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Development and validation
of machine learning models for
predicting prognosis and guiding
individualized postoperative
chemotherapy:
A real-world study of
distal cholangiocarcinoma

Di Wang †, Bing Pan †, Jin-Can Huang, Qing Chen,
Song-Ping Cui, Ren Lang* and Shao-Cheng Lyu*

Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Capital Medical University,
Beijing, China
Background: Distal cholangiocarcinoma (dCCA), originating from the common

bile duct, is greatly associated with a dismal prognosis. A series of different studies

based on cancer classification have been developed, aimed to optimize therapy

and predict and improve prognosis. In this study, we explored and compared

several novel machine learning models that might lead to an improvement in

prediction accuracy and treatment options for patients with dCCA.

Methods: In this study, 169 patients with dCCA were recruited and randomly

divided into the training cohort (n = 118) and the validation cohort (n = 51), and

their medical records were reviewed, including survival outcomes, laboratory

values, treatment strategies, pathological results, and demographic information.

Variables identified as independently associated with the primary outcome by

least absolute shrinkage and selection operator (LASSO) regression, the random

survival forest (RSF) algorithm, and univariate and multivariate Cox regression

analyses were introduced to establish the following different machine learning

models and canonical regression model: support vector machine (SVM),

SurvivalTree, Coxboost, RSF, DeepSurv, and Cox proportional hazards (CoxPH).

We measured and compared the performance of models using the receiver

operating characteristic (ROC) curve, integrated Brier score (IBS), and

concordance index (C-index) following cross-validation. The machine learning

model with the best performance was screened out and compared with the TNM

Classification using ROC, IBS, and C-index. Finally, patients were stratified based

on the model with the best performance to assess whether they benefited from

postoperative chemotherapy through the log-rank test.

Results: Among medical features, five variables, including tumor differentiation,

T-stage, lymph node metastasis (LNM), albumin-to-fibrinogen ratio (AFR), and

carbohydrate antigen 19-9 (CA19-9), were used to develop machine learning

models. In the training cohort and the validation cohort, C-index achieved 0.763

vs. 0.686 (SVM), 0.749 vs. 0.692 (SurvivalTree), 0.747 vs. 0.690 (Coxboost), 0.745

vs. 0.690 (RSF), 0.746 vs. 0.711 (DeepSurv), and 0.724 vs. 0.701 (CoxPH),
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respectively. The DeepSurv model (0.823 vs. 0.754) had the highest mean area

under the ROC curve (AUC) than other models, including SVM (0.819 vs. 0.736),

SurvivalTree (0.814 vs. 0.737), Coxboost (0.816 vs. 0.734), RSF (0.813 vs. 0.730),

and CoxPH (0.788 vs. 0.753). The IBS of the DeepSurv model (0.132 vs. 0.147) was

lower than that of SurvivalTree (0.135 vs. 0.236), Coxboost (0.141 vs. 0.207), RSF

(0.140 vs. 0.225), and CoxPH (0.145 vs. 0.196). Results of the calibration chart and

decision curve analysis (DCA) also demonstrated that DeepSurv had a satisfactory

predictive performance. In addition, the performance of the DeepSurv model

was better than that of the TNM Classification in C-index, mean AUC, and IBS

(0.746 vs. 0.598, 0.823 vs. 0.613, and 0.132 vs. 0.186, respectively) in the training

cohort. Patients were stratified and divided into high- and low-risk groups based

on the DeepSurv model. In the training cohort, patients in the high-risk group

would not benefit from postoperative chemotherapy (p = 0.519). In the low-risk

group, patients receiving postoperative chemotherapy might have a better

prognosis (p = 0.035).

