGA) dataset along with estimation of

predictive ability of the developed prognostic gene signature.
Methodology

Study design, patient population, treatment
and clinical follow up

This was a prospective observational cohort study that included

consecutive de novo paediatric (≤18 years) patients with AML

registered from July 2016 to December 2019 at medical oncology
02
outpatient clinic of our cancer centre. The workflow of the study is

depicted in Figure 1. Study was ethically approved by institute ethics

committee and informed consent was taken from care givers and

assent was obtained from all participants (≥8 years). Patients with

granulocytic sarcoma without marrow involvement, acute

promyelocytic leukaemia (AML M3), and mixed phenotypic acute

leukaemia were excluded. Fifty age-matched patients of solid

malignancies without marrow involvement were also enrolled as

controls. Baseline clinical details, European LeukemiaNet (ELN)

risk stratification (2), were recorded and all patients were treated

uniformly as per institutional protocol (Methods S1 and S2) (13).

Remission status and survival outcomes were noted.
Whole transcriptome sequencing,
identification of differentially expressed
genes and selection of DEG for analysis

Bone marrow mononuclear cells were isolated by Ficoll-Hypaque

(Sigma diagnostics, USA) density gradient centrifugation followed by

isolation of total RNA and DNA (Methods S3). All the samples were

assessed for mtDNA copy number as per previously described

protocol (Methods S4) and classified into three separate groups

based on relative mtDNA copy number (12). Patients were

categorized into: AMLCN_H (mtDNA copy number ≥ 75th

percentile), AMLCN_I (mtDNA copy number 50th to 75th

percentile) and AMLCN_L (mtDNA copy number< 50th

percentile) groups. A subset of samples was randomly selected from

each of the three sub-groups and controls with RNA integrity score

above 7 and a total of 15 samples (12 patients including 3 from

AMLCN_H group, 4 from AMLCN_I group, 5 from AMLCN_L

group and 3 controls) were sent for whole transcriptome profiling for

the identification of DEGs compared to controls (Methods S5 and S6;

Figure S1A).Absolute fold change value ≥ 2 (a ≥ two-fold change in

expression, either upregulated or downregulated) and adjusted p

value (q ≤ 0.05) threshold compared to controls was considered as

differentially expressed genes (DEGs). The sequencing raw data was

submitted to NCBI SRA (Sequence Read Archive) and available

at PRJNA778747.
Selection and validation of mitochondria-
related DEGs

Out of all identified DEGs from transcriptome sequencing,

mitochondria-related genes were filtered using Cytoscape
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compartment mitochondrion score (0 being minimum and 5 being

highest) (14). DEGs with topmost mitochondrial compartment score

were selected for validation in a cohort of paediatric patients with

AML. Along with this, Hub genes as well as maximum interactive

genes were identified using CytoHubba and molecular complex

detection (MCODE) clustering algorithm respectively (15, 16). The

genes of MCODE cluster 1 and Hub genes were assessed for their

mitochondrial localization as above and genes in each group with

highest mitochondrial compartment score were selected for validation

(Methods S7). Based on these selection strategies, a total of 20

mitochondria-related DEGs were selected for validation.

Real time PCR was performed to validate the selected

mitochondria-related genes using specific primers (Table S1) and the

gene expressions were quantified per previously described protocol (12).
Frontiers in Oncology 03
Comparison of validated mitochondria-
related DEGs in TCGA data set

For external validation of mitochondrial related DEGs, the RNA-

sequencing data (Illumina HiSeq 2000) of TCGA adult AML(LAML)

dataset was chosen, which is one of the largest datasets of

transcriptomic profile in AML with recorded clinical outcome

(https://www.cbioportal.org/study/summary?id=laml_tcga). The

adult dataset was specifically chosen to see the impact of prognostic

impact of the validated mitochondria-related age group in a different

age group as well. The expression of validated DEGs was compared

with LAML data set using online available GEPIA2 (Gene Expression

Profiling Interactive Analysis) web server (http://gepia2.cancer-pku.

cn/#index) (17).
FIGURE 1

Workflow of the study: Study workflow showing flow of patients from enrolment to RNA sequencing, identification of mitochondria- related DEGs,
development and validation of novel 3-gene based Risk score.
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Statistical methods

Prognostic impact of mitochondria-related DEGs
and development of mitochondrial gene signature

Statistical analysis was carried out in SPSS (v23, IBM, NY, USA).

Descriptive statistics were used to summarize baseline characteristics.

Gene expression was reported as median values with interquartile

ranges. Gene expression values and clinical continuous variables with

non-parametric distribution were compared by Mann Whitney test.

Clinical categorical variables were compared by Chi-square test/

Fisher’s exact test as applicable. Alpha error was adjusted for

multiple comparisons by Bonferroni correction. Kaplan Meier

method was used to analyse time to event outcomes. Duration from

enrolment to relapse or death due to any cause was considered as

event free survival (EFS). Time from enrolment to death due to any

cause was defined as overall survival (OS). Survival data was censored

till 31st Dec 2020. The follow-up estimation was done by reverse

Kaplan Meier method.

Prognostic impact of all validated DEGs on OS of the whole

validation cohort was performed by multivariable Cox regression

analysis in a forward stepwise manner based on log likelihood change.

