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Background: Gamma-aminobutyric acid (GABA) participates in the migration,

differentiation, and proliferation of tumor cells. However, the GABA-related risk

signature has never been investigated. Hence, we aimed to develop a reliable

gene signature based on GABA pathways-related genes (GRGs) to predict the

survival prognosis of breast cancer patients.

Methods: GABA-related gene sets were acquired from the MSigDB database,

while mRNA gene expression profiles and corresponding clinical data of breast

cancer patients were downloaded from the Gene Expression Omnibus (GEO)

and The Cancer Genome Atlas (TCGA) databases. Univariate Cox regression

analysis was used to identify prognostic-associated GRGs. Subsequently, LASSO

analysis was applied to establish a risk scoremodel. We also constructed a clinical

nomogram to perform the survival evaluation. Besides, ESTIMATE and ssGSEA

algorithms were used to assess the immune cell infiltration among the risk score

subgroups.

Results: A GRGs-related risk score model was constructed in the TCGA cohort,

and validated in the GSE21653 cohort. The risk score was significantly related to

the overall survival of breast cancer patients, which could predict the survival

prognosis of breast cancer patients independently of other clinical features.

Breast cancer patients in the low-risk score group exhibited higher immune cell

infiltration levels.

Conclusion: A novel prognostic model containing five GRGs could accurately

predict the survival prognosis and immune infiltration of breast cancer patients.

Our findings provided a novel insight into investigating the immunoregulation

roles of GRGs.
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Introduction

In women, breast cancer is more common than pulmonary

cancer. Cancer statistics published by the ACS indicated that breast

cancer will be the most common cancer in the United States. This

trend will play out in China (1). Breast cancer is a primary threat to

women’s health and it is the leading cause of cancer-associated

death in women (2). At present, early detection and treatment of

breast cancer can greatly decrease the mortality rate of breast

cancer. However, it is often not diagnosed or discovered until

after metastasis has happened (3). In addition, the main reason

for the poor prognosis of breast cancer is that it starts from a local

disease and spreads to other organs, which seriously hinders the

effective treatment of breast cancer (4). A variety of treatments are

currently available to treat breast cancer, including radiation

therapy, hormone therapy, chemotherapy, and surgery. However,

the prognosis for most breast cancer patients remains unfavorable,

even those treated early (5, 6). These data demonstrated an urgent

need to develop innovative approaches for breast cancer treatment

to reduce its recurrence and death.

Gamma-aminobutyric acid (GABA) is non-protein amino

widely found in vertebrates, plants, and microorganisms. The

physiological effects of GABA are associated with preventing

depression, promoting neuronal development, and regulating

synaptic transmission (7, 8). In addition, various other

pharmacological activities of GABA have also been reported,

including intestinal protection, anti-allergy, anti-inflammatory,

anti-cancer, etc. (9). GABA also contributes to the development

and function of the immune system. According to a relevant study,

GABA, as an immunomodulator, can regulate T cell proliferation

and change T cell migration (10). Recent findings uncovered that

tumor cell-derived GABA contributes to b-catenin-mediated

immunosuppression and cancer cell growth (11). GABA derived

from B cells recruits macrophages that generate IL-10 and suppress

anti-tumor immunity (12). In addition, some studies have

demonstrated that GABA receptors could inhibit cancer cell

proliferation and suppress migration (13, 14). GABA type A

receptor family genes exhibited distinct diagnostic and prognostic

values for colon adenocarcinoma patients (15). Deficient GABA

transaminase is associated with poor prognosis and cancer

progression in hepatocellular carcinoma due to its role in tumor

immunity (16). GABA level is a prognostic marker for breast cancer

patients (17). Thus, an in-depth study of the role of GABA in cancer

will facilitate the identification of novel prognostic markers and

may provide more targets for immunotherapy and chemotherapy in

breast cancer patients. However, there are very few studies on the

GABA signaling pathway in breast cancer.

