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Molecular and cellular components of the tumor microenvironment are essential

for cancer progression. The cellular element comprises cancer cells and

heterogeneous populations of non-cancer cells that satisfy tumor needs.

Immune, vascular, and mesenchymal cells provide the necessary factors to

feed the tumor mass, promote its development, and favor the spread of

cancer cells from the primary site to adjacent and distant anatomical sites.

Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote

carcinogenesis and progression of various malignant neoplasms. CAFs act

through the secretion of metalloproteinases, growth factors, cytokines,

mitochondrial DNA, and non-coding RNAs, among other molecules. Over the

last few years, the evidence on the leading role of CAFs in gynecological cancers

has notably increased, placing them as the cornerstone of neoplastic processes.

In this review, the recently reported findings regarding the promoting role that

CAFs play in gynecological cancers, their potential use as therapeutic targets, and

the new evidence suggesting that they could act as tumor suppressors are

analyzed and discussed.

KEYWORDS

cancer-associated fibroblasts (CAFs), tumor microenvironment, tumoral progression,
pre-metastatic niche, gynecological cancers
Introduction

Gynecological cancer refers to any cancer that originates in women´s reproductive

organs, from which cervical, ovarian, and uterine cancer stand out, and to a lesser degree

but no less important vaginal and vulvar cancer (1). According to the latest Global Cancer

Observatory (GLOBOCAN) report in 2020, gynecological cancers were the cause of

4,429,323 deaths and an additional 9,227,484 new cases were registered in the world (2),
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making them a problem of global concern in public health. Cancer-

associated fibroblasts (CAFs), among other cellular and molecular

components of the tumor microenvironment (TME), favor these

neoplasms to occupy the first places in mortality and incidence rates

(3, 4).

TME is comprised of multiple cell types, consisting of lymphatic

vascular networks, adipocytes, immune, blood, and mesenchymal

cells (5–7). The interaction of the different components of this

cellular universe with cancer cells is essential for tumor initiation

and development (7–10); it has been observed that various

molecules secreted by CAFs, such as metalloproteinases (11, 12),

growth factors (13, 14), cytokines (15, 16), mitochondrial DNA (17)

and, non-coding RNAs (18–20); soluble released or transported in

exosomes, have a promoting effect on cancer progression.
Heterogeneous origin of a
heterogeneous cell population

CAFs are a heterogeneous population of mesenchymal cells

that, through the secretion of the molecules mentioned above,

establish bidirectional direct communication pathways with

cancer cells and other types of stromal cells such as endothelial

cells and inflammatory cells (9, 21–25), promoting important

cellular events for tumor progression, such as proliferation (20),

angiogenesis (26), migration (27), invasion (28), tumor growth (29),

epithelial-mesenchymal transition (EMT) (30), metastasis (15), and

resistance to therapy (31). Being CAFs a heterogeneous cell

population, it is congruent that various cell types are proposed as

capable of originating them; there is extensive evidence that they

can be generated from resident fibroblasts, epithelial, endothelial,

and mesenchymal stem cells (MSCs) (21, 32, 33).

Resident fibroblasts have been proposed as the main source of

CAFs (34). It has been determined that exposure to cancer cell-

derived lysophosphatidic acid generates a glycolytic change and a

CAF phenotype in normal and peritumoral fibroblasts (35, 36),

somatic mutations in the TP53 or PTEN genes would be another

pathway by which physiological fibroblasts can transform into

CAFs (37, 38), exosomes loaded with transforming growth factor-

beta (TGF-b) secreted by cancer cells promote the generation of

CAFs from fibroblasts (39). On the other hand, is the EMT, a

cellular event related to carcinogenic processes that promotes the

phenotypic change of healthy or cancer epithelial cells to

mesenchymal cells, which has been suggested as a process of

cellular dedifferentiation that generates CAFs in response to

stimuli from the TME (40). These stimuli can be CAF-derived

exosomes with miscellaneous content including TGF-b (30), long

non-coding RNAs (lncRNAs) (41), and Snail1 transcription factor,

which is characterized by facilitating tumor metastasis and

promoting tumor drug resistance and recurrence (42), as well as

soluble secreted interleukin 6 (IL-6) (43). Another type of transition

that can also generate CAFs, is the endothelial-mesenchymal

transition (EndMT), in which, TGF-b can induce the

transdifferentiation of endothelial cells to fibroblast-like cells (44);

this event is proposed as a unique cellular process leading to the
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accumulation of CAFs. Another recognized cellular origin for CAFs

is MSCs (45); exosomes containing pyruvate kinase M2 (PKM2)

secreted by cancer cells have been shown to promote the transition

from MSCs to CAFs (46). The load of the CAF-generating

exosomes can be quite diverse; in a study carried out with

exosomes derived from chronic lymphocytic leukemia cells, it was

determined that the miscellaneous exosomal content was enriched

with antiapoptotic proteins, angiogenic factors, RNA processing

proteins, oncogenes, heat shock proteins, and microRNAs

(miRNAs) (47). These pro-tumor molecules generated a

permanent source of CAFs by inducing an inflammatory

phenotype in stromal cells and increased their proliferation and

migration. In addition, they promoted angiogenesis and tumor

growth in a mouse tumor model (32, 47). Other cells that have

also been proposed as the origin of CAFs are adipocytes (48, 49),

smooth muscle cells (44), and pericytes (50), which in response to

TME molecules, such as TGF-b (48), platelet-derived growth factor

(PDGF) (51), and connective tissue growth factor (CTGF) (52)

acquire a CAF-like phenotype through cellular transdifferentiation,

and consequently, participate in the promotion of carcinogenesis

and tumor development (Figure 1).

