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Background: Melanoma is a common and aggressive cutaneous malignancy

characterized by poor prognosis and a high fatality rate. Recently, due to the

application of Immune–checkpoint inhibitors (ICI) in melanoma treatment,

melanoma patients’ prognosis has been tremendously improved. However, the

treatment effect varies quite differently from patient to patient. In this study, we aim

to construct and validate a Cuproptosis-related risk model to improve outcome

prediction of ICIs in melanoma and divide patients into subtypes with different

Cuproptosis-related genes.

Methods: Here, according to differentially expressed genes from four melanoma

datasets in GEO (Gene Expression Omnibus), and one in TCGA (The Cancer

Genome Atlas) database, a novel signature was developed through LASSO and

Cox regression analysis. We used 781 melanoma samples to examine the

molecular subtypes associated with Cuproptosis-related genes and studied the

related gene mutation and TME cell infiltration. Patients with melanoma can be

divided into at least three subtypes based on gene expression profile. Survival pan-

cancer analysis was also conducted for melanoma patients.

Results: The Cuproptosis risk score can predict tumor immunity, subtype, survival,

and drug sensitivity for melanoma. And Cuproptosis-associated subtypes can help

predict therapeutic outcomes.

Conclusion: Cuproptosis risk score is a promising potential biomarker in cancer

diagnosis, molecular subtypes determination, TME cell infiltration characteristics,

and therapy response prediction in melanoma patients.

KEYWORDS

bioinformatic, tumor immune microenvironment, melanoma, cuproptosis, immune–
checkpoint inhibitors
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1 Introduction

Melanoma, skin cancer of high malignancy, originates from

melanocytes. The melanocytes are mainly located in the basal layer

of the epidermis, which plays an essential role in the synthesis of

melanin (1). The malignant transformation of melanocytes can

cause melanoma and develops in the skin (2). Melanoma has a

high metastatic potential, even a relatively small one. Regional

lymph nodes and skin are the first and most common metastatic

sites of melanoma, followed by distant visceral sites, like lungs, liver,

bone, and so on (3). The incidence of melanoma is increasing year

by year. New molecular subtypes for early melanoma diagnosis and

prognosis have progressively become a field of interest (4). For

example, Wu et al. divided 781 melanoma patients into different

subtypes according to tumor-infiltrating immune cells (TIICs) and

immune-related genes (IRGs). They found that the two groups

prognoses are different (5). Whereas considerable progress has

been made in molecular subtypes of melanoma, the prognosis

prediction and therapeutic efficacy of melanoma patients remain

unsatisfactory. In the studies that follow, it is of great interest to

discover more molecular biological markers related to the prognosis

of melanoma.

As an essential nutrient, copper plays a vital role in oxygen

metabolism, oxygen radical detoxification and iron uptake (4).

However, Copper can also cause impaired cellular functions and

eventually cell death when there are excesses or deficiencies in the

human body. An imbalance of copper homeostasis can cause

irreversible damage to cells, even cell death. Studies showed that the

imbalance in copper homeostasis can cause apoptosis and autophagy,

through various mechanisms, including reactive oxygen species

accumulation, proteasome inhibition, and anti-angiogenesis (6).

Cuproptosis, a novel cell death manner, has been reported recently.

A previous study found that Cuproptosis is critical in promoting the

progression of a variety of tumors (7). Cuproptosis-related molecules

are expected to be novel therapeutic targets for melanoma. Enormous

Cuproptosis-related genes (CRGs) have been identified, some of

which are positive regulation functions, and others are negative

regulation functions. It is worthwhile to mention that the

association between Cuproptosis and the prognosis of patients with

melanoma remains unclear. Therefore, elucidating the detailed

molecular characteristics of CRGs is conducive to predicting the

prognosis of melanoma and precisive treatment.

In this study, on the basis of the expression of prognostic CRGs,

781 SKCM patients from four GEO melanoma cohorts and TCGA

cohorts were divided into three Cuproptosis-related subtypes. We

constructed the Cuprotosis score signatures of samples, building upon

RNA transcripts, which could help predict prognosis in a number of

patients with melanoma. Moreover, this study comprehensively

analyzed various immune cell subsets using two computational

algorithms: CIBERSORT and ESTIMATE. Furthermore, a

prognostic nomogram that comprehensively combined Cuprotosis

score signatures and the clinicopathological prognostic factors were

constructed to predict individual prognosis. Our study demonstrated

that Cuprotosis-related genes are attractive candidates as

prognostic indicators.
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2 Methods

2.1 Transcriptomic datasets, and
survival information

Figure S1 depicts a flowchart of the current work’s procedure. The

Gene Expression Omnibus, The Cancer Genome Atlas (TCGA), and

Genotype-Tissue Expression (GTEx) databases were used to provide

gene expression (fragments per kilobase million, FPKM) and

significant prognostic and clinicopathological data for SKCM. For

the following analyses, four GEO melanoma cohorts (GSE19234,

GSE65904, GSE78220, and GSE133713) and TCGA cohorts were

collected. We retrieved the raw “CELL” files and adjusted the

background and quantile standardization. The FPKM numbers of

TCGA-Skin Cutaneous Melanoma (SKCM) were converted into

transcripts per kilobase million (TPM) and were thought to be

equivalent to those from microarrays (8).