Validated DEGs with significant (p<0.05) predictive impact on OS in

multivariable analysis were included for the prognostic gene signature

model. The proportional hazard assumption was assessed by

Schoenfeld global test. Internal validation of the multivariable

prognostic model was carried out by bootstrapping method (10000

resampling) and genes that did not satisfy bootstrapping validation

were excluded. A prognostic risk score was generated using cox

regression coefficient Beta (b) values of included genes, of the final

multivariable model as below:

Risk score = o
n

k=0

  bk � Expression  mRNAkð Þf g
" #

� 100

The area under the time-dependent receiver operating

characteristic (ROC) curve (Timed AUC) for 12-months and 18-

months survival was estimated and Harrel’s C-index of the prognostic

model was calculated using the R package “survminor” in R (version

4.0.3). Patients were classified into two groups based on their risk

score above (High-risk) and below (Low-risk) the median. The

survival outcomes of the patients were compared between high-risk

score vs low-risk score patients using Kaplan Meier analysis to

evaluate the prognostic significance of the gene signature model.
Impact of clinical features and independent
prognostic value of the gene signature

The role of demographic and clinical features, including gender,

age, haemoglobin, hyperleukocytosis (≥50000/μl), platelet count,

presence of chloroma and ELN risk stratification (2)on survival

outcome was analysed using the Cox regression. Factors with p<0.1

in univariable analysis were included for multivariable Cox regression

in a forward stepwise manner using log likelihood change. Clinico-

demographic factors which were significant in multivariable analysis

were included in a multivariable Cox regression model along with gene

signature risk score to explore the independent predictive value of gene
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signature. The timed AUC using 12-months survival and 18-months

survival as the outcome and Harrel’s C-index of the clinical prognostic

model and combined clinical and gene signature prognostic model

were compared for identifying the additional prognostic benefits of

gene signature over clinical parameters. The impact of mtDNA copy

number on survival outcome was also analysed similarly.
External validation of mitochondrial
prognostic gene signature in TCGA dataset

The prognostic impact of our gene signature risk score on OS was

done in TCGA LAML (n=179) dataset by Cox regression analysis.

Patients were similarly sub-grouped into high-risk and low-risk category

based on median value of the gene signature; the survival outcomes of

the patients were compared between high-risk score vs low-risk score

patients using Kaplan Meier analysis and timed AUC of 12-month and

18-month survival was evaluated. Based on available karyotyping data,

patients of the TCGA dataset were grouped into poor-risk karyotype

and others (including good and intermediate-risk karyotype). The

association of risk score with clinical features such as age, sex, and

karyotype were also evaluated in TCGA dataset. The karyotype category

and mitochondrial gene risk score were assessed for their impact on OS

by a multivariable Cox regression model to explore the independent

predictive value of the gene signature in the external cohort as well.
Results

Patients’ recruitment and baseline
clinical features

Total 170 patients were enrolled, out of which 27 patients (5

patients were AML M3, 4 had granulocytic sarcoma without marrow

involvement, and 18 patients had insufficient samples) were excluded.

The baseline demographic and clinical characteristics of final 143

patients are summarized in Table S2. Median age was 10 years (range:

0.8-18 years) and 50% of the patients were classified as ELN good risk.

Total 104 patients (72.7%) achieved complete remission (CR) after

induction therapy. At median follow-up of 36 months (32.67-39.33

months), the median OS was 21.93 months (13.54–30.31months).

The clinical characteristics of the TCGA LAML dataset are

summarized in Table S3.
Identification of DEGs in paediatric AML
based on mtDNA copy number

We identified 898, 769, and 953 significantly dysregulated

transcripts in AMLCN_H, AMLCN_I and AMLCN_L groups

respectively by whole transcriptome sequencing as represented in

volcano plots (Figures S1B–D). Majority of genes were found

significantly downregulated in all three groups whereas the number

of dysregulated genes were higher in AMLCN_H group compared to

other two groups. A total of 351 DEGs (59 upregulated and 292

downregulated) were identified in AMLCN_H. Similarly, AMLCN_I

and AMLCN_L groups had 290 (66 upregulated and 224
frontiersin.org
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downregulated) and 332 (47 upregulated and 285 downregulated)

DEGs respectively as compared to controls.
Identification of mitochondria-related
DEGs, hub genes and selection of
genes for validation

Out of all DEGs, 78, 58, and 71 mitochondria-related DEGs were

identified in AMLCN_H, AMLCN_I and AMLCN_L groups

respectively. Among them, 35 genes were common in all three

subgroups, whereas 18, 12 and 14 mitochondria-related DEGs were

exclusively present in AMLCN_H, AMLCN_I and AMLCN_L groups

respectively (Figure S1E). In AMLCN_H, AMLCN_I and AMLCN_L

groups, we identified 17, 18 and 17 hub genes respectively using

CytoHubba analysis, of which eight were common among all
Frontiers in Oncology 05
subgroups (Table S4, Figures S1F–H). Furthermore, using MCODE

analysis, clusters with maximum scores were generated and seed gene

was determined in the three groups (Figures S1I–K). MMP9 was

identified as seed node with maximum MCODE score in both

AMLCN_H and AMLCN_I group (Table S5). Based on the

mitochondrial compartment score, CytoHubba and MCODE

analyses, a total of 20 DEGs were selected for further validation

(Table S6). The expression pattern of these selected DEGs in RNA

sequencing data were represented in the heatmaps (Figures 2A, C).
Validation of selected DEGs, comparison
with TCGA database