Conclusions: In this study, the DeepSurv model was good at predicting

prognosis and risk stratification to guide treatment options. AFR level might be

a potential prognostic factor for dCCA. For the low-risk group in the DeepSurv

model, patients might benefit from postoperative chemotherapy.
KEYWORDS

distal cholangiocarcinoma, DeepSurv, AFR, machine learning, risk stratification,
individualized treatment, post-operative chemotherapy
Introduction

Cholangiocarcinoma (CCA) includes intrahepatic CCA,

perihilar CCA, and distal CCA (dCCA). Among them, dCCA,

originating from the common biliary duct, is an aggressive tumor

that probably accounts for 20%%–30% of all CCA cases (1, 2). Most

patients with dCCA usually have advanced disease at presentation

due to difficulties in early diagnosis (3). Surgical resection

remains the primary treatment strategy for dCCA, such as

pancreaticoduodenectomy (PD) with standard lymphadenectomy.

The survival outcome of dCCA is still dismal because of the

relatively low resection rate and the high relapse rate after the

operation, and the 5-year overall survival rate is approximately

between 20% and 50% (4, 5). Although reports have suggested that

surgical resection combined with postoperative chemotherapy
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benefits patients with dCCA, an ideal medical model, which could

lead to improvement in prediction accuracy and treatment options,

remains of paramount importance (6).

The Union for International Cancer Control (UICC) TNM

Classification is a globally recognized standard for classifying the

extent of the spread of cancer, which records the primary and

regional nodal extent of the tumor and the absence or presence of

metastases. Nevertheless, the TNM Classification could not

accurately predict patients’ prognosis once they received

multimodality treatment. The TNM Classification only included

anatomical prognostic factors and cannot incorporate non-

anatomical factors associated with prognosis.

Machine learning is the name given to both the academic

discipline and the collection of techniques that allow computers

to undertake complex tasks. As an academic discipline, machine

learning comprises elements of mathematics, statistics, and

computer science. The application of machine learning mainly

benefits diagnosis and outcome prediction in the medical field

(7). Machine learning algorithms have been successfully applied

to classify skin cancer by dermatologists (8) and to predict the

progression from pre-diabetes to type II diabetes (9). Several

machine learning models have been reported, including random

survival forest (RSF) (10), support vector machine (SVM) (11), and

DeepSurv (12), although inconsistency remains, and model-

building approaches, effect estimates, and the overall accuracy

and validation of these prediction models vary to the point that a

consensus has not been reached.
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In this study, we constructed several different machine learning

models and canonical logistic Cox proportional hazards (CoxPH)

and evaluated their predictive performance. The aim was to

demonstrate the effectiveness of machine learning and guide

individualized treatment options for dCCA patients.
Materials and methods

Patients and dataset

The clinical data of patients were collected through a

retrospective review of medical records. Eligible patients were

those who underwent PD for dCCA between October 2011 and

December 2021. Patient data were retrieved from the hospital

database. Patients were randomly divided into the training cohort

and the validation cohort. The study was performed following the

tenets of the Declaration of Helsinki (as revised in 2013) and was

approved by the Ethics Committee of Beijing Chao-Yang Hospital

Capital Medical University (No. 2020-D-301).
Data collection

We collected the demographic information of dCCA patients,

such as age, gender, and history of smoking or diabetes. The

preoperative blood values included white blood cell (WBC),

hemoglobin (Hb), platelet (PLT), albumin (Alb), aspartate

transaminase (AST), alanine transaminase (ALT), total bilirubin

(TBIL), g-glutamyl transpeptidase (GGT), plasma fibrinogen (Fib),

carbohydrate antigen 19-9 (CA19-9), and carcinoembryonic

antigen (CEA). Albumin-to-fibrinogen ratio (AFR) was calculated

by dividing the Alb concentration by the Fib concentration. Peri-

operative data included tumor differentiation, lymph node

metastasis (LNM), T-stage, intraoperative blood loss, and

operative duration. Postoperative chemotherapy and survival

outcome were also recorded.
Flow chart of study

In this study, patients with dCCA were recruited and randomly

divided into the training cohort and the validation cohort. Variables

identified as independently associated with the primary outcome by

least absolute shrinkage and selection operator (LASSO) regression,

the RSF algorithm, and univariate and multivariate Cox regression

analyses were introduced to establish the following different

machine learning models and canonical regression model: SVM,

SurvivalTree, Coxboost, RSF, DeepSurv, and CoxPH. The

performance of models was measured and compared with mean

AUC, IBS, and C-index following cross-validation. The machine

learning model with the best performance was screened out and

compared with the TNM Classification by mean AUC, IBS, and C-

index. The DeepSurv model was further evaluated by calibration

chart and decision curve analysis (DCA). Finally, patients were

stratified based on the model with the best performance to assess
Frontiers in Oncology 03
whether they benefited from postoperative chemotherapy through