Although CAFs are not themselves cancer cells and

independently of their heterogeneous origin, they promote tumor

growth and maintenance, suggesting that their participation in

cancer progression is essential. Therefore, their study has become

necessary to understand comprehensively the genesis and

development of malignant neoplasms and evaluate if this cell

population can be a potential therapeutic target in patients with

gynecological cancers.
Signaling pathways involved in the
generation of CAFs

The generation of CAFs from different cellular origins is

possible due to the activation of various signaling pathways. In

the case of CAFs originating from MSCs, it has been observed that

the CAF phenotype is acquired through activation of the Janus

Kinase/Signal transducer and activator of transcription 3 (JAK/

STAT3) signaling pathway induced by TGFb1, promoting

migration and invasion by upregulating the expression of N-

cadherin and vimentin and down-regulating E-cadherin (53). Biffi

et al. reported that the cytokine IL-1 secreted by tumor cells can also

activate this pathway and that the specific formation of

inflammatory CAFs is promoted through the participation of

nuclear factor kappa B (NF-kB) (54).

The suppressor of mothers against decapentaplegic (SMAD)

pathway is also involved in the generation of CAFs; in a study, it was

found that human dermal fibroblasts treated with TGF-b
overexpressed p-Smad3, which in turn increased the expression of

a-smooth muscle actin (a-SMA) and integrin subunit a11,
characteristic markers of the CAF phenotype. While fibroblast

growth factor 2 (FGF2) treatment downregulated CAF activation

genes, including ACTA2 and ITGA11 (55). These results show that
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the CAF phenotype is not irreversible and that the SMAD pathway

induced by TGF-b is fundamental for cell differentiation to CAFs.

CAFs favor tumor progression through the secretion of exosomes

containing miRNAs. It has been found that CAFs are able to secrete

exosomes containing miR-92a-3p, which promote stemness, EMT,

metastasis, and chemotherapy resistance, by activating the WNT/b-
catenin signaling pathway in cancer cells (56). CAFs can also be

targets of exosomal miRNAs. Breast cancer cells secrete exosomes

loaded with miR-105, which CAFs can take up. Once inside the cell,

miR-105 binds to the myelocytomatosis oncogene (MYC) negative

regulator, MXI1, activating MYC signaling and promoting the

expression of genes related to glucose (HK2, LDHA, LDHB) and

glutamine (GLS) metabolism and for metabolite transportation

(SLC2A1, SLC16A1, SLC16A3, and SLC1A5) converting CAFs into

an energy source for cancer cells in the TME (57). It has also been

observed that CAFs under hypoxic conditions, a common feature of

TME in most tumors due to nutrient deficiency, increase their

glycolytic activity via oxidized ataxia-telangiectasia mutated protein

kinase (ATM) and glucose transporter 1 (GLUT1) phosphorylation.

This hypoxia-induced glycolysis promotes lactate secretion,

enhancing the activation of TGFb1/p38 mitogen-activated protein

kinase/matrix metalloproteinase 2/9 (MAPK/MMP2/9) signaling in

breast cancer cells, promoting the invasiveness of tumor cells (58).
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Extracellular matrix (ECM) remodeling is one of the characteristics of

CAFs, this mainly proteolytic event facilitates the invasion and

metastasis of tumor cells; some of the proteins secreted by CAFs

are enzymes such as MMP11, which is a metalloproteinase belonging

to the endoproteases family, responsible for the degradation of the

ECM (59). MMP11-positive CAFs have been found enriched in the

stroma of invasive ductal carcinoma, being associated with tumor

progression and poor prognosis (60). On the other hand, it was

shown that miR-139 inhibits tumor growth and metastasis of gastric

cancer cells by decreasing the expression of MMP11 (61).

CAFs exert an immunomodulatory role in TME (62); through

the secretion of IL-6 and granulocyte-macrophage colony-

stimulating factor (GM-CSF), they induce the differentiation of

monocytes towards M2-like tumor-associated macrophages

(TAMs), and the immunosuppressive environment generated

facilitates tumorigenesis and metastasis (63). This same

immunomodulatory and immunosuppressive role has been

observed in CAF-like cells differentiated from MSCs co-cultured

with esophageal squamous cell carcinoma cells (64). CAFs have

paracrine communication with tumor cells, so their activation is the

feedback of several signaling pathways; in addition, they regulate

the tumor microenvironment through the secretion of soluble

factors involved in immune modulation. These events reveal the
FIGURE 1

Heterogeneous origin of CAFs: promoter molecules and cellular sources. Image created in BioRender.com.
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triple cross-talk between cancer cells, CAFs, and monocytes to

promote tumor progression.
Classic CAF markers

CAFs are spindle-shaped cells that reside around the tumors,

negative to markers for other cells, such as endothelial, epithelial, or

leukocytes (65). They express different markers, making them

different from normal fibroblasts, such as the case of a-SMA,

fibroblast activation protein (FAP), fibroblast-specific protein 1

(FSP1), and platelet-derived growth factor receptor (PDGFR)

