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Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has

high mortality rate after conventional treatment (e.g., surgical resection,

chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer

cells can induce immunosuppression, growth and metastasis by modulating cell

adhesion molecules of both cancer cells and immune cells. Therefore,

immunotherapy is increasingly concerned due to its promising anti-tumor

effect and broader indication, which targets cell adhesion molecules to reverse

the process. Among these therapies, immune checkpoint inhibitors (mainly anti-

PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or

second line therapy in advanced NSCLC. However, drug resistance and immune-

related adverse reactions restrict its further application. Further understanding of

mechanism, adequate biomarkers and novel therapies are necessary to improve

therapeutic effect and alleviate adverse effect.

KEYWORDS
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Introduction
Nowadays, cancer is the second leading cause of death, the first leading cause of

disability-adjusted life years (DALYs) loss and will probably be the first leading cause of

death in 2060 (1). According to WHO GLOBOCAN 2020 database, lung cancer is the

second most common cancer after breast cancer and causes more dead cases than any other

cancer. To make matters worse, smoking and air pollution are still increasing in many

developing countries (2). The affordable and accessible cigarettes and chronic health effect of

nicotine leads to long-term dependence of smoking and an elevation of lung cancer risk (3).
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Lung cancer is a kind of highly heterogenous disease and can be

categorized into twomain groups:NSCLC (85%) and SCLC (15%) (4).

In this review, we will mainly talk about advanced NSCLC which is

unresectable for most patients. Chemotherapy and radiotherapy also

provide modest efficacy (5). Target therapy has been invented and

adapted as first-line treatment for certain genotype NSCLC patients,

which can inhibit tumor progression and significantly improve

prognosis by blocking abnormal signaling pathway (6). However,

targeted therapy is not effective forever. For example, NSCLC will

develop resistance to EGFR tyrosine kinase inhibitors (TKIs) after a

median of 10 to 14 months treatment and effective treatment has not

been defined except Osimertinib for the T790M mutation (7, 8).

Studies have showed that tumor immune evasion participates in

the whole course of NSCLC rather than only in advanced stage.

Immune cells will be activated at early stage with an elevation of

anti-tumor cells (e.g., NK cells and CD8 + cells) but soon inhibited at

advanced stage (e.g., the transitory activation of CD4 + and CD8 + T

cells, fromTh1toTh2, the increaseof regulatoryTcells (Tregs)) (9, 10).

Cell adhesionmoleculesmediate the contact andbindingbetween cells

or between cells and extracellularmatrix. They can be divided into five

groups: integrins, selectins, cadherins, immunoglobulin superfamily

andmucin-like vascular addressin and are crucial for the formation of

tumormicroenvironment (11). The overexpression of CTLA-4, PD-1,

and PD-L1 can negatively regulate anti-tumor immunity (9). Low

expression of E-cadherin is associated with poor prognosis and LFA-1

participates in T cell activation and migration (12, 13). In this review,

we will mainly talk about how cell adhesion molecules participate in

tumor progression and therapies for cell adhesion molecules.
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Immune checkpoint inhibitors (ICIs) can blockade negative

costimulatory molecules and reverse the tumor-induced

immunosuppression. ICI is the only immunotherapy that showed

clinical benefit in NSCLC and has showed better long-term survival

compared with chemotherapy and radiotherapy (14, 15) (Table 1).

Despite of these advantages, ICIs also have its limitations. Primary and

secondary resistance to ICIs is common and around 40–50% of lung

cancerpatients experienceddiseasedeteriorationduring thefirst cycles

of immunotherapy (16). Various immune-related adverse effects

(irAEs) decrease life quality and even leads to treatment failure or

death (17). Combined therapy, biomarkers and novel ICIs are

promising to increase the response rate and treatment efficacy (18).

After adequate treatment, retreatment is possible andmaybe beneficial

for irAE patients who had no treatment response before irAEs onset

(19). Cell adhesion molecules are also potential targets for other

immunotherapies (e.g., tumor vaccines, CAR-T) which may be

helpful to enhance immunotherapy efficacy (20, 21).
Effects of cell adhesion molecules on
the progression of NSCLC

Cell adhesion molecules plays a crucial role in tumor

progression. MUC-1 expression on tumor cells promotes

metastasis by binding to intercellular adhesion molecule-1

(ICAM-1) in endothelial cells. Integrins increases the number of

tumor-associated macrophages (TAMs), and both integrin and

TAMs are associated with epithelial-to-mesenchymal transition of
TABLE 1 Overview of anti-PD-1/PD-L1 and CTLA-4 monoclonal antibodies approved by the FDA with NSCLC indication as of November 2022.

Drug Trademark Description Target Biologic
License

Application
(BLA)

Manufacturer Approved
by the

FDA (MM/
DD/YYYY)

Original indications

Pembrolizumab Keytruda Humanized
IgG4

PD-1 125514 Merck Sharp &
Dohme

09/04/2014 Unresectable or metastatic melanoma
Melanoma with involvement of
lymph
node(s) following complete resection

Nivolumab Opdivo Human IgG4 PD-1 125527 Bristol-MyersSquibb 03/04/2015 Advanced squamous NSCLC

Atezolizumab Tecentriq Humanized
IgG1

PD-L1 761034 Genentech Inc. 05/18/2016 Locally advanced or metastatic
urothelial carcinoma

Durvalumab Imfinzi Human IgG1 PD-L1 761069 AstraZeneca UK Ltd. 05/01/2017 Advanced or metastatic urothelial
carcinoma

Cemiplimab Libtayo Recombinant
human IgG4

PD-1 761097 Regeneron
Pharmaceuticals

09/28/2018 Metastatic cutaneous squamous cell
carcinoma or patients with locally
advanced cutaneous squamous cell
carcinoma who are not candidates for
surgery