In the present study, we aimed to investigate the genes

associated with the GABA signaling pathway to establish a novel

prognostic risk model for breast cancer patients. The GABA

signature was closely associated with the tumor immune

microenvironment and can effectively predict the prognosis for

breast cancer patients. In clinical diagnosis and treatment, the

prognostic risk model constructed in the present study can help

clinicians more accurately identify breast cancer patients with poor

prognosis, and provide patients with more targeted examination
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and treatment. At the same time, our study also provides a

theoretical basis and data support for further research on the role

of GABA in breast cancer.
Methods and materials

Acquisition of data

For the discovery cohort, the transcriptome expression profiles

and corresponding clinical data of breast cancer patients were

downloaded from The Cancer Genome Atlas (TCGA). This

discovery cohort contained 1109 breast cancer samples and 113

non-cancer samples. For the validation cohort, GSE21653 (252

breast cancer samples) dataset, with detailed clinical data, was

downloaded from the Gene Expression Omnibus (GEO); the

GSE22820 dataset (176 tumor samples and 10 normal samples)

was also downloaded from GEO. Five GABA pathways-related

datasets (WP GABA RECEPTOR SIGNALING, WP GABA

METABOLISM AKA GHB, REACTOME GABA SYNTHESIS

RELEASE REUPTAKE AND DEGRADATION, REACTOME

GABA RECEPTOR ACTIVATION, BIOCARTA GABA

PATHWAY) were acquired from MSigDB database (https://

www.gsea-msigdb.org/). A total of 97 GABA pathways-related

genes (GRGs) were selected for the research (Table S1). The

“limma” package of R was applied to identify the differential

expression of GRGs (DEGRGs) between the normal and tumor

groups. The adjusted p-value was < 0.05, and the threshold was

∣logFC∣≥ 1. The volcano map of GRGs was generated using the

“ggplot2” package of R.
Construction of protein-protein interaction
(PPI) network

The Search Tool for Retrieving Interacting Genes (STRING)

(http://string-db.org/) was used to establish the PPI network, the

results were visualized by Cytoscape software.
Functional enrichment analysis of DEGRGs

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and

gene ontology (GO) enrichment analyses were performed to explore

the potential biological functions of DEGRGs. The “clusterProfiler”

package of R was used for enrichment analyses, and the significance

threshold of p was < 0.05.
Establishment of the prognostic risk score
model based on DEGRGs

First, we performed a univariate Cox analysis to identify the

prognosis-related DEGRGs in breast cancer patients. P < 0.05 was

used as the screening condition. Subsequently, we used the

“survival” and “glmnet” packages of R to carry out the least
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absolute shrinkage and selection operator (LASSO) Cox regression

analysis. Then, the risk score for each sample was calculated

according to the following formula: risk score = coefficient of

Gene A × expression of gene A + coefficient of Gene B ×

expression of gene B +…coefficient of Gene N × expression of gene

N (18). The breast patients were divided into low- and high-risk

groups based on the median risk score. In addition, the Kaplan-

Meier curve analysis was carried out to assess the difference in

overall survival between low- and high-risk groups by using the

“survival” package of R. The “timeROC” and “ggplot2” packages of

R were used to assess the predictive ability of the risk score model.
Establishment of nomogram

The “rms” and “survival” packages of R were used to construct a

nomogram based on the risk score. An evaluation calibration curve

was generated by plotting the nomogram-predicted survival

probability and the observed survival probability.
Assessment of immune cell infiltration
between the two risk score groups

Estimation of STromal and Immune cells in MAlignant

Tumours using Expression (ESTIMATE) is an algorithm that

applies gene expression profiles to calculate the score of immune

and stromal cells in cancer tissue (19). Single-sample gene set

enrichment analysis (ssGSEA) was used to quantify the score of

immune cells in the tumor samples. The “GSVA” package of R was

applied to perform the ssGSEA (20). The results of ESTIMATE and

ssGSEA were presented in the form of a histogram. In addition, the

“ggplot2” package of R was used to evaluate the correlation between

risk score and immune cells.
Collection of samples and quantitative
real-time polymerase chain
reaction (qRT-PCR)