(66–68). Besides, some other proteins are usually expressed in

CAFs, like collagen 11-a1 (COL11A1), microfibrillar-associated

protein 5 (MFAP5), and asporin (69). Some markers are shared

between subpopulations, making it harder to isolate and study

them, and their expression is variable depending on the CAF

subtype (70), for example, FAP, PDGFR-a , PDGFR-b ,
podoplanin, integrin-b, and caveolin-1 (65).

a-SMA belongs to the actin family, which is important for cell

structure and motility (69). Initially, it was thought to be the most

representative marker for CAFs; however, not all CAFs express this

protein. It has also been associated with prognosis; for instance, a

high expression of a-SMA correlates to lower overall survival in

breast cancer (71).

FAP has been proposed as one of the primary markers of CAFs

being overexpressed in 90% of carcinomas, such as melanoma,

colorectal, breast, ovarian, bladder, and lung (72, 73) and with high

therapeutic potential (74). This membrane protein is commonly

used as a CAF-activation marker because it has been found to be

highly expressed in stromal cancer tissue (75–78). Moreover, some

reports conclude that FAP is also expressed in cells during the EMT

and carcinoma cells (79, 80). Vimentin is an essential protein

involved in the cytoskeleton network. Because a mesenchymal

phenotype characterizes fibroblasts, vimentin is expressed in all

types of fibroblasts. The strength of this biomarker is reduced

because various cells, such as pericytes and adipocytes, express

vimentin and those undergoing EndMT and EMT (69, 81, 82).

Molecules such as MFAP5 and COL11A1 are novel markers

suggested as promising biomarkers for CAFs (69, 83–86); even

though they are suggested to be extremely specific, they are not

commonly used in the literature. Newly discovered biomarkers are

essential to classify CAFs in different cancer types or according to

their signature or specific actions such as chemoresistance,

immunomodulation, or ECM remodeling (87).

Even though most biomarkers have pro-tumor effects, a few

exert anti-tumor actions; cluster of differentiation 146 (CD146) and

caveolin-1 are examples of this type of biomarkers. Two CAF

subpopulations can be identified by the presence/absence of

CD146, which has been correlated to tamoxifen sensitivity, and

low expression of caveolin-1 in CAFs is associated with poor

prognosis in breast cancer (88, 89).

The heterogeneity of CAFs might reflect the different stages of

their activation from a common cell, according to the signals they

receive. For instance, normal fibroblasts can become CAFs after

receiving signals from the TME (90). Furthermore, some CAFs
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might stop expressing their markers, indicating that the process is

reversible (91). Observations like these suggest that CAFs are not a

cell type but a transitional state of fibroblasts, making the difference

between both cells a functional matter rather than a marker one.

However, some authors have classified CAFs into different

subpopulations depending on the expression of their markers and

their tumor context. In pancreatic ductal adenocarcinoma, they

subdivide them into two main populations characterized by their

location and functionality: activated CAFs close to the tumor with a

myofibroblast phenotype (myCAF) express high levels of a-SMA

and low levels of cytokines, whereas inflammatory CAFs (iCAFs)

far from the tumor express low levels of a-SMA and high levels of

cytokines (92).

In addition, in a study conducted on breast cancer, CAFs were

mainly classified into four subclasses CAF-S1 to CAF-S4; each of

the subpopulations was characterized by the expression of markers

and their accumulation in the molecular subtypes of breast cancer.

Subclass CAF-S1 positive for FAP and a-SMA and subclass CAF-S4

FAP negative and a-SMA positive were detected enriched in TME

triple-negative breast cancer, and of these two subpopulations,

CAF-S1 stands out for having an immunosuppressive role by

mainly recruiting regulatory T cells through the secretion of C-X-

C motif chemokine ligand 12 (CXCL12) (93). CAF-S1 and CAF-S4

have also been associated with breast cancer metastasis; CAF-S1

promotes tumor cell migration and EMT initiation, and CAF-S4

promotes cancer cell invasion and motility (94). Some transcription

factors are present in CAFs and may regulate pro- or anti-cancer

properties, depending on the context and the cell type (54, 95–97).

Molecules such as heat shock factor 1 (HSF1), signal transducer and

activator of transcription 3 (STAT3), MYC, and yes-associated

protein (YAP) might be involved in specific signatures of CAFs

and reprogramming (54, 98, 99). Nowadays, new CAF-associated

markers are being identified, due to new technologies such as single-

cell sequencing, which opens the landscape for new targeted therapy

approaches directed to CAF populations, such as immunotherapy

directed to CAFs or the cytokines and chemokines derived from

them (40).
Impact of CAFs on
gynecological cancers

Ovarian cancer

Ovarian cancer (OC) is considered the most lethal

gynecological neoplasm due to the high number of deaths in

proportion to its incidence. The latest report from the

International Agency for Research shows that in 2020 it was the

cause of 313,959 new cases and 207,252 deaths in the world (2). The

lack of laboratory tests and the absence of pathognomonic

symptoms that evidence the early stages of OC, cause this

neoplasm to be diagnosed in late stages (III and IV), when cancer

has already metastasized, compromising other organs and

generating a poor prognosis. The low 5-year survival rate of

patients with late-stage epithelial ovarian cancer (30%) is a
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consequence of the rapid progression of this disease (100). OC is

promoted by factors of the TME, among them CAFs stand out.