The “Combat” technique was used to minimize batch effects after

combining five datasets. We eliminated data from patients who did

not have an OS; hence, 781 SKCM patients were included in the

ensuing analyses. Table S1 contains detailed information on these 781

SCKM patients. Age, gender, tumor site, TNM stage, follow-up

period, and survival status were all clinical factors.
2.2 Consensus clustering analysis of CRGs

Ten CRGs were found in earlier papers (7). Table S2 has complete

information on these genes. To categorize patients into discrete

molecular subgroups based on CRG expression, the R package

“ConsensusClusterPlus” was used for consensus unsupervised

clustering analysis. This clustering was done using the following

criteria: First, the cumulative distribution function (CDF) curve

progressively and gently grew. Second, there were no groups with

small sample sizes. Finally, clustering boosted intra-group correlation

while decreasing inter-group correlation. To study changes in CRGs

in biological processes, gene set variation analysis (GSVA) was done

using the MSigDB hallmark gene set (c2.cp.kegg.v7.2).
2.3 The relationship between subgroups and
SKCM clinical characteristics and prognosis

We investigated the correlations between genetic subgroups,

clinical and pathological features, and prognosis to assess the

clinical utility of the subgroups found by consensus clustering. Age,

gender, tumor site, and TNM stage were among the patient

characteristics. Moreover, the variations in OS across subgroups

were examined using Kaplan-Meier curves built by the R programs

with “survival” and “survminer” packages.

Risk Score=

o
n

i=1
bigenei(expression)

where, bi is the parameter, and genei is an expression of each gene.
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2.4 TME, CLTA4, and PD-L1 molecular
subgroup correlations in SKCM

Each patient’s immunological and stromal scores were evaluated

using the ESTIMATE methodology. Furthermore, the CIBERSORT

method was used to compute the percentages of 22 human immune

cell types in each melanoma sample (9). A single-sample gene set

enrichment analysis (ssGSEA) technique was also used to estimate the

degree of immune cell infiltration in the SKCM TME (10). We also

looked at the relationships between different subgroups and CLTA4

and PD-L1 expression.
2.5 Screening of DEGs and
functional annotation

DEGs between Cuprotosis subgroups were found using the R

package “EdgeR” with a fold-change of 2.0 and an adjusted p-value

of<0.0001. Functional enrichment studies were performed on the

DEGs using the “clusterprofiler” package in R to further investigate

the probable functions of cuprotosis pattern-associated DEGs and

uncover related gene functions and enriched pathways.
2.6 Establishment of the Cuprotosis-related
prognostic CRG score

To measure the Cuprotosis patterns of the individual tumors, the

Cuprotosis score was established. The DEGs were first applied to

univariate Cox regression assessment to find those associated with

SKCM OS. Second, using an unsupervised clustering approach based

on the expression of prognostic CRGs, the patients were divided into

three subgroup groups (Cuprotosis gene subgroup A, Cuprotosis gene

subgroup B, and Cuprotosis gene subgroup C) for further study.

Finally, all SCKM patients were randomly assigned to training (n =

452) and testing (n = 329) sets in a 70:30 ratio, and the former was

utilized to calculate the Cuprotosis-related predictive CRG score.

Although, using the R package “glmnet,” we built LASSO Cox

regression models based on the expression status data of

cuprotosis-related prognostic genes. The least absolute shrinkage

and selection operator (LASSO) is a well-known approach for

assessing survival data, and it is particularly effective for studying

gene expression profiles with high dimensionality, small sample sizes,

and highly significant variables (1,2). The “glmnet” package provided

a series of models, with the value of the tuning parameter l inversely

related to the model’s complexity and deviation. The number of

nonzero coefficients dropped as the value of the invisible l rose from

left to right. Ten-fold cross-validation was performed to discover the

ideal l values, and a value lambda = 0.0266 with log (l) = -3.626844

was selected using minimal criterion. However, the value’s findings

may vary significantly depending on the time of analysis. As a result,

10-fold cross-validation was performed up to 100 times, and cross-

validated errors were averaged. Next, the cuprotosis-related

prognostic genes derived from LASSO regression analysis were used

in multivariate Cox regression analysis. The signatures were created

by combining several cuprotosis-related prognostic genes, followed by

the determination of the Akaike information criterion (AIC) value for
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each individual cuprotosis-related prognostic gene. Following that,

the best prognostic signature was developed based on the lowest AIC

value with the best goodness of fit.

A total of 452 patients in the training set were split into low-risk

(CRG score< median value) and high-risk (CRG score > median

value) groups and then conducted Kaplan- Meier survival analysis

based on the median risk score. The “ggplot2” R software was then

used to conduct principal component analysis (PCA). Furthermore,

the testing and all sets were classified into low- and high-risk groups,

with each subgroup conducted to Kaplan-Meier survival analysis and

the creation of receiver operating characteristic (ROC) curves.
2.7 The prognostic CRG score’s clinical
correlation and stratification analyses

Chi-square tests were employed to investigate the correlations

between the CRG score and clinical variables (age, gender, tumor site,

and TNM stage). We ran univariate and multivariate analyses on the

training and testing sets to see whether risk scores were independent

of other known clinicopathological variables. Furthermore, we

conducted a stratified analysis to see whether the CRG score

preserved its predictive potential in various subgroups based on

age, gender, T stage, N stage, M stage, tumor stage, and tumor site.
2.8 Immune status and microsatellite
instability were compared between high and
low-risk groups

CIBERSORT was utilized to measure the quantity of 22 infiltrating

immune cells in diverse samples from low- and high-risk cohorts to

assess the ratios of TIICs in the TME. We investigated the relationships

between the CRG score and the percentages of 22 invading immune cells.