the log-rank test (Supplementary Figure 1).
Modeling process

SVM is a supervised machine learning algorithm that is used for

classification or regression. The objective of SVM is to find the

hyperplane in high-dimensional space that best separates the data

into classes. This hyperplane is called the maximum margin

hyperplane and is selected based on the idea of maximizing the

margin, which is the distance between the hyperplane and the

closest training samples, called support vectors (13). The goal of

SVM is to find the hyperplane that maximizes this margin while

correctly separating the classes. Once the hyperplane is determined,

new data can be classified by finding which side of the hyperplane it

falls on. The formula is as follows:

b* = yj −o
1

i=1
a*i yi(xixj)

SurvivalTree is a type of machine learning algorithm that is used to

model and predict time-to-event data, also known as survival

analysis. The main objective of SurvivalTree is to estimate the

survival function, which represents the probability that an

individual will survive past a given time point, given their specific

characteristics or features (14). SurvivalTree is a tree-based

algorithm, meaning it builds a tree-like structure to represent the

relationships between different features and survival time. The

algorithm splits the sample into different subgroups based on

their features and predicts the survival function for each

subgroup. By doing this, the algorithm can capture complex non-

linear relationships between features and survival time and make

accurate predictions for new individuals. The formula can be

expressed as:

S(t) = e ( − h(t)*g (t))

Coxboost is a machine learning algorithm that combines the ideas of

boosting and the Cox proportional hazards model, which is a

popular method in survival analysis. The main objective of

Coxboost is to model and predict time-to-event data, also known

as survival analysis. Coxboost uses a combination of boosting and

the Cox proportional hazards model to make predictions. Boosting

is an ensemble learning technique that combines multiple weak

learners to form a strong prediction model. In Coxboost, boosting is

used to improve the performance of the Cox proportional hazards

model by combining multiple models into a single model that has

improved accuracy (15). The formula can be expressed as:

h(t) = h0(t)*exp(oqi*f (t, xi))

RSF is a machine learning algorithm that is used to model and

predict time-to-event data, also known as survival analysis. The

main objective of RSF is to estimate the survival function, which

represents the probability that an individual will survive past a given

time point, given their specific characteristics or features. RSF is an

ensemble learning algorithm that combines multiple decision trees
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to form a random forest. Decision trees are tree-based algorithms

that split the sample into different subgroups based on their features

and predict the survival time for each subgroup. By combining

multiple decision trees, RSF can capture complex non-linear

relationships between features and survival time and make

accurate predictions for new individuals (16). The test statistic

function for the Z-value to accept the null hypothesis is as follows:

Z = o
k
i=1(O1,  i − E1,i)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ok

i=1Vi

q − N(0, 1)

CoxPH is a statistical method that is commonly used in survival

analysis to model the relationship between covariates and time-to-

event data. The main objective of CoxPH is to estimate the hazard

function, which represents the instantaneous risk of an event

occurring at a given time. CoxPH assumes that the hazard

function is proportional for different individuals, meaning that

the hazard ratio between two individuals is constant over time.

This allows for the estimation of the hazard function using a simple

linear regression model, where the hazard ratio between two

individuals can be estimated as the exponential of the difference

in their covariate values. The model can be written as follows (17):

Inh(t) = In   h0(t) + b1x1 +… + bpxp

The DeepSurv model was established based on the proposal by

Katzman et al. to predict the prognosis of dCCA. DeepSurv is a

multilayer neural network, including input, hidden, and output

layers. This model imitates the actual clinical patients’ risk value

and has tremendous generalization performance. DeepSurv

contains weight decay regularization, batch normalization, and

dropout, which can prevent overfitting to some extent. The loss

function in the DeepSurv model is defined as Cox partial likelihood

with constraints, the formula of which is as follows:

l(q) = −
1
NE

o
i,Ei=1

bhq(x) − log o
j∈R(Ti)

e
bhq (x) !