In the validation cohort of 143 AML patients, the expression of

SLC25A3, SDHC, RACK1/GNB2L1, FASTKD1, ATP5J, CLIC1, GLUD1,
A B

DC

FIGURE 2

Expression of genes selected for the validation in pediatric AML patients. (A) Heatmap showing expression pattern of upregulated genes selected for
validation from RNA sequencing data of pediatric AML patients and controls; (B) Validation of selected upregulated differentially expressed genes (DEGs)
in patients as compared to controls. SLC25A3, SLC25A29, SDHC, FASTKD1, GLUD1, RACK1, ATP5J and CLIC1 were significantly upregulated in pediatric
AML patients (n=143) compared to controls (n=50). *: P<0.05; **: P< 0.01; ***: P<0.001; ****: P<0.0001; (C) Heatmap showing expression pattern of
downregulated genes selected for validation from RNA sequencing data of pediatric AML patients and controls; (D) Validation of selected downregulated
differentially expressed genes (DEGs) in patients as compared to controls. FASLG, CYP1B1, HRK, ALAS2, SLC25A21, MMP9, SNCA and OLFM4 were
significantly downregulated in pediatric AML patients (n=143) compared to controls (n=50) *: P<0.05; **: P< 0.01; ***: P<0.001; ****: P<0.0001.
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and SLC25A29 were found to be significantly upregulated (Figure 2B,

Table 1) while FASLG, HRK, ALAS2, SLC25A21, CYP1B1, SNCA,

MMP9, and OLFM4 were significantly downregulated (Figure 2D,

Table 1) compared to controls. Two selected genes, LIG1 and

MRPL51 did not show significant dysregulation while LONP1 had a

reverse expression in the validation compared to transcriptomic

expression profile. Upon comparison with TCGA dataset of adult

AML patients, similar dysregulation was observed for ALAS2,

SLC25A21 and SLC25A29 genes while a reverse expression pattern

was observed for ATP5J and CLIC1 genes; none of the other genes

showed significant dysregulation in the TCGA dataset (Table 1).
Mitochondria-related DEGs and mtDNA
copy number

On univariable analysis, increased mtDNA copy number was

significantly associated with poor event free survival (HR= 2.14; 95%

CI (1.39-3.29); p=0.001) and overall survival (HR= 2.77; 95% CI

(1.70-4.59); p<0.001) (Figures S2A, B). The timed AUC of mtDNA

copy number for predicting 12 months and 18 months survival was

0.66 and 0.68 respectively (Figures S2C, D). In patients with increased

mtDNA copy number, expression of SLC25A3, SDHC, RACK1/

GNB2L1 and FASTKD1, were significantly higher compared to

those with low mtDNA copy number (Figures S2E–H). Exclusive

elevated expression of these 4 genes were also observed in

transcriptome of samples with high/intermediate mtDNA copy

number(AMLCN_H/AMLCN_I) compared to low mtDNA copy

number (AMLCN_L). On correlation analysis, these 4 genes along

with 2 other genes CLIC1 and ATP5J showed significant positive

correlation with mtDNA copy number (Table S7).
Predictive ability of expression of
validated DEGs on survival outcome
and establishment of the prognostic
gene signature

On multivariable analysis, upregulated expression of 2 genes,

SDHC (HR 1.29; 95% CI (1.14-1.41); p<0.001) andCLIC1(HR 1.20;

95% CI (1.04-1.38); p=0.013), and downregulation of SLC25A29(HR

0.88; 95% CI (0.83-0.93); p<0.001) were found to be independently

predictive of worse OS (Table 2) and they were included for the

development of a prognostic gene signature model. All these 3 genes

(SDHC, CLIC1, SLC25A29) satisfied internal validation by

bootstrapping (Table S8), and were finally selected for prognostic

model building. Beta coefficient of each of the variables were used for

calculation of risk score as follows:

Risk   score =
�
0:237� Expression SDHCð Þ

+ 0:179� Expression CLIC1ð Þ
+ −0:131ð Þ � Expression SLC25A29ð Þ� � 100

The formula was used to calculate risk score of all the patients.

Risk score median value (10.382) was taken as the cut-off for

subgrouping patients into high-risk and low risk group. Patients

with high-risk scores (≥10.382) had inferior OS (HR 1.010; 95% CI
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(1.007-1.014): p<0.001) compared to those with low-risk score

(<10.382) (Figure 3A). Harrel’s C-index of the prognostic model

was 0.675. The timed AUC of the risk score for 12 months and 18

months survival was 0.747 and 0.736 respectively (Figures 3B, C).
Association of gene signature-based risk
score with event free survival

On multivariable Cox regression analysis, upregulation of SDHC

(HR 1.225; 95% CI (1.100-1.363); p<0.001) and downregulation of

SLC25A29 (HR 0.905; 95% CI (0.860-0.952); p<0.001) were also

predictive of worse EFS. We also found that patients with high-risk

score had significantly lower EFS as compared to low-risk score patients

(HR 1.008; 95% CI (1.001-1.012); p<0.001) (Table 2). Harrel’s C-index

of prognostic model was 0.626. The timed AUC of the risk score for 12

months and 18 months EFS was 0.617 and 0.612 respectively.
Impact of baseline clinical features on
survival outcome and association with gene
signature model