We also utilized boxplots to compare the amounts of immunological

checkpoint expression between the low- and high-score cohorts. We also

looked at the links between the two risk categories and MSI.
2.9 Drug sensitivity and mutation analysis

The mutation annotation format (MAF) from the TCGA database

was developed using the “maftools” R package to differentiate the

somatic mutations of SKCM patients into high- and low-risk

categories. We also computed the tumor mutation burden (TMB)

score for each SKCM subject in the two classes. We estimated the half

maximal inhibitory concentration (IC50) values of chemotherapeutic

medications routinely used to treat melanoma using the

“pRRophetic” software to investigate variations in the therapeutic

effects of chemotherapeutic agents in patients in the two classes.
2.10 Creating and validating a nomogram
scoring scheme

Based on the results of the independent prognosis study, the

clinical parameters and risk score were utilized to create a prediction
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nomogram using the “rms” package. Each variable in the nomogram

scoring system was assigned a score, and the final score was calculated

by summing the scores from all variables in each sample (11). The

nomogram was evaluated using time-dependent ROC curves for 1-, 3-

, and 5-year survivals. The nomogram calibration plots were utilized

to show the predictive value between the anticipated 1-, 3-, and 5-year

survival events and the practical actual results.
2.11 The suggested model’s
pan-cancer analysis

We investigated the relationship between tumor mutational

burden (TMB) and microsatellite instability (MSI) in 33 cancer

species and determined whether they were upregulated or

downregulated. Furthermore, in pan-cancer, a correlation study

between risk score and TME as well as stemness indices was done.
2.12 Quantitative real-time PCR

DMEM medium supplemented containing 10% fetal bovine

serum (FBS) was used to maintain A375 and HaCaT cell lines.

These cells were cultured in a humidified chamber at 37°C with 5%

CO2. The extraction of total RNA from cells was done by using a

Trizol reagent (Sangon Biotech, China) according to the instructions

supplied by the manufacturer. Ultraviolet absorption spectrometry

was used to assess RNA quantity and quality. Evo M-MLV RT Mix

Kit (Accurate Biotechnology, Hunan, China) from total RNA (1 mg)
was used for cDNA synthesis, Evo M-MLV RT Mix Kit (Accurate

Biotechnology, Hunan, China) from total RNA (1 mg) was used.

Quantitative PCR (qPCR) was performed using the SYBR Green

Premix Pro Taq HS qPCR Kit (AG11718, Accurate Biotechnology,

Hunan, China). Primers shown in Table S3 were used for amplifying

products. The DDcycle threshold method was used for quantifying the

relative gene expression. GADPH acted as an endogenous control to

normalize the expression level of relative gene expression. All results

were obtained from at least three independent experiments with a

minimum of three replicates per condition.
2.13 Statistical analysis

The K-M technique was used. To evaluate statistical significance,

the log-rank test is utilized. R Computing Environment v4.1.2 was

used for further analytical experiments. To study the prognosis of the

estimate models for one, three, and five years, the ROC curve and

AUC were exhibited using the “SurvivalROC” algorithm.
3 Results

3.1 Genetic and transcriptional alterations of
CRGs in SKCM

The Figures 1 and S1 depict the methodological approach used in

this research. This research includes a total of ten CRGs. The SKCM
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cohort had a rather high mutation frequency, according to a summary

study of the prevalence of somatic mutations in these 10 CRGs

(Figure 1A). Of the 85 SKCM samples, 70 (85.35 percent)

contained mutations in the CRGs (Figure 2A). CDKN2A exhibited

the greatest mutation frequency (55%), followed by MTFF1, DLAT,

DLD, GLS, PDHA1, LIAS, and others.

Following that, we investigated somatic copy number alterations

in these CRGs and discovered common copy number alterations in all

ten CRGs. GLS, MTF1, LIAS, FDX1, DLAT, PDHA1, CDKN2A, and

PDHB all had widespread copy number variation (CNV) rises,

whereas DLD and LIPT1 had CNV diminished (Figure 2B).

The locations of the CNValterations in the CRGs on their respective

chromosomes are depicted in (Figure 2C). We then evaluated by

comparing the mRNA expression levels of SCKM and normal tissues

and discovered that most CRG expression levels were significantly

associated with CNV alteration. CRGs with low and moderate CNV,

such as PDHA1, DLAT, GLS, and LIAS, were overexpressed in CRC

comparison to those in normal melanoma samples, whereas CRGs with

high CNV, such as PDHB, were significantly increased in melanoma

samples (Figure 2D), implying that CNV may regulate CRG mRNA

expression. While CNV can explain many observed changes in CRG

expression, it is not the only factor involved in expression level regulation

(12). Other factors that can influence gene expression include DNA

methylation and transcription factors (13, 14). Our findings revealed a

significant difference in the genetic landscape and expression levels of

CRGs betweenmelanomaand control samples, revealing a latent role for

CRGs in melanoma tumorigenesis.
3.2 Identification of cuprotosis subgroups
in SKCM

Seven hundred and eighty-one patients from four eligible

melanoma cohorts (TCGA-SKCM, GSE19234, GSE65904,

GSE78220, and GSE133713) were included in our study for further

analysis to fully understand the expression pattern of CRG involved in

tumorigenesis. Table S1 contains detailed information on the 781

melanoma patients. The prognostic values of ten CRGs in patients

with SKCM were revealed by univariate Cox regression and Kaplan-

Meier analysis (Table S4), and p< 0.05 was chosen as the filtering

threshold. Following that, we ran a multivariate Cox regression

analysis on five prognostic CRGs, three of which (FDX1, LIAS, and

MTF1) were identified as independent potential predictors (Table S5).