CAFs are the predominant cell type in the TME of different

neoplasms; in OC their presence is associated with increased

migration and invasion of cancer cells (101–103), extracellular

matrix remodeling (104), spheroid formation (105), tumor

growth promotion (106), metastasis (107, 108), angiogenesis

(109), chemoresistance (110) and poor prognosis for OC patients

(111, 112), cellular events that promote neoplastic development and

make them a good therapeutic candidate.

In OC, as in other neoplasms, it has been shown that TGF-b
plays an important role. This growth factor is secreted by cancer

cells, inducing the differentiation of normal fibroblasts into CAFs.

The sphingosine kinase 1 (SphK1) enzyme is responsible for

mediating TGF-b signaling through the transactivation of

sphingosine 1-phosphate receptor 2 (S1PR2) and S1PR3, leading

to p38 MAPK phosphorylation and the consequent acquisition of

the CAF phenotype. In vivo assays demonstrated the participation

of SphK1 in tumorigenesis, promoting tumor growth and

metastasis (113). CAFs can also secrete TGF-b, which activates

paracrine signaling, promoting the progression of OC due to the

expression of various genes, including MMP11 and MMP13,

promoting the metastasis of ovarian cancer cells to adjacent or

distant sites. Overexpression of MMP13, along with CGA, EPHA3,

PSMD9, PITX2, and PHLPP1, has been associated with poor

response to platinum-based chemotherapy in patients with high-

grade serous ovarian cancer (HGSOC), the most aggressive form of

ovarian cancer (114). Li et al. conducted a study with CAFs isolated

from stage IIIC OC patients in which they determined that CAFs,

through the secretion of exosomes loaded with TGF-b, can promote

various pro-tumor events such as migration, invasion, and EMT of

OC cells through the activation of SMAD signaling pathway.

Additionally, in a model of xenotransplanted mice, they observed

that the co-inoculation of ovarian cancer cells and CAFs favored the

generation of tumors compared to animals inoculated only with

ovarian cancer cells (30), these results suggest the pro-tumor role of

CAFs and TGF-b in the TME of OC.

CAFs promote tumor development by providing the cells of the

TME with the necessary signals to proliferate and enhance

angiogenesis, through the overexpression of NF-kB, IL-6,

cyclooxygenase-2 (Cox-2), and CXCL1, molecules known to have

pro-tumorigenic activity (115). It has also been observed that CAFs

can overexpress nicotinamide N-methyltransferase methyltransferase

(NNMT), an epigenetic regulatory molecule that acts through

hypomethylation of DNA, RNA, or histones via attenuation of the

S-adenosyl methionine/S-adenosyl homocysteine (SAM/SAH) ratio.

This enzyme is essential for the expression of CAF markers, the

secretion of pro-tumorigenic cytokines, and oncogenic ECM. CAFs

overexpressing NNMT promoted OC migration, proliferation, EMT,

and metastasis (116).

CAFs not only maintain cellular communication with cancer cells,

but it has also been observed that in the TME of OC, communication

between CAFs and cancer-associated macrophages (CAMs) leads to

cancer cell invasion and metastasis. CAFs, through secretion of IL-33,
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blood‐derived monocytes; in turn, CAF‐induced CAMs increase the

invasion and migration of OC cells and upregulate the EMT marker

genes (117). To promote tumor progression, CAFs also maintain

communication with endothelial cells, upregulating the lipoma-

preferred partner (LPP) gene in microvascular endothelial cells

(MECs); this event increases the formation of focal adhesions and

stress fibers and, consequently, endothelial cell motility, intratumoral

microvessel leakiness and chemoresistance to paclitaxel.

Mechanistically, MFAP5 derived from CAFs promoted the

expression of LPP in microvascular endothelial cells by activating the

focal adhesion kinase/extracellular signal-regulated kinase/cAMP

responsive element binding protein (FAK/ERK/CREB) signaling

network, generating resistance to paclitaxel by increasing cell

migration and their focal adhesions, which weakens blood vessels

causing paclitaxel to leak before being released to OC cells (118).

MFAP5, overexpressed and secreted by CAFs into the EMC, binds to

the avb3 integrin of OC cells. This ligand-receptor union activates the

calcium-dependent FAK/ERK/CREB signaling pathway, leading to

overexpression of troponin C type 1 (TNNC1), increasing cell

mobility by promoting the formation and rearrangement of the F-

actin cytoskeleton. TNNC1 has been proposed as a biomarker for poor

prognosis for HGSOC. In vivo assays, MFAP5 promoted tumor

progression by increasing angiogenesis, tumor growth, invasion, and

metastasis (84) andMFAP5 blockade using monoclonal antibodies was

able to inhibit fibrosis and enhance chemosensitivity in mouse models,

generating tumor suppression (119). These results proposeMFAP5 as a

new and promising therapeutic target in patients with OC.