Dostarlimab Jmeperli Humanized
IgG4

PD-1 761174 GlaxoSmithKline LLC 04/22/2021 Recurrent or advanced endometrial
cancer patients with mismatch repair
deficient (dMMR) has progressed on
or following prior treatment with a
platinum-containing regimen

Tremelimumab IMJUDO Human IgG2 CTLA-4 761289 AstraZeneca
Pharmaceuticals LP

10/21/2022 Unresectable hepatocellular carcinoma

Ipilimumab Yervoy Human IgG1 CTLA-4 125377 Bristol-Myers Squibb 03/25/2011 Advanced melanoma
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epithelial tumor cells, which leads to loss of epithelial markers and

increase of mesenchymal markers. As a result, tumor cells are more

easily to metastasis (22, 23). Some cell adhesion molecules also

mediate tumor immune evasion, such as cytolytic T lymphocyte-

associated protein-4 (CTLA-4) and programmed cell death protein-

1 (PD-1)/programmed cell death-ligand 1 (PD-L1), which are also

called immune checkpoint (24). High expression of certain cell

adhesion molecules in Tregs may lead to Tregs infiltration and

immunosuppression at tumor site (11). For NSCLC, higher

immune score was associated with better prognosis in

adenocarcinoma, while this relation was not found in squamous

cell carcinoma (25). In this review, we will mainly talk about

aberrant cell adhesion molecules in NSCLC.
LFA-1 and ICAM-1

LFA-1 (CD11a/CD18) belongs to integrin family and mainly

expressed by blood cells and ICAM-1 is an important ligand for

LFA-1. Besides the adhesive function like other integrins, LFA-1 has

“outside-in” and “inside-out” bidirectional signaling pathways, it

also has different conformations, from folded low-affinity to

extended high-affinity. LFA-1 has complex effect in tumor

progression. On the one hand, it promotes the differentiation of T

cells, mediates cytotoxic anti-tumor response and is necessary for

lymphocyte infiltration; on the other hand, leukocytes infiltration

may promote tumor progression, such as Tregs (26). Like LFA-1,

ICAM-1 is also important in tumor progression. ICAM family

belongs to immunoglobulin superfamily and participates in

immune responses and intracellular signaling. Currently, there are

five known ICAMs (ICAM-1 to ICAM-5) (27).

LFA-1 is a keyT cell integrin andparticipates in regulationofT cell

activation and migration (12). LFA-1 rather than CD28 enhanced the

impact of TCR clustering, which is consistent with the localization

effect of LFA-1 (28, 29). This process is largely dependent on the

activation of multiple kinases and adaptor proteins, such as

phosphoinositide 3-kinase, Crk protein and ERK pathways (30, 31).

The binding of LFA-1and ICAM-1participates inT cell differentiation

into specific phenotype (32). The binding of LFA-1 with high density

ICAM-1 can directly facilitate cytokine secretion by increasing

cytoplasmic Ca2+ and ERK phosphorylation in invariant natural

killer T cells (33). LFA-1 is also necessary for extracellular ISG15 to

mediate IL-10 and IFN-g secretion (34). PI3Kd also facilitates T cell

activation by increasing LFA-1/ICAM-1 interaction (35). And G-CSF

inhibits LFA-1/ICAM-1-mediated CD4 + T cells inflammatory

cytokines secretion by down-regulating Lck and ZAP-70 (36). CD8 +

T cell has intracellular LFA-1 storage, which can be transported to cell

surface after antigenic stimulation and is an importantmechanism for

LFA-1 to regulate T cell differentiation (37). Although ICAMs is not

necessary for Th1 differentiation, LFA-1/ICAM-1 can promotes Th1

polarization through Notch pathway (38, 39). LFA-1 also plays an

important role in normal T follicular helper cells function through

upregulation of Bcl-6 and DOCK8 (40, 41).

In tumor progression, aberrant ICAM-1 expression and

impaired LFA-1/ICAM-1 function has been observed. Increased

sICAM-1 concentration in the exhaled breath condensate has been
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observed in NSCLC patients compared with that of healthy people

and COPD patients and sICAM-1 concentration was significantly

decreased after resection (63.4± 26.0 ng/mL vs 44.0 ± 17.7 ng/mL,

p < 0.01) (42). A meta-analysis revealed that higher concentration

of circulating soluble ICAM-1 (sICAM-1) was associated with more

advanced disease stage and poorer prognosis in NSCLC. This may

be explained by the impaired ICAM-1/LFA-1 interaction due to the

binding of sICAM-1 and LFA-1, tissue damage and angiogenesis

caused by increased sICAM-1 (43). Galectin can disrupt the

formation of functional tumor-infiltrating T cells synapse by

preventing LFA-1 recruitment and the affinity regulation (44).

ICAM-3 promoted tumor metastasis by binding to LFA-1 in

NSCLC cells (45). LFA-1/ICAM-1 also disrupts CD8 + T cells

recirculation by promoting tumor tissues aggregation (46).

NSCLC cells can adhere to vertebral bone marrow endothelial

cells through CX3CL1/ICAM-1/LFA-1 pathway and lead to spinal

metastasis (47). On the other hand, LFA-1/ICAM-1 interaction has

potential anti-tumor effect because it is an alternative costimulatory

signaling to activate anti-tumor cytotoxic T cells (48). NSCLC cells

exhibited an IFN-g-dependent ICAM-1 upregulation activated by

EGFR CAR-T cells. This ICAM-1 upregulation permitted EGFR

CAR-T cells to move from tumor edge to center, and blockade of

ICAM-1/LFA-1 disrupted the CAR-T cell tumor infiltration (49).