The comprehensive landscape of CRG interactions, regulator

connections, and their prognostic value in melanoma patients was

shown in a Cuprotosis network colored red (Figure 3A and Table S6).

To investigate the expression properties of CRGs in melanoma, we

used a consensus clustering technique on patients with melanoma

based on the expression levels of the 10 CRGs (Figure S2). Our

findings indicated that k = 2 showed up to be an efficient selection for

sorting the entire cohort into subgroups A (n = 400) and B (n = 381)

(Figure 3B). PCA analysis revealed significant differences in the

transcription profiles of Cuprotosis between the subgroups

(Figure 3C). The Kaplan-Meier curves revealed that patients with

subtype A had a longer OS than patients with subtype B (log-rank

test, p< 0.05; Figure 3D). Moreover, evaluations of the clinical and

pathological features of various melanoma subtypes showed
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significant differences in CRG expression and clinical pathological

characteristics (Figure 3E). As can be seen in Figure 3E, cluster A was

associated with lower tumor location (p< 0.05), lower Stage (p< 0.05),

and lower OS (p< 0.05) compared to cluster B.
3.3 TME characteristics in various subgroups

Subtype A was significantly enriched in immunological fully-

activated pathways, including cell cycle, p53 signaling pathway,

pyruvate metabolism, and valine leucine and isoleucine degradation

(Figure 4A; Table S7), according to GSVA enrichment analysis.

To examine the influence of CRGs in the TME of melanoma, we

used the CIBERSORT algorithm (Table S8) to evaluate the correlations

between the two subtypes and 22 human immune cell subsets of each

melanoma specimen. We found significant differences in the infiltration

of most immune cells between the two subgroups (Figure 4B).
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Plasma cells, B cells memory, T cells CD8, CD4 memory-activated

T cells, activated NK cells, monocytes, M1 and M2 macrophages,

resting dendritic cells, and Eosinophils were clearly higher in subtype

A than in subtype B, whereas B cells naive and T cells CD4 naive, T

cells follicular helper, NK cells activated, M0 macrophages, mast cells

activated had significantly lower infiltration in subtype A compared to

subtype B. Similar fashion, analysis of two important immune

checkpoints revealed that CLTA-4 and PD-L1 were more expressed

in subtype B (Figure 4C, D).

We also used the ESTIMATE package to calculate the TME score

(stromal score, immune score, and estimate score) for the two

subtypes. Higher stromal or immune scores in the TME

represented higher relative contents of stromal cells or

immunocytes in the TME, whereas estimate scores indicated

stromal or immune score aggregation in the TME. The results

showed that patients with subgroup A had higher TME

scores (Figure 4E).
FIGURE 1

Graphical illustration of our present study.
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3.4 DEG-based gene subtype identification

We distinguished 409 Cuprotosis subclass DEGs using the R

package “EdgeR” and conducted functional enrichment analysis

(Figures 5A, B; Table S9) to investigate the potential biological

behavior of each Cuprotosis pattern. These Cuprotosis subcategory

genes were significantly enriched in biological processes associated

with immune function (Figure 5A). KEGG analysis revealed an

enrichment of immune and cancer-related pathways (Figure 5B),

implying that Cuprotosis is important in the immune regulation of

the TME. We, therefore, used univariate Cox regression to determine

the prognostic value of 350 subcategory genes and filtered out 227
Frontiers in Oncology 06
genes associated with OS time (p< 0.05), which were used in the

statistical evaluation (Table S10).

To validate this regulation mechanism further, a consensus-

clustering algorithm was utilized to split patients into 3 genomic

subclasses based on prognostic genes, namely, gene subclasses A-C

(Figure S3). Kaplan-Meier curves revealed that patients with gene

subtype B had the lowest OS, while patients with gene cluster C had a

better OS (log-rank test, p< 0.001; Figure 5C). Furthermore,

Cuprotosis gene subtype B patterns were linked to an advanced

stage and a greater risk of OS (Figure 5D). The three Cuprotosis

gene subgroups revealed substantial changes in CRG expression,

which was consistent with the Cuprotosis patterns (Figure 5E).
B C

D

A

FIGURE 2

CRG genetic and transcription factors alterations in melanoma. (A) Mutation frequency range of ten CRGs in 85 SKCM cohorts from the TCGA patient.
(B) Frequencies of CNV in high, low, moderate, and modifier CRGs. (C) CNV alterations in CRGs on 23 chromosomes. (D) Expression patterns of ten
CRGs in normal and melanoma tissues. CRGs, Cuprotosis-related genes; SKCM, Skin Cutaneous Melanoma; TCGA, The Cancer Genome Atlas; CNV,
copy number variant.
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3.5 Development and confirmation of the
prognostic CRG score

The CRG score was calculated using the DEGs. Figure 6A depicts

the subject distribution in the two Cuprotosis subgroups, three gene

subgroups, and two CRG score classes. First, we utilized R “caret

package” to randomly assign subjects to train (n = 452) and testing

(n = 191) groups in a 7: 3 ratio.