FAP, a classic marker of CAFs, has been associated with

recurrence in patients with epithelial OC after treatment with

neoadjuvant chemotherapy; strongly FAP-positive tumor

parenchyma and stroma were seen in tumors from patients with

high recurrence rates (OR: 15.95) while FAP-negative tumors were

seen in patients with lower recurrence rates (OR: 0.086) (120). FAP

could be used clinically as a negative prognostic marker for patients

with OC. At the same time, it could be the target of inhibitory

molecules that help counteract its pro-tumor action in the TME.

CAFs manifest their pro-tumorigenic behavior across a broad

molecular spectrum; myristoylated alanine-rich C-kinase substrate

(MARCKS) is overexpressed in CAFs and has been strongly associated

with expression of the classic CAF marker a-SMA. MARCKS

participates in the activation, proliferation, chemotherapeutic

resistance, and migration of CAFs, its silencing in CAFs decreases the

proliferation and migration of OC cells and tumor growth, together

MARCKS derived from CAFs facilitates OC metastasis (121), for which

it is suggested that MARCKS could be an attractive target for the therapy

of patients with OC. Similarly, periostin (POSTN) is enriched in the OC

stroma, particularly in CAFs from HGSC; its overexpression was

correlated with reduced overall survival. POSTN increased OC cell

migration and invasion by functioning as an avb3 integrin ligand,

activating the PI3K/Akt pathway and promoting the EMT (122);

stromal-derived POSTN may be a potential therapeutic target given

that it participates in the remodeling of the pre-metastatic niche (PMN)

of OC. CAF-derived CXCL12 also induces EMT via the CXCR4/Wnt/b-
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catenin pathway; CXCL12 expression was associated with cisplatin

chemoresistance in OC patients (123). These findings, together with

other evidence, propose CAFs as a modulator cell type with a decisive

role in generating chemoresistance, angiogenesis, remodeling, and

immunomodulating the TME and the PMN (124–126).

Cancerous development has a high energy demand, glucose

being the main molecule to obtain ATP and the high consumption

of glucose allows cancer cells to maintain their high rate of

uncontrolled growth. CAFs favor glucose uptake by OC cells

modulating the activation of key enzymes in cellular glycogen

metabolism, which increases the energy available to enhance the

migration and invasion of OC cells. In human samples, it was

observed that the greater the progression of the OC, the lower the

glycogen level in the tissue and the greater the number of CAFs. The

authors demonstrated that glycogen mobilization in cancer cells

depended on p38a MAPK activation in CAFs by TGFb released by

the cancer cells, leading to increased secretion of the cytokines

CXCL10, IL-6, and IL-8 (127, 128).

The difficulty of diagnosing ovarian cancer in its early stages is

mainly due to the anatomical site where the ovaries are located and

the lack of early biomarkers; in search of new candidates for

biomarkers, Lawrenson et al., have non-invasively detected

natriuretic peptide B (NPPB), a hormone initially unrelated to

ovarian neoplasia and that is secreted from cardiac ventricular

myocytes in response to myocardial stretch and stress, in the stroma

of 60% primary OC tissues and the blood of 50% of women with OC

(129). Although NPPB was expressed by only 28% of early-stage

OCs, it could be part of the design of a panel of early biomarkers

that together increase their sensitivity and specificity.

There are several reports in which it is shown that CAFs non-

coding RNAs (ncRNAs) promote the development of various

cancers (130). A predictive functional analysis identified 39

lncRNAs differentially expressed in CAFs compared to fibroblasts,

17 lncRNAs were up-regulated in CAFs and 22 lncRNAs were

downregulated. The in silico analysis allowed to associate this

signature of lncRNAs with multiple pathways in OC metastasis

(131), the findings of this study suggest that lncRNAs modulate the

CAFs phenotype and that the upregulated or deregulated

expression of these ncRNAs favors OC metastasis and

progression. An example of deregulated miRNA in CAFs is miR-

124, a highly conserved tumor suppressor ncRNA, and highly

expressed in fibroblasts. Downregulation of miR-124 is associated

with tumorigenesis, tumor progression, and poor prognosis in OC

patients. Its decrease or inhibition promotes cell migration, which

leads to the acquisition of an aggressive cell phenotype. The cellular

effects of miR-124 are exerted by inhibiting SphK1, which catalyzes

the phosphorylation of sphingosine to form sphingosine 1-

phosphate (SPP), a key sphingolipid signaling molecule involved

in cell growth, survival, differentiation and motility (132).

Additionally, it has been observed that exosomes loaded with

miR-98-5p secreted by CAFs increase cell proliferation, inhibit

apoptosis, and promote cisplatin resistance in ovarian cancer cells

by downregulating cyclin-dependent kinase inhibitor 1A

(CDKN1A) (133).