Impaired ICAM-1 upregulation on alveolar macrophages in

patients with NSCLC after IFN-g stimulation had also been

observed, which might disrupt the normal function of alveolar

macrophages and more studies are needed due to the small sample

size and unclear mechanisms of this study (50). This contradiction

has also been observed in other studies. Cannabinoids was reported

to inhibit lung cancer cell invasion and metastasis by upregulating

ICAM-1 in vitro (51). However, studies found that low level of

ICAM-1 is associated with longer progression-free survival (PFS)

and overall survival (OS). This may be contributed to the relation

between aggressive NSCLC histological subtypes and high ICAM-1

expression. (e.g., adenocarcinomas and undifferentiated

carcinomas) (52, 53).
CTLA-4

CTLA-4 (CD152) is a kind of surface molecule in T cells and

associated with immune regulation. BothCTLA-4 andCD28 can bind

to B7-1 and B7-2. CD28 participates in the co-stimulation of T cells in

the interaction between antigen presenting cells and T cells, while

CTLA-4hasahigher affinity thanCD28and inhibits the activationofT

cells. Therefore, CTLA-4 is highly expressed in activated T cells and

Tregs in order to avoid autoimmune disease. However, CTLA-4 is

activated in NSCLC and leads to immunosuppression and tumor

immune evasion. These indicate that the blockage of CTLA-4may be a

promising immunotherapy target (25).

Ipilimumab is a CTLA-4-targeted monoclonal antibody and

had been approved by food and drug administration (FDA) in

metastatic melanoma. However, ipilimumab showed less effect

compared with anti-PD-1 therapy when combined with

radiotherapy in metastatic NSCLS patients (54). A meta-analysis

showed that the combination of ipilimumab and chemotherapy
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didn’t improve OS compared to pure chemotherapy and were

associated with more immune-related toxicities (55). Therefore,

anti-CTLA-4 therapy is greatly restricted and has not been

approved for NSCLC treatment (56).
PD-1/PD-L1

PD-1/PD-L1 is an immune checkpoint which is related to

inhibitory immune regulation. PD-1 is expressed in a variety

of immune cells especially T cells and has two ligands: PD-L1 and

PD-L2. In cancer, overexpression of PD-L1 contributes to T cells

hypofunction and apoptosis (57). For T cells, PD-1/PD-L1 ligation

inhibits TCR proximal signaling molecules phosphorylation, PI3K–

Akt–mTOR pathway and Ras–MEK–ERK pathway, it also

contributes to dysfunction of T cell–dendritic cell interaction and

metabolic alteration; for cancer cells, PD-L1 leads to antiapoptotic

effect, immune evasion, PI3K–Akt–mTOR pathway activation and

glycolysis, which facilitate cancer cell survival (Figure 1) (58).

Therefore, PD-1/PD-L1 inhibitor blocks this process and shows

satisfactory prognosis improvement in NSCLC (14).

PD-1/PD-L1 is a distinct target for NSCLC and has little cross-

resistance with other kinds of anti-tumor agents. Clinical benefit

of Osimertinib (a third generation EGFR TKI) is independent of

PD-L1 expression level (59). PD-1 inhibitors are effective for

NSCLCs with high PD-L1 expression regardless of EGFR

genotype (60). PD-L1 expression is also failed to be a prognostic

factor for advanced NSCLC patients with chemotherapy (61).
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E-cadherin

The cadherin family is a class of cell adhesion molecules that

mediates intercellular adhesion (62). Cadherin, especially E-

cadherin, plays an important role in contact inhibition through

Hippo, Wnt, TGF-b, NF-kB and other signal pathways. And

downregulation of E-cadherin expression is associated with tumor

progression and metastasis (63). Tissue resident memory T cell is a

kind of tumor-specific T cells which can binds to E-cadherin and

mediates T-cell receptor-dependent cytotoxic effect in NSCLC (64).

The upregulation of E-cadherin and downregulation of N-cadherin

induced by BRAF-activated non-coding RNA overexpression is also

associated with epithelial to mesenchymal transition inhibition in

lung cancer (65). And E-cadherin gene promoter hypermethylation

is related to an elevated risk of NSCLC (66).

The expression level of E-cadherin and other relevant molecules

may be promising biomarkers for NSCLC prognosis. Low

expression of E-cadherin is closely associated with poor prognosis

and biological behavior such as advanced clinical stage and lymph

node metastasis, while high expression of paired related homeobox

1 (PRRX1) and low zinc expression of finger E-box binding

homeobox 1 (ZEB1) are related to high E-cadherin expression

and low level of epithelial-mesenchymal transition and tumor

angiogenesis in NSCLC patients. These findings suggest that

PRRX1 and ZEB1 may also be potential prognostic biomarkers

and therapeutic targets for NSCLC (13, 67). The modification of E-

cadherin can also affect the tumor progression. FUT8 gene encodes

a-1,6-fucosyltransferase, which is the only enzyme for core-

fucosylation on N-glycoproteins. Upregulation of FUT8 leads to

an increase of core fucosylated E-cadherin and inhibits normal E-

cadherin function. As a result, cancer metastasis is promoted. This

is consistent with the correlation that upregulation of FUT8 is

associated with increased tumor metastasis and worse survival in

NSCLC, indicating that FUT8 may also be a potential prognostic

biomarker for NSCLC (68).
MUC-1

Mucin 1 (MUC-1) is an overexpressed glycoprotein and

associated with cancer cell proliferation, migration and invasion

in NSCLC. MUC1 consists of an extracellular N-terminal subunit

(MUC1-N) and a transmembrane MUC1 C-terminal subunit

(MUC1-C). From precancerous lesions to invasive carcinoma,

upregulation of MUC-1 expression has been observed in patients

with NSCLC (69). Studies showed that MUC1 was regulated by

STAT3 and MUC1-C promoted the self-renewal of NSCLC cells via

LIN28B/let-7/HMGA2 axis (70, 71). MUC1-C enhanced MYC

expression in KRAS mutant NSCLC cells via WNT/b-catenin
(CTNNB1) pathway activation, forming MUC1-C/b-catenin/
TCF4 complexes on the MYC promoter and recruiting the p300