+ ajjqjj
2

2

We think that the smaller the value of loss function in this model,

the better the stability. The Adam optimization algorithm was used

and obtained current optimal parameters (18). Supplementary

Table 1 shows the hyperparameters of DeepSurv. More detailed

information about DeepSurv can be found on the website (https://

github.com/jaredleekatzman/DeepSurv) (19).
Statistical analysis

Continuous variables were shown as mean ± standard deviation

(SD) or median (interquartile range [IQR]). Categorical variables

are presented as a percentage. Statistical methods are the t-test,

Mann–Whitney U-test, and chi-squared test. Kaplan–Meier analysis

and log-rank testing were operated using the lifelines module by

Python. AFR was evaluated using “R-package Survminer” to obtain

the best cutoff value. Eventually, the predictive ability was analyzed

and compared between the machine learning model with the best

performance and the CoxPH model. The accuracy of prognostic
Frontiers in Oncology 04
prediction models was assessed using the C-index, calibration chart,

DCA, IBS, and AUC in the training and validation cohorts.

Statistical analyses were performed using R software (version

4.0.4) and Python software (version 3.7.6). These tests of the

proposed approaches were double-sided, and the standard of

significance in the results was p < 0.05.
Results

The clinical characteristics of patients and
selection of variables

We searched electronic medical records and identified 169

patients (105 men and 64 women, mean age 65 years, range 29–84

years) diagnosed with dCCA between October 2011 and December

2021 in this study. Among all patients, 113 (66.9%) had medium–

high differentiation cancer, 141/169 (83.4%) were at T3/4 stage

during presentation, 77 (45.6%) had LNM, and 41 (24.3%) received

postoperative chemotherapy. Patients were randomly divided into

the training cohort (n = 118) and the validation cohort (n = 51) by

7:3. There were no major differences in the demographic and clinical

characteristics of patients between the two cohorts (Table 1). The

cumulative incidence curves also had no significant difference in the

two cohorts using the log-rank test (p = 0.21) (Supplementary

Figure 2). Based on “R-package Survminer”, the best cutoff value

for AFR was 11.26, and patients were divided into two groups: the

high-AFR group (AFR > 11.26, n = 103, 60.9%) and the low-AFR

group (AFR ≤ 11.26, n = 66, 39.1%). The univariate and multivariate

Cox regression analyses showed that patients with low AFR had a

dismal prognosis (HR 2.370 vs. HR 1.933, 95% CI 1.470–3.779 vs.

95% CI 1.144–3.266, respectively). LASSO analysis and RSF also

demonstrated that AFR played an important role in prognosis. The

Kaplan–Meier survival curve of overall survival (OS) showed that

compared with the high-AFR group, patients with dCCA in the low-

AFR group had worse OS (Supplementary Figure 3).
Selecting the variables and establishing the
machine learning models

From the basic information, laboratory examinations, and peri-

operative and postoperative data, 22 characteristics were reduced to

five potential predictors. Algorithms, including LASSO regression

(Figure 1A), RSF (Figure 1B), and univariate and multivariate Cox

regression analyses (Tables 2, 3), showed that tumor differentiation,

T-stage, LNM, AFR, and CA19-9 were prognostic variables

identified as independently associated with the primary outcome.

Six models, namely, SVM, SurvivalTree, Coxboost, DeepSurv, RSF,

and CoxPH, were established based on the identified five prognostic

variables. In the training cohort, the predictive performance of the

SVM model (0.763) was better than that of the other models, with

C-indexes of SurvivalTree (0.749), Coxboost (0.747), DeepSurv

(0.746), RSF (0.745), and CoxPH (0.724). However, in the

validation cohort, the C-index of DeepSurv (0.711) was better

than that of the other models: SVM (0.686), SurvivalTree (0.692),
frontiersin.org
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TABLE 1 Clinical and pathologic characteristics of 169 patients with dCCA.