Despite the extensive evidence on the pro-tumor role of CAFs

in the TME, favoring tumor growth and metastasis (134, 135), there
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are some reports that suggest an anti-tumor role for these cells of

heterogeneous origin. Colvin et al. demonstrated that CAFs are

capable of secreting ncRNAs with anti-tumor properties, such as

MIR155HG. This lncRNA could be considered as a biomarker of

good prognosis for patients with OC, since its overexpression has

been associated with more remarkable patient survival, T cell

activation, antigen processing and presentation, and with the

enriched infiltrate of immune cell anti-tumor within the tumor,

highlighting plasma cells, various subpopulations of T cells, M1

macrophages, and eosinophils (136). This finding opens the

possibility to the existence of subpopulations of CAFs with a clear

anti-tumor role; modulating, targeting, or enriching these cell

subpopulations in the TME could help fight early-stage

cancer development.
Endometrial cancer

Fibroblasts are present in the endometrial stroma, which surrounds

the endometrial glandular epithelium. These fibroblasts can be

transformed into CAFs by endometrial cancer cells, and once this

transformation occurs, CAFs gain some characteristics that support the

development of cancer (137). The accumulating evidence shows that

CAFs can communicate with microenvironment cells through

extracellular vesicles (EV)/exosomes, which transport several

molecules, including miRNAs (138). Some miRNAs have a

regulatory activity, either pro- or anti-tumor; being the latter the case

of miR-320a. In endometrial cancer (EC), miR-320a inhibits the

proliferation of EC cells, downregulates the expression of hypoxia-

inducible factor 1 alpha (HIF-1a) in EC cells, and inhibits HIF1a/
VEGFA axis (139). This axis, in particular, is fundamental in EC

because its inhibition is suggested to have an improved radiosensitivity

in EC cells (140). Even though CAFs can directly transfer miR-320a

into EC cells, they normally express this tumoral suppressor miRNA to

a lower extent (139), encouraging debate on the pro- or anti-tumor role

of CAFs. miR-148b has also been reported to have anti-tumor effects. Li

et al. concluded that loss of exosomal miR-148b promotes metastasis

in vitro and in vivo, and it induces EMT and invasion of endometrial

cancer cells via the relief of the suppression of DNA methyltransferase

1 (DNMT1) (141). However, other miRNAs have been reported to be

associated with important features of cancer, like miR-22, which has

been associated with resistance to tamoxifen treatment in patients with

breast cancer (142). Taken altogether, miRNAs in EV derived from

CAFs could be evidencing the existence of diverse populations of CAFs,

both anti- and pro-tumor depending on the type and amount of

miRNAs they contain, that inhibit or promote events which favor

malignancy development, making them a focus for targeted treatment

in EC.

A new approach for therapeutics is directed to the interaction

between lncRNAs and miRNAs, also called Competing Endogenous

RNA (ceRNA) (143). Several reports suggest that this regulation

may be vital for CAFs to support growth and metastasis in

endometrial cancer. Long non-coding RNAs have also been

involved in EC development, such as the case of nuclear enriched

abundant transcript 1 (NEAT1), which was transferred to the

endometrial cell lines HEC-1A and RL95-2 through the exosomes
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derived from CAFs and promoted tumorigenicity in vivo, increasing

the levels of YKL-40, an EC marker. The opposite effect was

observed by miR-26a/b-5p, which decreased the YKL-40 and

STAT3 expression. NEAT1-overexpressing CAFs downregulated

the expression of miR-26a/b-5p, and the opposite effect was

observed by CAFs that did not express NEAT1 (25); this might

represent an example of pro-tumor ceRNA, it is necessary to design

and carry out clinical studies where its anti-tumor uses are

evidenced by inhibiting miRNAs that promote cancer

progression. Studies suggest that PTTG is a key modulating factor

in carcinogenesis because of its involvement in processes like cell

cycle progression, angiogenesis, malignant transformation, and

metastasis (144, 145). Wang et al. reported that CAFs could

induce the expression of PTTG in EC and therefore contribute to

the carcinogenesis progress. The pituitary tumor transforming gene

(PTTG) expression was evaluated by RT-PCR and Western blot

showing a significant increase in the mRNA and protein levels in

the EC cells cocultured with CAFs compared to those with normal

fibroblasts. They also observed that CAFs increased EC cell invasion

and migration and induced EMT in EC cells by regulating PTTG in

an in vitro model (146). CAFs derived from human endometrium

induced a higher proliferation of endometrial cells than normal

endometrial fibroblasts. AKT and ERK were highly phosphorylated

in ECC-1 cells after being treated with medium conditioned of

CAFs, which might indicate that PI3K and MAPK are responsible

for the observed proliferation effect (147).

Similar to other cells, CAFs can respond to hormones.

Estradiol (E2) and progesterone are essential hormones in

regulating the menstrual cycle and mitogenic responses.

Unopposed E2 can lead to endometrial hyperplasia due to its

proliferative effects, while progestins are protective, leading to

cell differentiation of endometrial glands, in contrast to E2; in

fact, synthetic progestins are indicated in the treatment of

complex atypical hyperplasia and low-grade type I EC,

suppressing the actions of E2 (148–151). TME of EC has been

documented to express low levels of progesterone receptor and

estrogen receptor alpha (ER-a) (152), which may cause the lack

of responsiveness of the CAFs to these hormones. Besides, this

may lead to altering the paracrine regulation in EC. Progesterone

induces the release of PEDF in CAFs and endometrial stromal

fibroblasts, the expression of this potential growth inhibitor is

associated with several human cancers; whereas high

concentrations relate to a good prognosis, low ones are known

to be pro-tumorigenic (153).