histone acetylase (EP300) to enhance histone H3 acetylation and

MYC gene transcription. And MUC1-C inhibition contributed to

an inhibition of MYC gene expression, tumor cell survival and

tumor growth in KRAS mutant NSCLC cells (72). MUC1-C

suppression was associated with inhibition of epithelial-
A

B

FIGURE 1

The effect of PD-1/PD-L1 in tumor progression and anti-PD-1/PD-
L1 drugs, blue circles represent inhibitory effects and red circles
represent stimulatory effects.
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mesenchymal transition (EMT) and KRAS independence in KRAS

mutant NSCLC cells, which contributed to tumor growth inhibition

(73). MUC1-C blockade also contributed to EGFR (T790M), AKT

and ERK signaling suppression and survival inhibition in NSCLC

cells with mutant EGFR (74). Silencing of MUC1 also enhanced the

anti-tumor efficacy of paclitaxel against paclitaxel-resistant cell line

A549/PR in NSCLC via Bax and Caspase-3 upregulation and Bcl-2

downregulation (75). MUC1 is also associated with tumor

associated macrophage-induced lung cancer stem cell progression

(76). In vitro, downregulation of MUC-1 was associated with AKT

and ERK suppression, decreased VEGF and VEGF-C, tumor cell

proliferation inhibition and increased cell apoptosis in NSCLC (77).

Upregulation of MUC-1 after EGFR-targeted therapy has been

observed, which is associated with PI3K/AKT/mTOR and JAK2/

STAT3 pathways. This finding indicates that serum MUC-1 may be

a novel biomarker for anti-EGFR therapy monitoring (78).
Other molecules

CD44 is a non-kinase transmembrane glycoprotein and

associated with tumor progression, metastasis and drug resistance

in NSCLC (79, 80). High CD44v expression in tumor was related to

shorter overall survival (p<0.001) and recurrence-free survival

(p<0.001) after curative resection for patients with NSCLC (80).

CD44s expression was related to lymph node metastases (p=0.007)

and CD44v6 expression was more related to tumor size (p=0.0032)

in lung adenocarcinoma (81). A study demonstrated that CD44

enhanced PD-L1 expression partly by the cleaved intracytoplasmic

domain of CD44 bound to the consensus CD44-ICD binding site on

the regulatory region of the PD-L1 locus in NSCLC (82). CD44 is

also a downstream molecule upregulated by Notch3 in enhancing

stem-like property in NSCLC cells (83). A study showed that CD44

facilitated CD133+CD44+ lung cancer stem cells metastasis via

Wnt/b-catenin-FoxM1-Twist s ignaling (84). In vitro ,

overexpression of CD44 promoted NSCLC cell proliferation and

colony formation and vice versa (85). Serglycin induces NSCLC cell

migration by binding to the GAG motif to CD44 (86). The

expression of CD44 is more frequent in circulating tumor cells

than in brain metastasis. This may be contributed to the importance

of CD44 in tumor cell survival in the blood flow, decline of CD44

after chemotherapy and radiotherapy (87). Sp1 is an important

transcription factor in NSCLC progression, which increases in the

early stage but decreases in the late stage. It can inhibit tumor

stemness and metastasis. CD44 expression can be inhibited by Sp1

through inducing the expression of miR-3194-5p, miR-218-5p,

miR-193-5p, miR-182-5p and miR-135-5p (88). Hyaluronan-

CD44/HA-mediated motility receptor signaling pathway is

overexpressed in NSCLC and associated with cell proliferation

and survival (89). VCAM-1 also participates in NSCLC

progression. miR-26a is downregulated in NSCLC, and it can

block IL-2 mediated proliferation and migration in NSCLC by

binding to the 3’-UTR binding sequence of VCAM-1 (90). Study

also showed that sVCAM1 secreted by CXCR4-overexpressing

NSCLC cells promoted osteoclastogenesis (91).
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Current and potential applications of
cell adhesion molecules on NSCLC

Anti-PD-1/PD-L1

PD-1/PD-L1 is an immune checkpoint and has been targeted

by several monoclonal antibodies. Atezolizumab, avelumab and

durvalumab are PD-L1-targeted while the other monoclonal

antibodies mentioned in this paragraph are PD-1-targeted

(Table 2). The addition of atezolizumab to bevacizumab plus

chemotherapy significantly improved PFS and OS of metastatic

non-squamous NSCLC patients and the Phase 3 IMpower132

study showed that combination of atezolizumab and carboplatin/

cisplatin and pemetrexed significantly improved PFS (median 7.6

vs 5.2 months, HR = 0.60, 95%CI: 0.49–0.72, p < 0.0001) of non-

squamous NSCLC than that of carboplatin/cisplatin and

pemetrexed while statistical difference in OS had not been

observed (92, 95). Atezolizumab also outcompeted docetaxel in

OS for previously treated NSCLC patients (93, 96). Compared

with docetaxel, avelumab failed to prolong OS in patients with

platinum-treated PD-L1+ NSCLC. However, after 2 years follow-

up, avelumab showed better OS than docetaxel especially in high

PD-L1 expression subgroups (PD-L1≥50%) (99, 100).

Durvalumab prolonged PFS and OS compared with placebo and

this effect was further observed after 3 and 4 years, indicating the

long survival benefit of durvalumab (94, 101, 102). However,

durvalumab failed to statistically improve OS compared with

chemotherapy in metastatic NSCLC first-line treatment (103).

Cemiplimab also significantly improved OS and PFS compared

with chemotherapy in patients with advanced NSCLC (PD-

L1>50%) (97). Compared with docetaxel, nivolumab prolonged

OS of previously treated NSCLC in predominantly Chinese

patient subgroup after 2 years, which is consistent with the

outcome of CheckMate 017 (104, 105). Several studies have

showed that pembrolizumab plus chemotherapy improved OS

compared with chemotherapy. Pembrolizumab also outcompeted

chemotherapy in OS (98, 106–110). Sintilimab and tislelizumab

are two Chinese original anti-PD-1 monoclonal antibodies. They

are more affordable and cost-effective for Chinese patients

compared with foreign drugs (111, 112). They also showed

improvement of PFS in combination with chemotherapy

compared with chemotherapy alone. However, OS was not

obtained and more studies are needed (113, 114).