To determine the best prognostic signature, LASSO and

multivariate Cox analyses were conducted on 227 Cuprotosis

subgroup-related prognostic DEGs. Following LASSO regression

analysis, 15 OS-associated genes were retained based on the least

partial likelihood of deviance (Figures S4A, B).

We afterward conducted multivariate Cox regression analysis on

15 OS-associated genes using the Akaike information criterion (AIC)

value to obtain six (SUSD2, SCYL1, KLF9, GSPT1, KRT73,
Frontiers in Oncology 07
ZNF780A), which included four high-risk genes (SUSD2, KLF9,

KRT73, and ZNF780A) and two low-risk genes (SCYL1, and

GSPT1) (Figure S4C). The CRG score was calculated using the

findings of the multivariate Cox regression analysis as follows:

Risk score= 0.0290 ∗ SUSD2 − 0.0276 ∗ SCY L1 + 0.0262 ∗ KLF 9

- 0.0263 ∗ GSPT 1 + 0.0266 ∗ KRT 73 + 0.0265 ∗ ZNF 780A

The CRG score differed significantly amongst Cuprotosis gene

subtypes. Genecluster A had the lowest CRG score, whereas

genecluster C had the highest score (Figure 6B). More crucially,

subgroup A had a much higher CRG score than subgroup B.

Figure 6C depicts the patterns of risk scores in the two subgroups.

Subjects with a CRG score less than the median risk score were

classified as low-risk (n = 225), while those with a CRG score larger

than the median risk score were classified as high-risk (n = 225). The

distribution plot of the risk of CRG score demonstrated that as CRG

scores rose, survival times fell while OS rates increased (Figure 6D, E).
B

C
D

E

A

FIGURE 3

CRG subtypes, as well as clinical and pathological, and biological characteristics of 2 different subgroups of samples, were separated by consistent
categorization. (A) Interactions between CRGs in SKCM. The interaction between CRGs is represented by the line connecting them, with the thickness
of the line indicating the strength of the association between CRGs. Green represents negative correlations, while pink represents positive correlations.
(B) Heatmap of the consensus matrix defining two clusters (k = 2) and their correlation area. (C) A PCA analysis reveals a significant difference in
transcriptomes between the subgroups. (D) Univariate analysis of ten CRGs associated with OS time. (E) Clinicopathologic features and CRG expression
levels differ between the two distinguishable subgroups. CRG, cuprotosis-related gene; SKCM, Skin Cutaneous Melanoma; PCA, principal components
analysis; OS, overall survival.
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PCA analysis revealed distinct dimensions between the low- and

high- CRG score groups (Figure 6F). The Kaplan-Meier survival

curves demonstrated that patients with low scores had considerably

better overall survival than those with high scores (log-rank test, p<

0.001; Figure 6G). Furthermore, the 1-, 3-, and 5-year CRG score
Frontiers in Oncology 08
survival rates were indicated by AUC values of 0.799, 0.717, and

0.710, respectively (Figure 6H). We computed CRG scores across

the internal (testing set) and one external validation group

(GSE65904) (Figures S5-6) to verify the prognostic effect of the

CRG score.
B

C D E

A

FIGURE 4

Correlations between tumor immune cell microenvironments and two types of melanoma. (A) GSVA of biological pathways between two distinct
subtypes, with red representing activated pathways and blue representing inhibited pathways, respectively. (B) The presence of 22 different types of
infiltrating immune cells in the two CRC subtypes. (C, D)CTLA-4 and PD-L1 expression levels in two melanoma subtypes. (E) Correlations between the
two types of melanoma and the TME score. GSVA, gene set variation analysis; TME, tumor microenvironment. *p-value<0.05, **p-value<0.01,
***p-value<0.001, ****p<0.0001, ns is not significant.
B

C D E

A

FIGURE 5

DEGs are used to identify gene subgroups. (A, B) GO and KEGG enrichment analyses of DEGs in two cuprotosis subgroups. (C) Kaplan-Meier curves for
the two gene subgroups’ overall survival (log-rank tests, p< 0.001). (D) Associations between clinicopathologic characteristics and the two gene
subgroups. (E) Expression differences in ten CRGs between the two gene subgroups. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; CRGs, Cuprotosis-related genes.
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The subjects were also divided into low- and high-risk groups

based on the training set formula. The CRG scores, patient survival

status, and PCA demonstrating the variation tendencies of the low-

and high-risk groups are shown in Figures S5A, B, and S6A, B,

respectively. Survival analysis demonstrated that the low-risk group

had a considerably better prognosis than the high-risk group (log-

rank; p< 0.001; Figures S5-6C). The CRG score still had reasonably

high AUC values (Figures S5-6D) when the 1-, 3-, and 5-year

prognostic prediction classification efficiencies were examined,

demonstrating that the CRG score had an outstanding capacity to

predict the survival of melanoma patients.
3.6 The prognostic CRG score subjected to
clinical correlation and stratification analysis

We investigated the link between the CRG score and several

clinical features to determine the influence of the CRG score on

clinical characteristics (age, sex, tumor location, and Stage). We found

that patients in the stage IV subtype had substantially higher CRG

scores than those in the stage I subgroup (p< 0.05; Figure S7A). To see

whether this prognostic CRG score might predict OS independently

in melanoma patients, we coupled clinical characteristics with the

prognostic CRG score and ran univariate and multivariate analyses.
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The Stage and CRG scores in the training set indicated substantial

differences, as shown in Figures S7B, C, with similar findings found in

the testing (Figures S7D, E), and GSE65904(Figures S7F, G) groups.