Another reported effect of CAFs is the suppression of natural killer

(NK) cells´ cytotoxic activity. Inoue et al. reported a decrease in the

killing activity of NK cells, which was cell-cell contact-dependent and

associated with a diminished cell-surface Poliovirus receptor (PVR)

expression, an essential ligand for DNAX accessory molecule-1

(DNAM-1), an activating receptor present on NK cells (137). Finally,

CAFs may support EC development by the secretion of

proinflammatory cytokines such as IL-8, IL-6, monocyte
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chemoattractant protein-1, and VEGF, and the tumoral growth

stimulation through the stromal cell-derived factor–1a/CXC

chemokine receptor 4 axis (147, 154, 155). More research must be

conducted to identify the CAF secretome in the EC context.
Cervical cancer

CAFs have fundamental participation in the progression of cervical

cancer (CC); cancer cells and CAFs have paracrine communication

through various soluble factors such as proteins, IncRNAs, and

miRNAs, among other molecules. Wnt2B is a protein secreted by

cancer cells in exosomes, which participates in the differentiation of

fibroblasts towards CAFs, activating the Wnt/b-catenin signaling

pathway, inducing transcription through LEF/TCF and,

consequently, promoting tumor growth in nude mice (156). In CC,

one of the generating factors of CAFs is IncRNAs; homeodomain-

interacting protein kinase 1 antisense RNA (HIPK1-AS) overexpressed

in HeLa conditioned medium induced the differentiation of normal

human cervical fibroblasts towards CAFs, increasing the expression of

FAP, IL-6 and a-SMA; HIPK1-AS modulation is reversible because its

deletion down-regulates CAF activation; themechanisms of HIPK1-AS

are not yet fully elucidated (157). In addition to being a CAFs-

generating molecule, TGF-b is secreted by itself, promoting

migration and invasion of CC cells, essential events for tumor

growth and metastasis (28, 158, 159). These findings show the

important communication between cancer cells, fibroblast, and CAFs

to facilitate metastasis in CC.

In the TME of the CC, the two-way communication between CC

cells and CAFs is constant and favors the development of the disease.

PDGF-BB secreted by cancer cells induces the expression of heparin-

binding epidermal growth factor-like growth factor (HB-EGF) by

CAFs, through activation of PDGFRb, which in turn activates

epidermal growth factor receptor (EGFR) in CC cells promoting

cell proliferation and tumor growth, in in vitro and in vivo models,

respectively. In patient´s tissues, it was observed that HB-EGF

expression is increased during cervical carcinogenesis (160),

suggesting that it participates in carcinogenesis, maintenance, and

progression of the CC.

microRNAs contained in extracellular vesicles derived from CAFs

facilitate tumor growth in in vivo models, such as the case of

microRNA-10a-5, which is capable of inducing angiogenesis via

activating the Hh pathway by inhibiting TBX5 and promoting the

expression of VEGF (18). In athymic nude mice, it was observed that

the co-inoculation of CAFs and CC cells, in addition to generating

tumors, caused metastasis in 40% of lymph nodes, while the

inoculation of only cancer cells did not generate metastasis (161).

EMC proteins also contribute to the progression of CC generated by

CAFs. In vitro assays showed that CC cells mainly express integrin

a6b4 laminin receptors and, are conveniently capable of inducing

laminin expression by CAFs, event that, together with the secretion of

MMP-7 by CC cells for degradation of the basement membrane, favors
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the invasion of CC (162). These results show the cellular

intercommunication in the TME and the essential role played by

CAFs in the pro-tumor remodeling of the EMC.

Various subtypes of CAFs associated with the progression of this

neoplasm have been reported; periostin-positive CAFs are involved in

lymph node metastasis and with poor survival of CC patients due to the

promotion of the permeability of lymphatic endothelial barriers through

activation of integrin-FAK/Src-VE-cadherin signaling pathway in

lymphatic endothelial cells, which decreases the expression of VE‐
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cadherin favoring metastatic dissemination (163). Because CAFs are

the most abundant stromal cells in TME, they are a good therapeutic

target; nanoparticles are a promising tool since they can be targeted with

great cellular specificity, in vitro studies showed thatHeLa cells and CAFs

have higher intake and retention of gold nanoparticles with surface

functionalized with both polyethylene glycol (PEG) and RGD, a peptide

containing integrin-binding domain, compared to fibroblasts (164),

suggesting that the use of nanotechnology could be helpful for

treatments already used. Additionally, CAFs overexpress ER-a in
TABLE 1 Events generated by CAFs and tumor effect in gynecological cancers.