The expression level of PD-L1 in NSCLC cells is an important

criterion for PD-1/PD-L1 treatment. For pembrolizumab, PD-L1

expression≥50% is suitable for first-line therapy and ≥1% for

second-line treatment, respectively. tumor is considered as PD-L1

positive if more than 50% tumor cells express PD-L1 and suitable

for anti-PD-1/PD-L1 treatment. However, for the combination of

chemotherapy and immunotherapy, PD-L1 expression didn’t affect

survival benefit and PD-L1 expression examination is unnecessary

(115). Training for pathologists may increase reliability for samples

around 50% and has very little or no impact on the inter- or intra-

observer reproducibility (116).
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TABLE 2 Completed phase 3 NSCLC clinical trials of PD-1/PD-L1 and CTLA-4-targeted monoclonal antibodies in recent 5 years.

Agent Intervention Number
of

patients
(n)

ORR (95%
CI or p

value), (%)

Median PFS
(95% CI or p

value),
(months)

Median OS
(95% CI or p

value),
(months)

Target Reference

Atezolizumab atezolizumab plus bevacizumab plus
carboplatin plus paclitaxel
bevacizumab plus carboplatin plus
paclitaxel

692 63.5 (58.2–
68.5)

48.0 (42.5–
53.6)

8.3 (7.7–9.8)
6.8 (6.0–7.1)

19.2 (17.0–23.8)
14.7 (13.3–16.9)

PD-L1 (76)
.

Atezolizumab atezolizumab plus cisplatin or
carboplatin plus pemetrexed every 21
days
cisplatin or carboplatin plus
pemetrexed every 21 days (induction
treatment for four to six 21-day cycles)
atezolizumab plus pemetrexed every 21
days
pemetrexed every 21 days
(maintenance treatment)

578 47 (41.1–
52.8)

32 (26.8–
37.9)

7.6
5.2

(p<0.0001)

18.1
13.6

(p=0.0797)

PD-L1 (77)

Atezolizumab atezolizumab 1200 mg every 3 weeks
docetaxel 75 mg/m2 every 3 weeks

850 14
13

2·8 (2·6–3·0)
4·0 (3·3–4·2)

13.8 (11.8–15.7)
9.6 (8.6–11.2)

PD-L1 (79)

Avelumab avelumab 10 mg/kg every 2 weeks
docetaxel 75 mg/m² every 3 weeks

529 19 (14–24)
12 (8–16)

3.4 (2.7–4.9)
4.1 (3.0–5.3)

11.4 (9.4–13.9)
10.3 (8.5–13.0)

(p=0.16)

PD-L1 (81)

Durvalumab durvalumab 10 mg/kg every 2 weeks
placebo every 2 weeks

713 28.4 (24.3–
32.9) 16.0
(11.3–21.6)

16.8 (13.0–18.1)
5.6 (4.6–7.8)

47.5 (38.4–52.6)
29.1 (22.1–35.1)

PD-L1 (83–85)

Durvalumab durvalumab 20 mg/kg every 4 weeks
durvalumab 20 mg/kg every 4 weeks
plus tremelimumab 1 mg/kg every 4
weeks (up to 4 dose)
platinum-based doublet chemotherapy

488 35.6
34.4
37.7

4.7 (3.1-6.3)
3.9 (2.8-5.0)
5.4 (4.6-5.8)

16.3 (12.2-20.8)
11.9 (9.0-17.7)
12.9 (10.5-15.0)

PD-L1 (86)

Cemiplimab cemiplimab 350 mg every 3 weeks
platinum-doublet chemotherapy

563 39(34–45)
20 (16–26)

8.2 (6.1–8.8)
5.7 (4.5–6.2)

not reached (17.9–
not evaluable)
14.2 (11.2–17.5)

PD-1 (87)

Nivolumab nivolumab 3mg/kg every 2 weeks
docetaxel 75mg/m2 every 3 weeks

504 18 (13.6–
21.9)

4 (1.7–8.5)

2.8 (2.4–3.6)
2.8 (1.8–3.0)

11.9 (10.4–13.8)
9.5 (7.6–11.2)

PD-1 (88)

Pembrolizumab pembrolizumab 200 mg every 3 weeks
saline placebo every 3 weeks

559 57.9 (51.9–
63.8)

38.4 (32.7–
44.4)

6.4 (6.2–8.3)
4.8 (4.3–5.7)

15.9 (13.2–not
reached)

11.3 (9.5–14.8)

PD-1 (92)

Pembrolizumab pembrolizumab 200 mg every 3 weeks
saline placebo every 3 weeks

616 47.6 (42.6–
52.5)

18.9 (13.8–
25.0)

8.8 (7.6–9.2)
4.9 (4.7–5.5)

not reached
11.3 (8.7–15.1)

PD-1 (93)

Pembrolizumab pembrolizumab 200 mg every 3 weeks
platinum-based chemotherapy

305 44.8 (36.8–
53.0)

27.8 (20.8–
35.7)

10.3 (6.7–not
reached)

6.0 (4.2–6.2)

not reached
not reached

PD-1 (94)

Sintilimab sintilimab plus pemetrexed and
platinum
placebo plus pemetrexed and platinum

397 51.9 (45.7–
58.0)

29.8 (22.1–
38.4)

8.9 (7.1–11.3)
5.0 (4.8–6.2)

not reached
not reached

PD-1 (95)

Tislelizumab tislelizumab plus chemotherapy
chemotherapy

332 57.4 (50.6–
64.0)

36.9 (28.0–
46.6)

9.7 (7.7–11.5)
7.6 (5.6–8.0)

not reached
not reached

PD-1 (96)

(Continued)
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Anti-CTLA-4

Ipilimumab is a CTLA-4-targeted monoclonal antibody which

has applied in melanoma. However, it shows limited therapeutic

effect and obvious adverse effect in NSCLC. Currently, all anti-

CTLA-4 immunotherapy alone has limited application in NSCLC.