Furthermore, a stratified analysis to determine whether the CRG

score maintained its predictive ability in different subgroups, including

age (= 60 and > 60 years), sex (female and male), tumor location (in-

transit, local, primary, and regional), stage (stage I-II and stage III-IV),

revealed that patients with high-risk scores had significantly lower OS

compared to those with low-risk scores age (p< 0.01), sex (p = 0.0064 in

women and p< 0.0001 in men), tumor location (p< 0.0001 in-transit,

local, primary, and regional), stage (p< 0.001)(Figure S8).
3.7 TME and checkpoints compared
amongst high-risk and low-risk classes

We used the CIBERSORT method to examine the relationship

between CRG score and immune cell abundance. The CRG score was

favorably associated with M1 macrophages, plasma cells, activated

memory CD4 + T cells, and CD8 + T cells, and negatively associated

with nave B cells, M0 macrophages, follicular helper T cells, and

gamma delta T cells (Figure 7A).

A high CRG score was linked to a high stromal score,

immunological score, and estimate score (Figure 7B). We also
B C
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A

FIGURE 6

In the training set, the CRG score is constructed. (A) An alluvial diagram depicting subgroup distributions in groups with varying CRG scores and survival
outcomes. (B) CRG score differences between gene subgroups. (C) CRG score differences between cuprotosis subgroups. (D, E) Dot and scatter plots
display the distribution of CRG scores and patient survival status. (F) Prognostic signature-based PCA analysis. Patients at high and low risk are
represented by red and steel blue dots, respectively. (G) Kaplan Meier analysis of the OS between the two groups. (H) ROC curves to predict the
sensitivity and specificity of 1-, 3-, and 5-year survival according to the CRG score. PCA, principal component analysis; OS, overall survival; ROC, receiver
operating characteristic.
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looked at the link between the six genes in the suggested model and

the number of immune cells. Most immune cells were shown to be

highly associated with the six genes (Figure 7C). In addition, we

looked at the relationships between immunological checkpoints and

our risk model. Figure 7D indicates that 32 immunological

checkpoints, including PD-L1 and CTLA-4, were expressed

differently in the two groups.
3.8 Relationship between CRG score
and MSI

Correlation studies indicated that a low CRG score was

strongly connected to MSI-L status, while a high CRG score was

related to MSI-H status (Figures 8A, B). We conducted survival

analysis in the MSI-L and MSI-H groups to assess the impact of

MSI status on OS in patients with melanoma. Although not

statistically significant, the MSI group had a propensity for

longer survival (p = 0.33; Figure S9).
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3.9 Drug susceptibility and mutation analysis

Moreover, we also computed the tumor mutation burden (TMB)

score for each SKCM subject in the two risk groups. Our study of the

mutation data from the TCGA-SKCM cohort revealed a high TMB in

the high-score group than in the low-score group (Figure 8C. The

BRAF, PCLO, RP1, ANK3, APOB, DNAH7, ADGRV1, LRP1B,

PTPRT, and THSD7B were the top 10 mutant genes in the high-

and low-risk groups (Figures 8D, E). Patients with a low CRG score

exhibited significantly greater rates of BRAF, PCLO, and LRP1B

mutations than those with a high CRG score. The mutation levels

of APOB and DNAH7, on the other hand, were exactly the reverse

(Figures 8D, E). We next chose chemotherapeutic medicines, BRAF/

MEK inhibitors (Dabrafenib, Trametinib) and immunotherapy drugs

(pembrolizumab, nivolumab, ipilimumab) that are already used to

treat melanoma to assess the sensitivities of individuals in the low-

and high-risk categories to these medications. Interestingly, we found

that the patients in the high CRG score group had higher IC50 values

for Dabrafenib, pembrolizumab, nivolumab, ipilimumab, Bleomycin
B C

A

FIGURE 7

(A) TME evaluation and checkpoints between the two classes Correlations between CRG scores and immune cell types. (B) Relationships between CRG
and immune and stromal scores. (C) Correlations between immune cell abundance and seven genes in the proposed model. (D) Immune checkpoint
expression in high and low-risk groups. TME, tumor microenvironment. *p-value<0.05, **p-value<0.01, ***p-value<0.001, ****p<0.0001.
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(Figure 9). However, patients in the high CRG score group had lower

IC50 values for Trametinib.

Results for the other chemotherapeutic medicines are given in

Figure S10. Together, these results showed that CRGs were related to

drug sensitivity.
3.10 Creating a nomogram to
predict survival

In this study, a nomogram integrating the CRG score and

clinicopathological characteristics was developed to predict 1-, 3-,

and 5-year OS rates in patients with SKCM (Figure 10). CRG score,

age, and patient stage were among the predictors. Our AUC trials on

the nomogram model revealed greater accuracy for OS at 1, 3, and 5

years in the training, testing, and one external validation set

(Figures 10B–D). Our comparison of the nomogram’s prediction

performance with that of the age, gender, tumor location, and stage in

the three sets (Figure S11) revealed that the nomogram had 1-, 3-, and

5-year AUC values in the training set of 0.799, 0.717, and 0.710,

respectively, whilst those of the age, gender, tumor location, and stage

were lower (Figures S11A-C). The 1-, 3-, and 5-year AUC values of

the nomogram in the testing set were 0.786, 0.722, and 0.657,

respectively, whereas those of age, gender, tumor site, and stage

were reduced (Figures S11D-F). Interestingly, the AUC values of

the nomogram in two external validation sets (GSE65904) were

greater than those of the age, gender, tumor site, and stage (Figures

S11 G-I). The calibration graphs that followed showed that the

suggested nomogram performed similarly in both the training and

testing sets compared to an ideal model (Figures 10E–G).
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3.11 The pan-cancer analysis of the
proposed model