We collected 8 pairs of cancer tissues and peritumoral normal

tissues from patients with breast cancer who received surgery

between 2020 and 2021 at the Department of breast cancer

surgery, Jiangxi Cancer Hospital. Before the surgery, patients did

not undergo immunotherapy, chemotherapy, or radiotherapy. This

study was approved by the ethics committee of Jiangxi Cancer

Hospital. The RNA extraction reagent (ThermoFisher) was used to

extract the total RNA from the tissue. The PrimeScript RT reagent

kit (ThermoFisher) was used to perform the cDNA synthesis. Then,

the Fast SYBR Green Master Mix (TaKaRa) was used to quantify the

gene expression. The qRT-PCR was carried out on a StepOne Real-

time PCR system (Applied Biosystems). The 2–DDCt method was

applied to quantify the relative gene expression level. The primers

were listed in Table S2.
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Tumor immune estimation resource
(TIMER) database

The TIMER database (https://cistrome.shinyapps.io/timer/) is

an online analysis tool, mainly used to visualize and analyze the

level of tumor-infiltrating immune cells and calculate the

abundance of various tumor immune cells from the TCGA

database (21). In this study, we used the TIMER database to

analyze the correlation between gene expression and immune cell

infiltration in breast cancer.
Results

Analysis of DEGRGs in breast cancer

As shown in Figures 1A, B, a total of 43 DEGRGs were

identified in the TCGA dataset, which included 28 up-regulated

genes and 15 down-regulated genes. In addition, the results of GO-

BP enrichment analysis indicated that these DEGRGs were

significantly enriched in the regulation of membrane potential,

neurotransmitter transport, anion transmembrane transport,

amino acid transport, regulation of postsynaptic membrane

potential, inorganic anion transmembrane transport, chloride

transport, etc. The results of KEGG indicated that these DEGRGs

were involved in GABAergic synapse, retrograde endocannabinoid

signaling, morphine addiction, cholinergic synapse, circadian

entrainment, glutamatergic synapse, apelin signaling pathway,

relaxin signaling pathway, synaptic vesicle cycle, etc (Figure 1C).
Construction and validation of the
DEGRGs-related prognostic risk model

As shown in Figure 2A, 7 overall survival-related genes were

identified by univariate Cox regression analysis of the 43 DEGRGs.

Subsequently, the 7 overall survival-related genes were subjected to

the LASSO Cox regression analysis, and 5 genes were identified and

selected for the construction of the prognostic risk model

(Figures 2B, C). The risk score model was calculated by the

following formula: risk score = 0.5792 × expression of SLC6A1 +

(-0.0485) × expression of ABAT + (-0.006) × expression of ADCY1

+ (-0.2103) × expression of ADHFE1 + (-0.0188) × expression of

GNG7. The results of Kaplan-Meier curves indicated that breast

cancer patients in the high-risk score group had a worse prognosis

than those in the low-risk group (Figure 2D, p < 0.001). Figure 2E

presented the survival status of breast cancer patients and the

expression of risk score-related genes sorted by risk score, and

results indicated that patients in the high-risk score group were

more likely to die. In addition, we used the ROC curve to assess the

predictive performance of the risk score model. The AUC for the

risk score model was 0.523 at 1-year, 0.697 at 3-year, and 0.655 at 5-

year (Figure 2F), these results indicated that the risk score model

exhibited discrimination.
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Furthermore, the prognostic values of the risk score and clinical

characteristics were further investigated by univariate and

multivariate analyses. As presented in Table S3, our results

indicated that age, M stage, and risk score were independently

associated with the outcome in breast cancer patients.