The effect of blocking CTLA-4 remains unclear, which limits

the development of new antibodies. Traditionally, it is believed that

anti-CTLA-4 antibodies produces anti-tumor effect through

blocking the interaction of CTLA-4/B7. Some studies argued that

anti-CTLA-4 antibodies produces anti-tumor effect by killing Tregs

through antibody-dependent cell-mediated cytotoxicity because Fc

domain is essential for ipilimumab anti-tumor function (117, 118).

On the other hand, tremelimumab is a new CTLA-4-targeted IgG2

monoclonal antibody with less antibody-dependent cell-mediated

cytotoxicity (ADCC) and also showed anti-tumor effect in clinical

trials and is supported by a murine surrogate antibodies

experiment, which showed that anti-tumor effect was not

completely dependent on ADCC (119). Similar CTLA-4 binding

properties between ipilimumab and tremelimumab also indicates

the importance of CTLA-4/B7 blockage (120). Therefore, anti-

CTLA-4 antibodies may produce anti-tumor effect through both

CTLA-4/B7 blockage and ADCC, and other unknown mechanisms

may also take effect.
Anti-MUC1

Tecemotide (L-BLP25) is a MUC1 antigen-specific tumor

vaccine to induce T cell immunity against MUC1. A phase 3

clinical trial (NCT00409188) showed that no statistical difference

was observed between tecemotide group (median 25.8 months) and

placebo group (median 22.4 months) after chemoradiotherapy in

overall survival (HR 0.89, 95% CI 0.77–1.03, P = 0.111) for patients

with unresectable stage III NSCLC. However, improvement median

survival in tecemotide group was observed in the analysis of

concurrent chemoradiotherapy subgroup (29.4 months versus

20.8 months, aHR 0.81, 95% CI 0.68–0.98, P = 0.026). Elevated

sMUC1 and ANA might be associated with survival benefit with

tecemotide (interaction P = 0.0085 and 0.0022) and might be

potential biomarkers (121, 122). TG4010 is a modified vaccinia

Ankara encoding MUC1 and human IL-2. Studies showed that

clinical benefits of TG4010 was associated with anti-MUC1 T cell

responses. And anti-MUC1 responses contributed to epitope

spreading against other tumor associated antigens (123).

Although there was no statistical difference in health-related
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quality of life between TG4010 plus chemotherapy group and

chemotherapy group in (NCT00415818), TIME study

(NCT01383148) showed that TG4010 and chemotherapy group

(5.9 months, 95% CI 5.4–6.7) had a prolonged PFS compared with

placebo and chemotherapy group (5.1 months, 95% CI 4.2–5.9)

(HR=0.74 95% CI 0.55–0.98; one-sided p=0.019) (124, 125).

Gatipotuzumab is an anti-tumor-associated epitope of mucin-1

monoclonal antibody and tomuzotuximab is an anti-EGFR

antibody. The combination of these two drugs has been tested in

the GATTO study (126). A MUC1-targeted dendritic-cell-based

vaccine exhibited anti-tumor activity and clinical benefits for

patients with MUC1-positive refractory NSCLC. The median

survival time and 1-year survival rate for patients who received

more than six vaccinations was 9.5 months and 39.3%, while those

of patients received initial vaccination was 7.4 months and 25.0%,

respectively. Immune-related adverse events occurrence (12.6

months versus 6.7 months, p=0.042) and peripheral lymphocytes

count/white blood cells count > 20.0% (12.6 months versus 4.5

months, p=0.014) were associated with longer survival time and

might be predictive biomarkers for better clinical benefits (127).
Other molecules

High levels of CD31+ circulating tumor endothelial cells are

associated with poor prognosis in anti-angiogenic therapy and may

be a predictive factor (128, 129). Downregulation of CD44 is related

to inhibition of wild−type EGFR signals, which leads to of cell

proliferation inhibition and increased cisplatin sensitivity (130,

131). CD44 overexpression is also associated with sensitivity

to PD-1 axis blockade and may be a novel auxiliary biomarker

(132). These findings indicate that CD44 blockade may facilitate

anti-PD-1 therapy and cisplatin treatment efficacy. The levels of

serum VCAM-1 are significantly higher in NSCLC patients, which

be a potential auxiliary biomarker (133). High baseline serum levels

of VCAM-1 are related to better prognosis in NSCLC patients

treated by second line nivolumab and may also be a potential

biomarker for anti-PD-1 therapy (134).
Combined therapy

For advanced NSCLC, one therapy alone may be not enough to

reach satisfactory therapeutic effect. Therefore, the combination of

immune checkpoint blockers and other therapies may improve

treatment efficacy and has been carried out by multiple studies (135,
TABLE 2 Continued

Agent Intervention Number
of

patients
(n)

ORR (95%
CI or p

value), (%)

Median PFS
(95% CI or p

value),
(months)

Median OS
(95% CI or p

value),
(months)

Target Reference

Ipilimumab nivolumab plus ipilimumab
chemotherapy

1166 35.9 (31.1–
40.8)

30.0 (25.5–
34.7)

7.2 (5.5-13.2)
5.5 (4.4-5.8)

17.1 (15.2–19.9)
13.9 (12.2–15.1)