On univariable Cox regression analysis of clinical variables, ELN

intermediate/poor risk and absence of chloroma were significantly

associated with inferior OS and only ELN category came out to be an

independent prognostic factor in multivariable analysis (Table S9,

Figure 3D). Furthermore, on multivariable analysis, both the ELN risk

category (p=0.040) and risk score (p<0.001) were found to be

independent prognostic factors for OS. We also performed

multivariable analysis including mtDNA copy number and

observed that all three factors i.e. risk score (p<0.001), ENA risk

categories(p=0.012) and mtDNA copy number(p=0.012) were

independent prognostic factors for OS (Table S10).
Impact of combined clinical and gene
signature model on survival outcome
of the cohort

To compare the predictive ability of our gene signature risk score

and ELN risk stratification on OS of AML patients, a time dependent

AUC was constructed. Harrel’s C-index of the ELN risk stratification

was 0.59 and the timed AUC of ELN risk category on 12 months and

18 months survival was 0.60 and0.64 respectively (Figures 3E, F). We

combined the ELN risk strategy with our risk score and calculated the

predictive ability of the model. The Harrel’s C-index of the model was

0.688 and the timed AUC of combining ELN risk strategy with gene

signature risk score for 12 months and 18 months was 0.761 and 0.765

respectively (Figures 3H, I).
Association of gene signature risk score on
disease characteristics

We found that a high-risk score was significantly associated with

poor risk cytogenetics(p=0.021), absence of RUNX1-RUNX1T1
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TABLE 1 Median expression of validated genes in patients (n=143) compared to controls(n=50) and their comparison with TCGA LAML dataset(n=179).

S.no. Gene list Expression Median expression (IQR)# P value## Expression in our cohort Expression in TCGA dataset (LAML)*

1. SLC25A3 Patients 7.45E-04 (5.46E-04-1.08E-03) < 0.0001 Overexpression Non-significant

Controls 4.83E-04(3.08E-04-6.95E-04)

2. SDHC Patients 1.03E-04(7.21E-05-1.66E-04) < 0.0001 Overexpression Non-significant

Controls 5.13E-05(3.39E-05-7.81E-05)

3. RACK1/GNB2L1 Patients 1.56E-02(1.07E-02-2.26E-02) < 0.0001 Overexpression Non-significant

Controls 6.43E-03(4.12E-03-9.42E-03)

4. FASTKD1 Patients 6.10E-04(3.75E-04-1.09E-03) < 0.0001 Overexpression Non-significant

Controls 2.71E-04(1.60E-04-5.06E-04)

5. ATP5J Patients 2.67E-06(1.48E-06-4.23E-06) < 0.0001 Overexpression Downregulation

Controls 5.63E-07(1.44E-07 -1.04E-06)

6. FASLG Patients 1.24E-05(5.82E-06-2.23E-05) < 0.0001 Downregulation Non-significant

Controls 2.83E-05(1.72E-05-5.11E-05)

7. CLIC1 Patients 9.63E-04(6.70E-04-1.48E-03) < 0.0001 Overexpression Downregulation

Controls 5.46E-04(3.68E-04-7.91E-04)

8. HRK Patients 2.99E-06(1.30E-06-7.32E-06) < 0.0001 Downregulation Non-significant

Controls 2.64E-05(7.26E-06-4.44E-05)

9. ALAS2 Patients 9.00E-05(1.68E-05-4.16E-04) < 0.0001 Downregulation Downregulation

Controls 7.61E-04(4.68E-04-1.71E-03)

10. SLC25A21 Patients 2.27E-06(6.51E-07-7.02E-06) < 0.0001 Downregulation Downregulation

Controls 8.28E-05(3.86E-05-1.32E-04)

11. CYP1B1 Patients 4.87E-07(1.94E-07-1.87E-06) < 0.0001 Downregulation Non-significant

Controls 4.57E-06(3.22E-06-1.05E-05)

12. GLUT1 Patients 5.46E-04(3.88E-04-8.10E-04) < 0.0001 Overexpression Non-significant

Controls 2.65E-04(1.91E-04-4.08E-04)

13. SLC25A29 Patients 3.48E-04(1.94E-04-6.53E-04) < 0.0001 Overexpression Upregulation

Controls 7.30E-05(5.35E-05-1.26E-04)

14. SNCA Patients 5.73E-05(2.30E-05-1.59E-04) 0.0023 Downregulation Non-significant

Controls 1.06E-04(5.29E-05-2.25E-04)

15. DHFR Patients 5.01E-04(2.58E-04-7.72E-04) 0.0115 Non- significant Non-significant

Controls 7.15E-04(4.32E-04-1.25E-03)

16. MMP9 Patients 2.70E-05(7.74E-06-7.15E-05) < 0.0001 Downregulation Non-significant

Controls 9.05E-04(3.79E-04-1.37E-03)

17. OLFM4 Patients 3.78E-05(1.16E-05-1.47E-04) < 0.0001 Downregulation Non-significant

Controls 9.37E-04(4.46E-04-2.54E-03)

18. LIG1 Patients 1.57E-04(9.12E-05- 2.46E-04) 0.8696 Non- significant Non-significant

Controls 1.38E-04(1.06E-04- 2.46E-04)