We also validated the predictive ability of the risk score model

by the GSE21653 dataset. Kaplan-Meier curves indicated that breast

cancer patients in the high-risk score group had a worse prognosis

(Figure 2G, p = 0.006). The breast cancer patients in the high-risk

score group were more likely to die (Figure 2H). The AUC for the

risk score model was 0.54 at 1-year, 0.608 at 3-year, and 0.633 at 5-

year (Figure 2I). The findings of the discovery cohort and validation

cohort were comparable, implying that our prognostic model has

considerable stability for the prediction of breast cancer patients.
Construction of the nomogram

The 1-, 3-, and 5-year prediction nomograms of breast cancer

patients were drawn based on the risk score (Figure 3A). In

addition, as shown in Figure 3B, the 1-, 3-, and 5-year calibration

curves for overall survival showed a good fit between observed and

predicted survival, the findings also demonstrated the accuracy of

the prognostic nomogram.
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Differences in immune status between
low- and high-risk score groups

We also investigated whether the tumor microenvironment was

related to the risk score. As shown in Figures 4A–C, the high-risk

group had a significantly higher ESTIMATE score (p < 0.001),

higher stromal score (p < 0.001), and lower immune score (p < 0.01)

compared to those in the low-risk score group. In addition, the

results of ssGSEA indicated that the enrichment scores of T cells,

aDC (activated dendritic cells), B cells, CD8 T cells, cytotoxic cells,

DC (dendritic cells), NK CD56bright cells, NKCD56dim cells, TFH,

and TReg in the high-risk score group were significantly lower than

those in the low-risk score group (p < 0.05). Whereas, the

enrichment scores of eosinophils, macrophages, mast cells,

neutrophils, NK cells (natural killer cells), Tcm, and Tgd in the

high-risk score group were significantly higher than those in the

low-risk score group (p < 0.05) (Figure 4D).

Furthermore, we also performed the correlation analysis between

the DEGRGs-related risk score and immune cell infiltration. As shown

in Figure 4E, the infiltration level of the T cells, aDC, B cells, CD8 T

cells, cytotoxic cells, DC, NK CD56bright cells, NKCD56dim cells,

TFH, and TReg were negatively associated with the risk score, while

the levels of the eosinophils, macrophages, mast cells, neutrophils, NK

cells, Tcm, and Tgd were positively associated with the risk score.
A B

C

FIGURE 1

Analysis of DEGRGs in breast cancer. (A) Volcano plot of GRGs between tumor and normal groups. The green dots represent down-regulated genes,
and the red dots represent up-regulated genes. (B) PPI network of DEGRGs. (C) Enrichment analyses of DEGRGs.
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Evaluation of the prognostic value of
DEGRGs in the TCGA dataset

The expression level of ABAT (Figure 5A), and SLC6A1

(Figure 5I) was significantly up-regulated in the tumor group. In

contrast, the expression level of ADHFE1 (Figure 5E) and GNG7
Frontiers in Oncology 05
(Figure 5G) was significantly down-regulated in the tumor group.

The up-regulation of ABAT (Figure 5B), ADCY1 (Figure 5D), and

SLC6A1 (Figure 5J) were associated with poor prognosis in breast

cancer patients (p < 0.05). The down-regulation of ADHFE1

(Figure 5F), and GNG7 (Figure 5H) was associated with poor

prognosis in breast cancer patients (p < 0.05). There was no
D

A

B

E F

G IH

C

FIGURE 2

Construction of DEGRGs-related risk score model in TCGA dataset. (A) Univariate Cox regression analysis of DEGRGs. (B, C) LASSO regression
analysis of 7 overall survival-related DEGRGs. (D) Kaplan-Meier survival analysis of risk score in the TCGA. (E) The expression level of DEGRGs
(below), survival status (middle), and the distribution of risk scores in the low- and high-risk score groups (upper). (F) Time-dependent ROC curve
analyses. Validation of DEGRGs-related risk score model in GSE21653 dataset. (G) Kaplan-Meier survival analysis of risk score in the GSE21653.
(H) The expression level of DEGRGs (below), survival status (middle), and the distribution of risk scores in the low- and high-risk score groups
(upper). (I) Time-dependent ROC curve analyses.
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significant difference in the mRNA expression of ADCY1

(Figure 5C) in the primary breast tumor and normal breast tissue.