Cancer Events generated by CAFs Tumor effect References

Ovarian

Promotion of migration, invasion, EMT, and tumorigenesis through the activation of SMAD signaling pathway
by exosomal TGF-b in OC cells

PRO-TUMOR (30)

Promotion of angiogenesis, tumor growth, invasion, and metastasis through the secretion of MFAP5 PRO-TUMOR (84)

ECM remodeling and promotion of metastasis by inducing the expression of MMP11 and MMP13 in OC cells
through the secretion of TGF-b

PRO-TUMOR (114)

Induction of migration, proliferation, EMT, and metastasis by overexpression of NNMT PRO-TUMOR (116)

Immunomodulation of TME promoting the polarization of monocytes to M2 type-like CAMs through the
secretion of IL-33

PRO-TUMOR (117)

Generation of resistance to paclitaxel weakening blood vessels causing drug leakage before being released to OC
cells

PRO-TUMOR (118)

Association with high recurrence in patients with OC PRO-TUMOR (120)

Facilitation of metastasis through the expression of MARCKS PRO-TUMOR (121)

Correlation with reduced overall survival and promotion of migration, invasion, and EMT PRO-TUMOR (122)

Induction of EMT and cisplatin chemoresistance in OC patients by CXCL12 PRO-TUMOR (123)

Favoring the conversion of glycogen to glucose in OC cells to provide them with energy PRO-TUMOR (127)

Increase of cell proliferation, inhibition of apoptosis, and promotion of cisplatin resistance in OC cells by miR-
98-5p secretion

PRO-TUMOR (133)

Association with T cell activation, antigen processing, and presentation, and enriched infiltrate of immune cell
anti-tumors within the tumor by the secretion of the lncRNA MIR155HG

ANTI-TUMOR (136)

Endometrial

Promotion of EC progression by secreting exosomal lncRNA NEAT1 PRO-TUMOR (25)

Suppression of NK cell cytotoxicity by deregulating the expression of PVR/CD155 PRO-TUMOR (137)

Inhibition of cell proliferation by direct transfer of CAF-secreted exosomal miR-320a to EC cells ANTI-TUMOR (139)

Promotion of migration, invasion, and EMT in EC cells by regulating the expression of PTTG PRO-TUMOR (146)

Promotion of EC cells proliferation via PI3K/Akt and MAPK/Erk PRO-TUMOR (147)

Promotion of proliferation, migration, invasion, and in vivo tumorigenesis by the secretion of the SDF-1a PRO-TUMOR (154)

Cervical

Increased migration and invasion of CC cells by secreting TGF-b PRO-TUMOR (28, 158, 159)

Promotion of cell proliferation and tumor growth by secreting HB-EGF in CC patients, and association with
carcinogenesis and disease progression

PRO-TUMOR (160)

Induction of tumor growth, angiogenesis, and lymph node metastasis in an animal model PRO-TUMOR (161)

Remodeling of the ECM and promotion of cell invasion through laminin secretion PRO-TUMOR (162)

Generation of lymph node metastasis and poor survival in CC patients by inducing the permeability of lymphatic
endothelial barriers

PRO-TUMOR (163)

Promotion of the expression of genes related to cell proliferation, angiogenesis, metastasis, and tumor growth via
ER-a

PRO-TUMOR (165)
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tumor tissues of patients with CC, ER-a signaling promotes the

expression of genes related to cell proliferation (PDGF-C and EREG),

angiogenesis (VEGF-A, VEGF-C, CTGF, and ANGPT1), metastasis

(MMP-1 and COL6A1) and tumor growth (FGF1), making ER-a
overexpressing CAFs an important therapeutic target (165).

These findings confirm the participation of CAFs in the

carcinogenesis and progression of gynecological cancers (Table 1

and Figure 2), promoting that among the first ten cancers with the

highest incidence and mortality worldwide are ovarian,

endometrial, and cervical cancer (2).
Conclusion

CAFs play an important role in the TME, promoting

tumorigenesis and malignant progression. Despite the considerable

evidence about the pro-tumor role of CAFs in gynecological cancers,

the design of personalized therapies directed at them must be careful

due to the existence of evidence that proposes them as anti-tumor cells,

although there are few reports that support this idea. In various cancers,

clinical trials have been carried out where CAFs have been used as a

therapeutic tool (166–168), nevertheless, few have fully reproduced the

promising results obtained in the laboratory, which are necessary to
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include this cell type in cancer treatments. This could be a consequence

of their heterogeneous origin, their different protein expression patterns

and the pro-tumor and anti-tumor effects that they exert on the TME

(169, 170). Despite this, CAFs are an ideal target to direct antineoplastic

therapies; the meticulous point in this sense will be to direct blocking

molecules specifically on molecules with pro-tumor effect and favor the

expression of molecules with anti-tumor role, in gynecological cancer

clinical trials with CAFs as a therapeutic target are practically non-

existent. CAFs could stop being enemies in the battle against

gynecological cancers, become allies and achieve longer progression-

free survival and overall survival. Well-designed future clinical trials

that provide conclusive evidence on the specific roles of CAF

subpopulations within the TME and in the PMN are needed to

translate the results found in basic research on CAFs into clinical

practice and finally obtain clinical benefits.
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FIGURE 2

The main molecular functions and cellular events exerted by CAFs in the TME of gynecological cancers. CAFs promote various pro-tumor and anti-
tumor events, by regulating the expression of membrane receptors and the secretion of growth factors, lncRNAs, miRNAs, interleukins, chemokines
and ECM proteins, modulating cancer progression. Image created in BioRender.com and data sourced from (25, 28, 30, 84, 114, 117, 118, 121–123,
127, 133, 136, 137, 139, 152, 158–163, 165).
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