19. MRPL51 Patients 6.95E-04(5.46E-04-1.07E-03) 0.0116 Non- significant Downregulation

Controls 5.25E-04 (3.56E-04-1.00E-03)

20. LONP1 Patients 2.93E-04(2.10E-04-4.11E-04) < 0.0001** Upregulation Downregulation

Controls 1.79E-04(1.03E-04-2.59E-04)
F
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#IQR= Interquartile Range.
##Level of significance was set by adjusting alpha error for multiple comparisons by Bonferroni correction (p< (0.05/20) i.e. p<0.0025 were considered as significant).
*LAML = adult AML data available on TCGA (The Cancer Genome Atlas) database accessed from Gepia.
** The expression of LONP1 showed reverse expression trend in validation cohort when compared to RNA sequencing data of test cohort hence considered not validated.
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translocation (p=0.027) and ELN intermediate/poor risk group

(p=0.016). Furthermore, the proportion of patients achieving CR

was significantly higher in the low-risk group as compared to the

high-risk group(p=0.017) (Table 3). On subgroup analysis, it was

observed that the mitochondria-related gene signature risk score

category was significantly predictive of survival outcome across all

clinically relevant subgroups except in those with intermediate/poor-

risk karyotype (Figure S3).
Predictive ability of combined gene
signature and ELN category model on
survival outcome

The predictive ability of gene signature score along with ELN risk

stratification on survival outcome of paediatric AML patients was also

assessed. Patients with low gene signature score (low risk) belonging

to ELN good risk category had significantly better survival outcome

(Median OS: Not reached) and predicted 12-months (80% ± 6%), as

well as 18-months (75% ± 7%) survival. Similarly, patients with high

gene signature score (high risk) belonging to ELN intermediate/poor

risk category had significantly inferior outcome (4.67 months (0-

3.71)) with 12-months and 18-months predicted survival of 33% ± 8%

and 25% ± 7% respectively. On the other hand, patients belonging to

other groups (ELN intermediate/poor risk and low-risk; ELN good

risk and high-risk score) had intermediate survival outcome (median

survival of 27.77-22.90 months respectively) between the two other

groups (Figure 3G; Table 4).
External validation of gene signature risk
score in TCGA database

Using our risk calculation model, we calculated the risk score in

TCGA dataset (n=179) and similarly, patients were further sub-

grouped as high-risk score (higher than median) and low risk score

(lower than median) based on the median value (43.434). Kaplan

Meier analysis showed that patients with a high-risk score (≥43.434)

had inferior OS (HR 1.01;95% CI (1.00-1.02); p<0.019) compared to

those with a low-risk score (<43.434) (Figure 3J; Table 2). Along with

this, poor risk karyotype patients had worse overall survival (HR 1.89;

95% CI (2.95-1.20); p=0.004) compared to patients with good risk or

intermediate risk karyotype (7.03 vs 18.96months). On multivariable
Frontiers in Oncology 08
analysis karyotype (poor vs good risk/intermediate risk) and risk

score were found to be independently predictive of (p=0.002; p=0.025

respectively) for worse OS. The timed AUC of risk score for 12-

months and 18-months survival in the TCGA dataset were 0.64 and

0.63 respectively (Figures 3K, L) and Harrel’s C-index of the

prognostic model was 0.600. In addition to this, high risk score was

also found to be associated with adverse clinical feature of

intermediate/poor risk cytogenetics in TCGA dataset as well

(Table S11).
Discussion

Mitochondrial adaption is an important phenomenon in

leukemic cells and have been shown to impact outcome in patients

with AML. The study by Raffel et al. reported that oxidative

phosphorylation is an important metabolic alteration which is

specific to leukemic stem cells and may be valuable for potential

therapeutic targets (18). Similarly, the study byWu et al. reported that

mitochondrial transcription machinery is upregulated in adult AML

and confers poor survival outcome (19). Furthermore, using

proteomic analysis, a recent study by Jayavelu et al. reported that

AML subgroup with high mitochondrial protein expression have

shorter remission and poor survival outcomes in adult AML (20).

However, there is only limited data on mitochondria-related gene

expression profile and its impact on disease outcome of pediatric

AML (21, 22).

Our study is the first one to identify and validate mitochondria-

related DEGs in paediatric AML along with determining their

prognostic significance. In paediatric AML patients, we identified

and validated 16 mitochondrial DEGs including 8 upregulated and 8

downregulated genes compared to controls. The dysregulated

expression of these genes has been previously reported in the

pathogenesis of various malignancies (23–26). However, they have

not been studied in paediatric AML. Comparison with LAML dataset

of TCGA cohort suggests that the mitochondria-related gene

expression profile in paediatric AML is likely distinct. Elevated

expression of genes like SLC25A3, FASTKD1, SDHC, ATP5J, which

were observed for the first time in our cohort, are involved in

mitochondrial energy metabolism (27–29). Genes like FASLG, HRK

and SNCA, which were observed to be downregulated, also play role

in prevention of mitochondrial damage and apoptosis inhibition in

melanoma/medulloblastoma cell lines (30–32). Preliminary data
TABLE 2 Impact of expression of individual genes and overall risk score on overall survival and event free survival of the test cohort (pediatric cohort) and
overall survival in validation cohort (TCGA adult LAML cohort).