These results indicated that ABAT, SLC6A1, ADHFE1, and GNG7

were the potential prognostic biomarkers for breast cancer.
Validation of the expression level
of the DEGRGs

As shown in Figure 6, the expression level of DEGRGs was

verified using the GSE22820 dataset and clinical samples. The

mRNA expression level of ADHFE1 and GNG7 was significantly

down-regulated in the primary breast tumor. In contrast, the

expression level of ABAT and SLC6A1 was significantly up-

regulated in the primary breast tumor. There was no significant
Frontiers in Oncology 06
difference in the mRNA expression of ADCY1 in the primary breast

tumor and normal breast tissue. This result was consistent with the

above finding.
Correlation analysis of the DEGRGs and
immune cell infiltration in breast cancer

As shown in Figure 7A, the ABAT expression had a significantly

negative correlation with infiltrating level of B cell (p = 1.33×10-3),

and dendritic cell (p = 1.63×10-3); the ABAT expression had a

significantly positive correlation with infiltrating level of

macrophage (p = 1.43×10-4). ADCY1 expression had a

significantly negative correlation with infiltrating level of B cell (p

= 2.29×10-5), neutrophil (p = 5.56×10-4), and dendritic cell (p =

4.94×10-4) (Figure 7B). ADHFE1 expression had a significantly

negative correlation with infiltrating level of B cell (p = 2.71×10-4);

ADHFE1 expression had a significantly positive correlation with

infiltrating level of CD4+ T cell (p = 3.84×10-6) (Figure 7C). GNG7

expression had a significantly positive correlation with infiltrating

level of CD4+ T cell (p = 1.62×10-6) (Figure 7D). SLC6A1

expression had significantly positive correlation with infiltrating

level of CD8+ T cell (p = 8.23×10-6), CD4+ T cell (p = 5.45×10-5),

macrophage (p = 6.86×10-27), neutrophil (p = 1.87×10-5), and

dendritic cell (p = 1.23×10-4) (Figure 7E). Our findings indicated

that these DEGRGs play a vital role in the immune infiltration of

breast cancer.
Discussion

Breast cancer is a typical heterogeneous cancer. It is the

malignant tumor with the highest incidence rate in women and

poses a serious threat to women’s health. Despite significant

advances in the treatment of breast cancer in recent years.

However, it is still very important to develop effective markers for

the diagnosis and prognosis of breast cancer, especially in the early

diagnostic detection of breast cancer (22). In our study, we intended

to construct an efficient prognostic model for breast cancer patients

and identify specific targets for the diagnosis and treatment of

breast cancer.

In the present study, a DEGRGs-related risk score model that

efficaciously classified breast cancer patients and predicted overall

survival was constructed based on the GABA pathways. This risk

score model comprised five genes (ABAT, SLC6A1, ADCY1,

ADHFE1, and GNG7), and it had excellent predictive power in

the discovery and validation cohorts. In addition, in terms of AUC

for the risk model’s ROC curve, the prognostic model exhibited

good diagnostic performance for the prediction of 3-year and 5-year

survival rates. Multivariate analysis revealed that risk score was an

independent prognostic factor for breast cancer patients. These

findings implied that the risk model had significant clinical

implications in the diagnosis and prediction of clinical outcomes

of breast cancer patients. Furthermore, we also performed

ESTIMATE and ssGSEA analyses to investigate the immune cell
A

B

FIGURE 3

Construction and assessment of the nomogram. (A) Development of
nomograms for predicting prognosis. (B) Calibration curve for
predicting 1-, 3-, and 5-year survival in breast cancer patients.
***p < 0.001.
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infiltration landscape between the low- and high-risk groups. Our

findings revealed that the high-risk group exhibited a bad prognosis

and an immunosuppressive microenvironment characterized by

low immune score and low infiltration level of immune cells.

Especially, in the high-risk group with poor prognosis, there was

a significant decrease in the infiltration of CD8 T cells and dendritic

cells (DC). The results were consistent with previous studies: a low

CD8 T cells score was associated with poorer survival in triple-

negative breast cancer (23); Breast cancer patients with low DC

count tended to have shorter progression-free survival than patients

with high infiltrated DC (24). These findings further showed that

GRGs may play a vital role in the changed tumor immune

microenvironment in breast cancer.