We used pan-cancer analysis to assess the similarities and

distinctions of the risk score model across malignancies

(Figures 11A–E). TMB and MSI were carefully examined across

malignancies. TMB was connected with the risk score in COAD,

GBM, HNSC, KICH, LUAD, LUSC, READ, SKCM, STAD, and UCS

(P<0.05, Figures 11A). MSI has a presence in LAML, LUAD, MESO,

PRAD, SKCM, and STAD (P<0.05, Figures 11B). In addition, we

computed the relationship between the risk score and 22 indices of

immune cell infiltration and stemness. The outcomes are shown in

Figures 11C–E.
3.12 Validation of RNA expression in A375
and HaCaT cells

RT-qPCR was used to detect the RNA level in human melanoma

cells A375 and human normal cells HaCaT for validation work of the

expression of RNAs identified in the risk model. A375 is a highly

differentiated human malignant melanoma cell line and HaCaT is

human normal skin immortalized keratinocyte-forming cell line from

non-tumor tissues. The results of RT-qPCR in Figure 12 were

consistent with biological analysis. We found that the expression of

FDX1, LIAS, LIPT1, DLD, DLAT, MTF1, and CDKN2A were

significantly lower in melanoma than in normal tissues. However,

the expression of PDHA1, PDHB, and GLS was significantly higher in

melanoma than in normal tissues.
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FIGURE 8

Detailed CRG score analysis in melanoma. (A–B) Relationships between CRG score and MSI. (C) TMB in various CRG score groups. (D–E) A waterfall plot
of somatic mutation features with high and low CRG scores. Each column represented a different patient. The upper bar plot depicted TMB, and the
number on the right indicated the frequency of mutation in each gene. The proportion of each variant type was shown in the right bar plot. MSI,
microsatellite instability; TMB, tumor mutation burden.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1108128
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2023.1108128
4 Discussion

Melanoma development is multifactorial and results from a

combination of intrinsic and extrinsic factors. Ultraviolet radiation

is considered the most significant contributor to melanoma (15). The

clinical presentation of melanomas is diverse, which poses enormous

difficulties for early diagnosis (16). Various melanoma detection

techniques and treatment approaches are emerging to facilitate the

management of melanoma. Dermatoscopy is crucial in the early

evaluation and offers a more precise diagnosis for melanoma (17).

For metastatic melanoma, complete surgical resection can improve

the prognosis of melanoma patients to some extent. Studies showed

that melanoma patients have significantly improved long-term

survival after receiving integration of systemic medical therapy and

surgical resection (18). The immune-based interventions have been

proven to increase patients’ survival, especially for patients with

advanced melanoma. Current immune therapy in melanoma

includes vaccines, chemotherapy, and the transfer of adoptive T
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cells and dendritic cells (19). With improvements in technology,

targeted and immune therapies have been continuously evolving.

However, there is still a lack of effective molecular targets and accurate

classification of melanoma. Therefore, to improve the outcome and

prognosis of melanoma more efficiently, more accurate and specific

targets and molecular typing need to be explored in greater detail.

Cell death caused by copper was distinct from other cell death,

which exerts its effect through targeting lipoylated tricarboxylic acid

(TCA) cycle proteins. Copper can directly bind to lipid-acylated

elements of the TCA cycle leading to increasing proteotoxic stress,

which triggers cell death independent of the apoptotic pathway (20).

Mitochondrial signals play an important role in regulating cellular

copper content, which can be regarded as the central hub for copper

metabolism (21). Mitochondrial glutathione is a natural intracellular

copper chaperone, which may decelerate Cuproptosis via suppressing

lipoylation and promoting DLAT (one of the TCA cycle components)

oligomerization (22). In the animal model of Wilson disease, a high

level of copper accumulated in mitochondria can disrupt the integrity
FIGURE 9

Medication sensitivity analysis based on the risk score.
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of mitochondrial membranes, deplete glutathione stores, and increase

oxidative stress. Copper toxicity is also associated with the disruption

of iron-sulfur (FeS) containing enzymes. The damage to the FeS of

mitochondrial ferredoxin can cause growth-inhibitory effects in the

downstream signaling pathways. In addition, FeS-targeted damage

caused by Copper overload outside mitochondria is also an important

part of Copper toxicity in cells (23). There exist some studies

investigating the relationship between Cuproptosis and

hepatocellular carcinoma, clear cell renal cell carcinoma, lung

adenocarcinoma, and bladder cancer (24–27). However, the specific

relationship between Cuproptosis and melanoma remains elusive.

Therefore, in the present study, we constructed a comprehensive

analysis of CRGs in melanoma. Separately, CRG scores were

developed to predict the Cuproptosis subtype, prognosis, and

outcome of treatment in melanoma.