Gene Name

Overall survival
(Pediatric cohort)

n=143

Overall survival (TCGA adult LAML cohort)
n=179

Event Free Survival
(Pediatric cohort)

n=143

Hazard Ratio (95% CI) P value Hazard Ratio (95% CI) P value Hazard Ratio (95% CI) P value

SDHC 1.29(1.14-1.41) <0.001 0.994(0.941-1.050) 0.826 1.225(1.100-1.363) <0.001

SLC25A29 0.88(0.83-0.93) <0.001 0.988(0.981-0.996) 0.003 0.905(0.860-0.952) <0.001

CLIC1 1.20(1.04-1.38) 0.013 1.002(1.00-1.004) 0.069 1.136(0.984-1.312) 0.082

Risk Score 1.010(1.007-1.014) <0.001 1.011(1.002-1.021) 0.019 1.008(1.001-1.012) <0.001
fron
CI, Confidence interval; n, number of patients; TCGA, The cancer genome atlas; LAML, Adult AML dataset.
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FIGURE 3

A 3-gene based gene signature stratifies survival in pediatric and adult AML patients along with clinically established European LeukemiaNet (ELN) risk
categories. (A) Kaplan Meier estimates of overall survival in pediatric AML patient’s subgroup into high Risk-score and low Risk-score. (B) and (C) AUC
curves quantify the ability of our 3-gene based risk score to predict outcome in individual patients (specificity and sensitivity) within the first 12 months
(B) and 18 months (C) of treatment initiation respectively. (D) Kaplan Meier estimates of overall survival in pediatric AML patient’s subgroup into ELN good
risk and ELN intermediate or poor risk categories. (E) and (F) AUC curves quantify the ability of ELN risk categories to predict outcome in individual
patients (specificity and sensitivity) within the first 12 months (E) and 18 months (F) of treatment initiation respectively. (G) Kaplan Meier estimates of
overall survival in pediatric AML patient’s subgroup by combining ELN risk categories with our 3 gene-based risk score. (H) and (I) AUC curves quantify
the ability of combined model of ELN risk categories and our 3 gene-based risk score to predict outcome in individual patients (specificity and sensitivity)
within the first 12 months (H) and 18 months(I) of treatment initiation respectively. (J) Kaplan Meier estimates of overall survival in external adult The
Cancer Genome Atlas (TCGA) AML patient’s subgroup into high Risk-score and low Risk-score using our 3 gene-based gene signature model. (K) and
(L) AUC curves quantify the ability of our 3-gene based risk score to predict outcome in individual patients of TCGA adult AML datasets (specificity and
sensitivity) within the first 12 months (K) and 18 months (L) of treatment initiation respectively. AUC = 1.0 would denote perfect prediction, and AUC =
0.5 would denote no predictive ability.
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TABLE 3 Association of 3-gene risk score with clinical and demographic parameters.

Characteristics (n=143) Risk score Low (%) (n=71) Risk score High (%) (n=72) c2 P value

Age (years)

<10 Years (64) 26(36.6) 38(52.8)
3.775 0.052

≥10 years (79) 45(63.4) 34(47.2)

Sex

Male (87) 42(59.2) 45(62.5)
0.168 0.682

Female (56) 29(40.8) 27(37.5)

Hyperleukocytosis, (>50×103/mL)

TLC<50×103/mL (98) 53(74.6) 45(62.5)
2.446 0.118

TLC≥50×103/mL (45) 18(25.4) 27(37.5)

Fever(n=138)

Negative (26) 17(24.6) 9(13.0)
3.033 0.082

Positive (112) 52(75.4) 60(87.0)

Chloroma

Negative (116) 57(80.3) 59(81.9)
1.781 0.182

Positive (27) 14(19.7) 13(18.1)

Cytogenetics (n=130) *

Good Risk (50) 32(54.2) 18(32.7)
5.349 0.021

Others (64) 27(45.8) 37(67.3)

Molecular analysis (n= 122) **

FLT3ITD

Negative (105) 54(87.1) 51(85.0)
0.112 0.738

Positive (17) 8(12.9) 9(15.0)

RUNX1‐RUNX1T1

Negative (69) 29(46.8) 40(66.7)
4.911 0.027

Positive (53) 33(53.2) 20(33.3)

CBFB‐MYH11 #

Negative (113) 58(93.5) 55(91.7)
– 1.00##

Positive (6) 3(4.83) 3(5.0)

NPM1

Negative (117) 61(98.4) 56(93.3)
– 0.203##

Positive (5) 1(1.61) 4(6.7)

ELN Risk stratification (n=134) ***

Good Risk (67) 41(60.3) 26(39.4)
5.852 0.016

Intermediate and poor risk (67) 27(39.7) 40(60.6)

Complete remission (n=143)