The proposed risk score model contained five GRGs, including

ABAT, SLC6A1, ADCY1, ADHFE1, and GNG7. Gamma-
Frontiers in Oncology 07
aminobutyrate aminotransferase (ABAT) was down-regulated in

liver cancer tissue and cell levels, and low expression of ABAT was

associated with poor prognosis in liver cancer (25). In addition, the

down-regulation of ABAT expression was associated with poor first-

line endocrine therapy outcomes in patients with advanced disease

(26). Solute carrier family 6 member 1 (SLC6A1) overexpression

promoted clear cell renal cell carcinoma cell invasion, migration, and

proliferation (27). SLC6A1 overexpression was associated with tumor

progression and poor prognosis in patients with prostate cancer (28).

SLC6A1 was up-regulated in colorectal cancer and can be used as an

independent marker for colorectal cancer prognosis (29). Adenylyl

cyclase 1 (ADCY1) overexpression inhibited glioma cell invasion,

migration, and proliferation (30). Low expression of ADCY1 was

related to pancreatic adenocarcinoma patients’ overall survival, and it

was an independent risk factor for pancreatic adenocarcinoma (31).
D

A B

E

C

FIGURE 4

The association between the immune status and risk score. The comparison of ESTIMATE score (A), Immune score (B), and Stromal score (C)
between the low- and high-risk score groups. (D) The box plot presented the differences in immune cell infiltration between the low- and high-risk
score groups. (E) Correlation analysis of the risk score and immune cell infiltration in breast cancer. *p < 0.05, **p < 0.01, ***p < 0.001. "ns" is no
significant difference.
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Alcohol dehydrogenase iron containing 1 (ADHFE1) encoded

hydroxy acid-oxyacid trans-hydro enzymes involved in a variety of

biological processes, including cancer (32). Up-regulation of ADHFE1

suppressed the proliferation of colorectal cancer cells through

regulation of the cell cycle (33). ADHFE1 contributed to metabolic

reprogramming with a reductive glutamine metabolism in breast

tumors (34, 35). G Protein Subunit Gamma 7 (GNG7) is involved

in inducing apoptosis and regulating cell proliferation (36, 37). GNG7

prevented tumorigenesis in lung adenocarcinoma cells by suppressing

E2F transcription factor 1 (38). GNG7 was a promising prognostic

biomarker and was related to immune cell infiltration in colorectal

cancer (39). Overall, these GRGs were closely associated with tumor

progression, which merits further investigation.

However, our study has some shortcomings. Although

the expression level of five DEGRGs was validated by qRT-PCR

in 8 pairs of clinical samples, a larger number of samples would

make the results more reliable. In addition, the prognostic

performance of the risk model needs to be validated in larger

breast cancer cohorts.
Conclusion

In conclusion, this was the first research to investigate the role

of GABA-related pathways and construct the DEGRGs-related risk
DA B

E F G

I

H

J

C

FIGURE 5

Evaluation of the prognostic value of DEGRGs in the TCGA dataset. The expression level of ABAT (A), ADCY1 (C), ADHFE1 (E), GNG7 (G), and SLC6A1
(I) in the TCGA dataset. Kaplan-Meier survival analysis of ABAT (B), ADCY1 (D), ADHFE1 (F), GNG7 (H), and SLC6A1 (J) in the TCGA breast cancer
patients. ***p < 0.001. "ns" is no significant difference.
A

B

FIGURE 6

Verification of expression of the five DEGRGs. (A) Gene expression
level of five DEGRGs in the GSE22820 dataset. (B) Gene expression
level of five DEGRGs in 8 pairs of breast cancer tissue samples. *p <
0.05, ***p < 0.001. "ns" is no significant difference.
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score model in breast cancer. This risk score model could effectively

predict the prognosis of breast cancer patients. In addition, five

DEGRGs associated with this risk model may be involved in the

progression of breast cancer via impacting immune cell infiltration.

Our findings could provide a scientific basis for the study of the

GABA signaling pathway in breast cancer.
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