CTLA-4 (97, 98)
f
rontiersin.org

https://doi.org/10.3389/fonc.2023.1107631
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2023.1107631
136). The combination of radiotherapy and anti-CTLA-4 therapy

activates T cells with TCR against tumor cells repertoires and the

combination of immune checkpoint inhibitor and radiation/

chemotherapy has been clinically applied in unresectable stage III

NSCLC (18, 137). Studies showed that the combination of

nivolumab and ipilimumab (dual checkpoint inhibition)

significantly improved OS and PFS in NSCLC and especially

effective for high mutational burden tumors and PD-L1

expression <1% (138–141). Although nivolumab plus ipilimumab

seemed to outcompete other ICI therapies in OS for patients with

PD-L1 expression <1%, the risk of Grade 3 or higher treatment-

related adverse effects was also significantly increased compared

with nivolumab alone (OR=5.80; 95%CI, 1.60-21.0). Therefore, the

clinical benefit and tolerance of patient should be evaluated before

dual checkpoint inhibition administration and more studies are

needed (142). A case report showed that cryotherapy is a feasible

treatment for ICI resistant metastasis (143). The combination of

nivolumab and ipilimumab (dual immune blockage) may be more

efficient than nivolumab or ipilimumab alone (144). The

combination of low-dose apatinib (VEGFR2-TKI) and anti–PD-1

also improved treatment efficacy in NSCLC mouse model and

patients (145). Evodiamine inhibits the MUC1-C/PD-L1 axis and

enhances CD8+ T cells function, which may be combined with ICIs

in NSCLC to enhance treatment efficacy (146). A network meta-

analysis of 7155 NSCLC patients showed that the combination of

chemotherapy plus PD-L1 inhibitors plus dexamethasone

pretreatment may be a candidate for the first-line treatment of

NSCLC patients (147). Combined therapy is also a potential

method to overcome ICI resistance. The combination of oncolytic

viruses and ICIs showed to overcome ICI resistance in a syngeneic

mouse model and a case report (148, 149). T-cell immunoglobulin

domain and mucin domain-3 (TIM-3) is an inhibitory receptor

associated with PD-1 and may also participate in anti-PD-1 drug

resistance. A study showed that high TIM-3 level on tumor

infiltrating lymphocytes was related to poor prognosis in NSCLC

(150). Therefore, the dual blockade of PD-1 and TIM-3 may

overcome anti-PD-1 drug resistance. A clinical trial of the

combination of sabatolimab (anti-TIM-3 antibody) and

spartalizumab (anti-PD-1 antibody) has also been carried out and

showed some signs of anti-tumor immunity (151).

Chimeric antigen receptor-T cell (CAR-T) expresses a

modified protein containing three regions: extracellular region

which can specifically bind to tumor cells, transmembrane

region and intracellular region which can induce stimulatory

signal transduction. This unique receptor leads to the robust

anti-tumor effect (152). The combination of checkpoint

inhibitors and CAR-T cell therapy may further activate anti-

tumor immunity and are being applied in many clinical trials

(153). However, CAR-T cell therapy has limited efficacy for most

solid tumors. For NSCLC, it has following shortcomings: toxicity

induced by CAR-T cell; lack of adequate tumor-specific antigens

as targets and poor anti-tumor effect (154). EGFR and VEGFR2

may be potential target antigens for CAR-T cell therapy against

NSCLC (155). CAR-T cells with constitutively anti-PD-1

secretion also showed better anti-tumor activity in mouse

model (20).
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The object ive of tumor vaccine is to promote an

activate adaptive anti-tumor immune response (156). However,

outcomes of NSCLC vaccine clinical trials were disappointing.

NSCLC vaccines should overcome the inhibition of tumor

microenvironment, negative checkpoint signals and the low

availability of effector T cells to tumor sites (157). Neoantigens is

a class of tumor-specific antigens caused by non-synonymous

mutations of tumor cells. Unlike tumor-associated antigen, it is

not expressed in normal cells and induces stronger immune

reactions, which may be a promising peptide target for

individualized tumor vaccine (158, 159). The combination of ICIs

and tumor vaccine may enhance treatment efficacy and has been

used in clinical trials (156).

Not all combined therapies are adequate. The combination of

immunotherapy (except immune checkpoint inhibitors) and

conventional treatment didn’t improve prognosis and might

increase incidence of adverse events (15). Several clinical trials

also failed to show a clinical benefit of PD-1/PD-L1 monoclonal

antibodies in patients with EGFR-mutant NSCLC (160). These

studies indicate that combined therapy should be used carefully

in order to reach a balance between clinical benefit and

adverse events.
Adverse effects and drug resistance in
immunotherapy

Adverse effects

Adverse e ffec ts a l so happen in ant i -PD-1/PD-L1

immunotherapy. Interestingly, according to a small sample study,

the incidence rate of irAEs was significantly higher in responders

than non-responders (65.2% vs. 19.3%, P < 0.01), indicating that

irAEs may be related to better therapeutic effect (161). Whether

anti-PD-1 or anti-PD-L1 antibodies has less adverse events remains

controversial and studies showed contradictory outcomes (17,

162–164) A study showed that HLADRB1*11:01 and pruritus as

well as a nominally significant additive association between

HLA-DQB1*03:01 and colitis, indicating the role of genetic

diversity in adverse events of immune checkpoint inhibitors

(165). Cardiovascular toxicity is a rare but serious adverse event

of immune checkpoint inhibitors treatment, including myocarditis,

pericarditis, heart failure, acute myocardial infarction, etc (166).