Achieved (104) 58(81.7) 46(63.9)
5.711 0.017

Not achieved (39) 13(18.3) 26(36.1)
F
rontiers in Oncology
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 frontie
*Cytogenetics failed (n=16) and not done in n=13 cases.
** Molecular analysis was not done in 19 cases; molecular mutation was absent in n=43 cases.
#CBFB-MYH11 mutation was assessed in n=119 cases.
## Fisher’s Exact Test.
***ELN (European LeukemiaNet) risk stratification was done using both cytogenetics and molecular markers in 134 patients. However, 12 patients risk stratification was done with only cytogenetics
and in 20 patients, it was done by only molecular analysis.
c 2: Chi square value; TLC: Total leukocyte count; FLT3 ITD: FMS-like tyrosine kinase internal tandem duplication; RUNX1-RUNX1T1: runt-related transcription factor 1-RUNX1 partner
transcriptional co-repressor 1 fusion transcript; CBFB-MYH11: core binding factor beta-myosin heavy chain 11 fusion transcript; NPM1: Nucleophosmin 1.
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suggests that downregulation of genes like MMP9 and OLFM4, as

observed in our cohort, may aid in AML progression (33, 34). The

expression of CYP1B1 is reported to be elevated in various

malignancies, however, its expression is downregulated in early age

leukaemia, as seen in our cohort (35). These findings suggest that the

observed mitochondria-related DEGs likely play crucial role in

disease progression in paediatric AML, which needs to be studied

further mechanistically.

Enhanced mtDNA copy number has been previously reported to

be play role on AML initiation, progression as well as predictive of

inferior survival outcomes (12, 36). A contrasting finding was recently

observed in patients of AML M3 subgroup where elevated mtDNA

copy number was predictive of superior survival outcome (37),

however, AML M3 subgroup has a distinct disease biology and is

not directly comparable with other AML subgroups (38). On the

other hand, similar to our previous finding (12), we observed that

mtDNA copy number were significantly higher and independently

predictive of worse survival outcome in this cohort of pediatric AML

patients as well. Furthermore, among the 16 validated mitochondria-

related DEGs analysed, we observed that the patients with higher

mtDNA copy number had significantly higher expression of

SLC25A3, SDHC, RACK1, and FASTKD1 compared to patients with

low mtDNA copy number. While, only a small percentage of

mitochondrial proteins are coded by the mitochondrial genome,

variations in mtDNA may modulate molecular signals through

nuclear-mitochondrial crosstalk, which may promote tumorigenesis

by upregulating oncogenes (39, 40). This suggests that in paediatric

AML, cells with high mtDNA copy number are possibly driven

through unique gene expression alterations, influencing disease

biology and therapeutic response.

Comprehensive gene expression profiling has been extensively

used to identify potential prognostic genes in adult AML; however,

dysregulation of mitochondria-related gene expression, especially in

children has not been well explored (41–43). Transcriptomic profiling

of cytogenetically normal paediatric AML has identified complex

genomic rearrangements and/or driver mutations in seemingly

normal AML genomes and may even aid risk stratification (44, 45).

Cai et al. developed a 3-gene prognostic risk model for children with

AML using NCI TARGET dataset, although it was not externally

validated (41). Similarly, Duployez et al. and Jiang et al. developed

leukaemia stem cell score gene signature and immune checkpoint

related gene signature respectively in paediatric AML predictive of

survival outcomes (4, 46). The overall comparison of predictive ability
Frontiers in Oncology 11
of all these available gene signatures with our gene signature model

were compiled in the Table S12. None of the above studies evaluated

alterations in mitochondrial gene expressions. Mitochondrial gene

expression has been evaluated in other malignancies like ovarian

cancer, where a mitochondria-related gene signature, consisting of 8

metabolic genes, has been identified with independent prognostic

impact (47).

In this study, we identified exclusive mitochondria-related DEGs

in paediatric AML and developed a prognostic gene signature

including 3 genes (SDHC, CLIC1, and SLC25A29). The gene

signature risk score was additionally found to be independently

predictive of survival along with established ELN risk stratification

with improved predictive ability over clinical risk categorization. The

risk score was also found to be associated with poor clinical features of

AML like the absence of RUNX1-RUNX1T1 translocation or poor-

risk cytogenetics. Hence, the gene signature model is able to

categorize the heterogenous molecular landscape of AML into

clinically meaningful categories along with identification of adverse

disease biology. The developed prognostic score also has the potential

to identify high-risk subgroup even among those belonging to ELN

good risk and vice-versa allowing better upfront risk stratification and

personalized treatment decisions.

TCGA LAML dataset has been extensively used for identifying as

well as validating prognostic gene signatures in various AML studies

(48, 49). We used the LAML dataset of TCGA for external validation

of our gene signature model and observed that the prognostic gene

signature score was also independently predictive of survival outcome

in a large adult cohort as well with predictive ability over and above

known clinical predictors. This suggests that the identified DEGs have

a prognostic impact in AML across age group.

Our gene signature included 3 mitochondria-related genes i.e.,

SDHC, CLIC1, and SLC25A29. SDH mutations lead to decreased

activity of SDH with accumulation of succinate and increase in

oxidative stress resulting in DNA damage and tumorigenesis (50). In

contrast to previous findings, which suggests that the SDH gene is

inactivated in solid tumors (51), we observed an increased expression of

SDHC gene in AML which was predictive of worse survival. This is

likely because, in contrast to solid malignancies, aggressive leukemias

like AML depend on cellular oxidative phosphorylation for proliferation

which is supported by upregulation of respiratory complex genes (52).