In the present study, we collected the gene expression profiling

data of 781 melanoma patients from four GEO melanoma cohorts

and TCGA cohorts. We observed a difference in the frequencies of

CRGs mutations, indicating tumor heterogeneity among the

individual. Based on the previous study (10CRGs), we conducted

univariate Cox and KM survival analysis to assess the prognostic

value of the 10 CRGs and utilized a consensus clustering approach to

investigate the expression characters of CRGs in melanoma. We find
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that patients can be grouped into two subtypes that present different

prognosis and clinical outcomes. Cluster A has a longer survival time

and a lower stage. Because GSVA can be used to investigate the

biological molecular mechanism of tumor development and

progression, we conducted GSVA analysis to further clarify the

potential mechanisms and found that immune-related pathways

were significantly enriched in subtype A. Interestingly, we found

that the 2 subtypes differed significantly in terms of immune

checkpoint expression, immune cell and stromal infiltration

patterns, which could reflect the tumor immune microenvironment.

Next, we distinguished Cuprotosis pattern-associated DEGs and

identified genes related to prognosis using univariate Cox

regression in melanoma. To go further, we divided the patients into

three gene clusters on the basis of the expression of prognostic CRGs

with an unsupervised clustering approach. The analysis showed that

gene subtype B was really associated with clinical stage and poor

prognosis compared with other gene subtypes.

Next, we constructed a predictive CRG score in melanoma

based on the expression of CRGs using the LASSO Cox regression

technique and multivariate Cox analysis and split patients into two

risk groups according to a median separation. Furthermore, we

conducted a comparison with LASSO and other machine methods

(elastic net and ridge regression) to further highlight the
frontiersin.or
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FIGURE 10

Building and validating a nomogram (A) Nomogram for forecasting melanoma patients’ 1-, 3-, and 5-year survival in the training set. (B–D) ROC curves
in the training, testing, and GSE65904 sets for forecasting the 1-, 3-, and 5-year ROC curves. (E–G) Nomogram calibration curves for forecasting 1-, 3-,
and 5-year OS in the training, testing, and GSE65904 sets.
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importance of the LASSO model, and the LASSO model compares

favorably with other models (Table S11) that we found was in

accordance with the prior studies (28, 29). The risk score can

effectively predict the prognosis of patients with melanoma.

Survival analysis for low- and high-risk groups revealed that

there was worse prognosis in the high-risk group compared with

the low-risk group. Importantly, the CRG risk score in the present

study not only can be regarded as an independent prognostic index

for predicting the prognosis of patients with melanoma but also

has been correlated with different clinical and histological

characteristics. For example, patients in stage IV had higher
Frontiers in Oncology 14
CRG scores than those in stage I, which was consistent with the

previous results. Similar to the discussion in the preceding,

different risk groups differed significantly in terms of immune

cell abundance and immunological checkpoint expression. We

also looked at the links between the two risk categories and MSI.

Patients with high microsatellite instability (MSI-H) seem to be

more responsive to immunotherapy and may benefit from

immunotherapy medications, according to growing data (30).

Our investigation demonstrated that a low CRG score was

strongly connected to MSI-L status. Because they have a larger

quantity of neoantigens, individuals with a high TMB may benefit
frontiersin.org
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FIGURE 11

The pan-cancer analysis of the risk score model. (A) Tumor mutation burden (TMB), (B) microsatellite instability (MSI), (C) Tumor purity, ESTIMATES score,
immune score, and the stromal score of 33 types of tumors. (D) The TME-infiltrating cell of 33 types of tumors. (E) The stemness index difference of 33
types of tumors. *p-value< 0.05, **p-value< 0.01, ***p-value< 0.001.
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from immunotherapy (31). Our study showed that the high-score

group had higher TMB than the low score group, signaling that

immunotherapy might help the high-risk group. In addition, our

study suggested that CRGs risk score was associated with drug

sensitivity of several medicine that are used in melanoma

treatment. In this regard, these medications have the potentials

to be selected based on different CRG risk scores in the treatment

of melanoma malignancy in the future. Given the limitations of the

CRG score’s clinical value in predicting OS in patients with SKCM,

a nomogram integrating the CRG score and clinicopathological

characteristics was developed. Our study indicated that the
Frontiers in Oncology 15
nomogram outperformed the age, gender, tumor location, and

stage in terms of survival predicting capacity. Finally, the

expression of 10 CRGs was validated by RT-qPCR experiments

in A375 and HaCaT cell lines with similar trends based on

database analysis.

Notably, our study has certain limitations that need to be stated.

Firstly, there is a lack of a large sample for validation work. The

present study was statistically analyzed by available retrospective data

whose results may differ from clinical research. Secondly, further

study is required to investigate the molecular mechanisms of genes in

our study in vitro and in vivo. Finally, the majority of results are based
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FIGURE 12

qRT-PCR was detected for the expression of RNA in A375 cell lines and HaCaT cell lines. (A) FDX1. (B) LIAS. (C) LIPT1. D.DLD. (E) DLAT. (F) PDHA1. (G)
PDHB. (H) MTF1. I.GLS. (J) CDKN2A. GAPDH was used as an internal control. **p-value<0.01, ***p-value<0.001, ****p<0.0001.
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on publicly available databases, such as TCGA and GEO, which need

to be verified by further experiments.
5 Conclusion

In conclusion, our study showed that Cuproptosis may participate

in the occurrence and development of melanoma. A novel predictive

model was defined to provide insights into predicting melanoma

prognosis and characterizing the melanoma immunological

landscape, which correlates with melanoma prognosis in TCGA

and GEO data. By comprehensive and systematic evaluation of the

risk score model, could expand the understanding of prognostic genes

and help to develop personalized interventions.
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