Pneumonitis is also a common adverse effect in anti-PD-1/anti-PD-

L1 treatment for NSCLC patients with high mortality and poor

treatment (94, 167, 168). Interstitial lung disease is a rare (1–5%)

but severe adverse effect (50–60% mortality rate). A study indicated

that performance status≥ 2 and ≥ 50 pack-year were independent

risk factors of ICI-induced interstitial lung disease of grade≥ 3 and

all grades (169). Different therapy showed different distribution of

irAEs. Atezolizumab plus platinum may be related to a higher

incidence rate of colitis, while pembrolizumab may be related to a

higher incidence of pneumonitis and hepatitis (170). Irrational

drug use also increases the frequency of adverse effects. A study

showed that the use of osimertinib immediately after nivolumab

is associated with higher incidence of grade 3 or higher
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hepatotoxicity in patients with advanced NSCLC harboring EGFR

mutation acquired T790M resistance (171). Sintilimab

monotherapy showed a higher incidence of fatal adverse effects (0

to 2.5%) than average (172). Lower dose and frequency of

ipilimumab seems to improve the safety of combined therapy

(139). Hyperprogression is defined as an unexpected acceleration

of cancer growth after immunotherapy and is a severe adverse effect

with bad prognosis. NSCLC has a relatively high incidence rate of

hyperprogression (14%) and no biomarker has been identified

(173). High level of IL-10 and low pretreatment neutrophil-to-

lymphocyte ratio may be predictive factors for irAEs monitor

(174, 175).
Drug resistance

Primary or secondary drug resistance has been observed in

NSCLC anti-PD-1/PD-L1 therapy. ORRs are no more than 20–30%

and no biomarker (except PD-L1) has been identified. Underlying

mechanism may include tumor neoantigen loss, impaired IFN-g
signaling, upregulation of other immune checkpoint receptors,

tumor microenvironment, epigenetic modulation, etc (176).

Secretive PD-L1 may also be one of the resistance mechanisms by

combining with anti-PD-L1 antibody (177). An autopsy of two

immunotherapy failure patients also showed a sharply decrease of

PD-L1 expression after immunotherapy (178). Acquired EGFR

exon 21 L858R has been observed in a nivolumab resistant

patient, which may also be a possible mechanism of secondary

ICI resistance (179) (Figure 2).

There are some characteristics in anti-PD-1/PD-L1 resistance

and may be future biomarkers to predict treatment efficacy. Tumor

Mutation Burden (TMB) and EGFR/ALK mutations are two

promising biomarkers (180, 181). Several studies have showed
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that patients with high tissue TMB have a higher ORR with

immune checkpoint inhibitors than those with low tissue TMB

(182, 183). EGFR-mutated NSCLC, on the other hand, is related to

lower PD-L1 expression, low TMB, and increased risk of

hyperprogression and pulmonary toxicity (184). ALK-/EGFR-

positive tumors are negative prognostic factors in immunotherapy

and immunosuppressive microenvironment has also been observed

in ALK/EGFR-positive tumors (185). Whether KRAS is a good

prognostic factor in ICI therapy remains controversial (186). Low

blood serum amyloid A may also indicate better survival outcomes

for pembrolizumab in advanced NSCLC treatment (187). High

levels of serum hypoxanthine and histidine may be associated with

better anti-PD-1 response (188). Activation of Hedgehog pathway,

increasing of plasma Wnt1 protein, TGFBR2 mutation and

CDKN2A loss−of−function are also associated with ICIs

resistance in NSCLC (189–191). A study showed that high level

of circulating monocytic myeloid-derived suppressive-like cells was

related to primary resistance to immunotherapy (192).

Interestingly, smoking patients with NSCLC seemed to have

better responses to anti-PD-1/PD-L1, anti-CTLA-4, and anti-

MUC1 drugs compared with non-smokers, which might affect

therapy selection for smokers with NSCLC (193).
Prospect

Aberrant cell adhesion molecule expression plays a crucial role

in tumor microenvironment formation and tumor immune evasion

which can be utilized in immunotherapy. Upregulation of PD-1/

PD-L1/CTLA-4 leads to tumor immunosuppression in NSCLC.

Downregulation of E-cadherin facilitates tumor metastasis and

LFA-1 plays a complex role in tumor progression. MUC1

upregulation affects various signaling pathways to enhance the
FIGURE 2

The mechanisms of primary or secondary ICI resistance in NSCLC during anti-PD-1/PD-L1 therapy.
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proliferation, migration and invasion ability of NSCLC. Currently,

ICIs has made great progress while other immunotherapies showed

disappointing efficacy in NSCLC. Primary or secondary drug

resistance and irAEs are still major barriers for ICIs.

For immune checkpoint inhibitors, the expression level of target

molecules is important for drug selection. Novel laboratory

technologies such as On‐chip Sort (a microfluidic chip cell sorter)

can separate and analyze circulating cancer cells, which is

convenient, non-invasive and more sensitive compared with

biopsy (194). The delivery strategy of anti-tumor drugs is

associated with treatment efficacy and adverse effects, and cell

adhesion molecules may be a promising target (195). aVb3
integrin overexpression in tumor is a sign of angiogenesis.

Therefore, RGD peptides may be peptide-drug conjugate because

it can selectively bind to cancer cells with aVb3 and aVb5 integrins
highly expressed (196). The combination of immunotherapy and

other treatments may improve therapeutic effect. However,

combined therapy may also lead to increased adverse effect and

should be used carefully on the basis of evidence-based medicine.

Dual immune checkpoint inhibitors (the combination of anti-PD-1

and anti-CTLA-4 therapy) is considered as a promising therapy to

enhance ICI efficacy and showed improved prognosis in melanoma

and NSCLC (139, 197). CAR-T cell immunotherapy is mainly used

in hematological tumors and not being clinically applied in NSCLC.

Future CAR-T cell immunotherapy for NSCLC should be more

specific in tumor antigens selection and TCR designation in order to

robustly inducing anti-tumor effect and decreasing the incidence

adverse effects (20, 198, 199). ICAM-1 specific CAR-T cell may also

increase its efficacy and safety (200). The combination of ICI

(exogenous or secretive) and CAR-T cell therapy may further

activate anti-tumor immunity (20, 153).

Despite of great progression, NSCLC is still a deadly and highly

heterogenous disease. One or two therapies can hardly control

disease progression and drug resistance is easily developed.

Therefore, individualized and combined therapy are further

trends for NSCLC immunotherapy. To overcome the drawbacks

in immunotherapy, understanding the mechanisms of cell adhesion
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molecule interaction; new biomarkers for diagnosis, monitor and

follow-up; novel technologies and therapies; and accumulation of

clinical experience are necessary for a wider application of

NSCLC immunotherapy.
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