Recent study by Erdem et al. has also reported that FLT3-ITD+ AML

have high mitochondrial complex II(SDH) activity and inhibition of

SDH complex enhance apoptosis of FLT3-ITD+ AML cells in vitro as
TABLE 4 Predictive ability of combined gene risk score group and ELN risk category on survival outcome in pediatric AML cohort.

Variables(n) HR (95% CI) P
Value

P value
(overall)

Median OS
(months)

Predicted 12 months
survival

Predicted18 months
survival

ELN Good risk & gene signature risk
group Low (41)

1 – <0.001 Not reached 80% ± 6% 75% ± 7%

ELN Others & gene signature risk
group Low (27)

1.58 (0.78-3.21) 0.20 – 27.77( ± 7.82) 74% ± 8% 58% ± 10%

ELN Good risk & gene signature risk
group High (26)

2.12 (1.06-4.26) 0.034 – 22.90( ± 8.31) 54% ± 10% 44% ± 10%

ELN Others & gene signature risk
group High (40)

3.83 (2.07-7.07) <0.001 – 4.67( ± 3.71) 33% ± 8% 25% ± 7%
HR, Hazard Ratio; CI, Confidence interval; OS, overall survival; ELN, European LeukemiaNet; AML, Acute myeloid leukemia.
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well as in vivo (53). We also observed that the overall activity of

mitochondrial electron transport chain complex II was significantly

higher in bone marrow mononuclear cells of pediatric AML patients

compared to controls (21). This suggests mitochondrial complex II can

be explored as a potential therapeutic target for AML in future studies.

Various studies also suggest dysregulation of chloride ion channels such

as the CLIC1 gene which plays a role in drug resistance and progression

of various malignancies (25, 54). Although, the role of CLIC1 in AML is

still unexplored, we observed significant upregulation of CLIC1 in

paediatric AML with adverse prognostic impact. The downstream

effects of upregulation of CLIC1 on disease biology of AML need to

be further deciphered.

In the current study, we observed an upregulation of SLC25A29 in

our cohort of paediatric AML patients, which is in line with previous

studies where it was found to be significantly elevated in multiple

malignancies (26). Similar upregulation was also been observed in

adult AML patients of TCGA LAML dataset. However, on survival

analysis, downregulation of SLC25A29 was independently predictive

of worse OS in our cohort. This finding was consistent even in the

external cohort of TCGA LAML dataset, where even though the

expression of SLC25A29 was upregulated, a downregulated

expression was predictive of worse survival outcomes. This finding

was intriguing and the mechanism by which downregulation of

SLC25A29 drives a worse survival outcome remains unclear.

SLC25A29 is the main arginine transporter in the mitochondrial

membrane (55). Aberrant upregulation of SLC25A29 may result in

transportation of more arginine into mitochondria, promoting

synthesis of metabolites like nitric oxide, polyamines, proline and

creatine, which are essential for cell survival and proliferation (56).

Mitochondria-derived nitric oxide is known to have a dichotomous

role in regulation of cancer progression which is influenced by

expression of SLC25A29 likely affecting disease outcome (57). The

SLC25 family of genes which encodes for a set of mitochondrial inner

membrane carrier proteins, have been identified as a potential

biomarker as well as novel therapeutic targets in various

malignancies (58). The implications of altered expression of

SLC25A29 on disease biology of AML and its assessment as a

therapeutic target is an exciting area of further research.

To improve the survival outcomes in AML, advancement in

therapies for targeting leukemic cells with heterogenous biology is

crucial. We identified 3 gene-based signature, including 3 prognostic

genes, which can be explored in future as potential therapeutic targets

in AML. SDH inhibitor such as dimethyl malonate has been shown to

have effective response in inflammatory disease in vivo (59).

Furthermore, several novel SDH inhibitors have been identified

using in silico library design which can be potentially utilised in

future studies (60). Interestingly, CLIC1 inhibitors has also been

explored in glioblastoma cells and found that inhibition of CLIC1

sensitizes glioblastoma stem cells by inhibiting proliferation,

migration, invasiveness and self-renewable in vitro and in vivo (61–

63). Along with this, using transcriptomic profile of patients with high

and low risk score, drug sensitivity assay using FDA approved drugs

can be performed to identify drugs precise targeted therapy for

patients with high-risk score in future studies (64–66).

Our study has certain limitations. Transcriptomic profile and

further validation by RTPCR were done in whole isolated

mononuclear cell and not in sorted blasts. However, the gene
Frontiers in Oncology 12
expression profile as observed in the validation cohort with variable

blast percentages using RTPCR remained similar to that observed in

transcriptomic profile done in samples with uniform high blast

percentage. Initial selection of DEGs were also done from whole

RNA sequencing of a limited number of samples, which may lead to a

bias in selection, however, external validation of the validated genes

confirmed their prognostic impact in an independent cohort.

In conclusion, this is the first study to report a validated set of

mitochondria-related DEGs in paediatric AML. We observed that

patients with high mtDNA copy number have a unique gene

expression pattern possibly affecting disease biology. We developed

a 3-gene based mitochondrial gene signature model with ability to

predict prognosis in paediatric AML patients over and above

established clinical prognostic parameters. The gene signature was

also externally validated in a cohort of adult AML patients

demonstrating its predictive ability in adult AML as well. Further

directions for research include in vitro studies for elucidating the role

of prognostic genes in leukemogenesis and their evaluation as

potential targets for the treatment of paediatric AML.
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