Characteristics Training cohort Validation cohort p-value

Number of patients, n (%) 118 (69.8) 51 (30.2)

Age (years), n (%) 0.493

≤65 58 (49.2) 28 (54.9)

>65 60 (50.8) 23 (45.1)

Gender, n (%) 0.914

Male 73 (61.9) 32 (62.7)

Female 45 (38.1) 19 (37.3)

Diabetes, n (%) 0.240

No 89 (75.4) 34 (66.7)

Yes 29 (24.6) 17 (33.3)

Smoking status, n (%) 0.280

No 78 (66.1) 38 (74.5)

Yes 40 (33.9) 13 (25.5)

Differentiation, n (%) 0.165

Medium–high 75 (63.6) 38 (74.5)

Poor 43 (36.4) 13 (25.5)

LNM, n (%) 0.352

No 67 (56.8) 25 (49)

Yes 51 (43.2) 26 (51)

Postoperative chemotherapy, n (%) 0.884

No 89 (75.4) 39 (76.5)

Yes 29 (24.6) 12 (23.5)

AFR, n (%) 0.178

High 50 (42.4) 16 (31.4)

Low 68 (57.6) 35 (68.6)

T, n (%) 0.270

T1/2 22 (18.6) 6 (11.8)

T3/4 96 (81.4) 45 (88.2)

CA19-9, n (%)

≤37 38 (32.2) 16 (31.4) 0.915

>37 80 (67.8) 35 (68.6)

WBC (109/L), mean ± SD 6.3 ± 2.3 6.7 ± 1.9 0.192

TBIL (mmol/L), median (IQR) 110.0 (170.3) 158.3 (164.8) 0.387

GGT (U/L), median (IQR) 345.0 (650.0) 381.0 (596.0) 0.792

Hb (g/L), mean ± SD 117.2 ± 20.4 114.6 ± 24.0 0.794

PLT (109/L), mean ± SD 240.3 ± 75.8 257.3 ± 81.9 0.191

AST (U/L), median (IQR) 60.0 (83.3) 65.0 (50.0) 0.105

CEA (U/L), median (IQR) 2.0 (1.9) 2.4 (2.8) 0.980

ALT (U/L), median (IQR) 69.0 (112.0) 68.0 (129.0) 0.450

(Continued)
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Coxboost (0.690), and RSF (0.690). We also performed time-

dependent ROC analysis in different models (Figure 2). The

results in the training cohort showed that DeepSurv (0.823) had a

higher mean AUC than other models, including SVM (0.819),

SurvivalTree (0.814), Coxboost (0.816), RSF (0.813), and CoxPH

(0.788). In the validation cohort, DeepSurv (0.754) also had a higher

mean AUC than the other models, including SVM (0.736),

SurvivalTree (0.737), Coxboost (0.734), RSF (0.730), and CoxPH

(0.753). Regarding the IBS in the training and validation cohorts,

DeepSurv (0.132 vs. 0.147) had a lower value than the other models,

including SurvivalTree (0.135 vs. 0.236), Coxboost (0.141 vs. 0.207),

RSF (0.140 vs. 0.225), and CoxPH (0.145 vs. 0.196).

The agreement of DeepSurv between predictions and observations

in prognosis was assessed using a calibration plot. The 1-, 2-, and 3-

year calibration plots showed good agreement between the predictive

value and the actual value in the training cohort (Figures 3A–C).

DeepSurv had good performance in AUC of 1, 2, and 3 years in the

training cohort (0.734, 0.824, and 0.844, respectively) (Figure 3D) and

in the validation cohort (0.734, 0.760, and 0.799, respectively)
Frontiers in Oncology 06
(Figure 3E). DCA was applied to calculate a clinical “net benefit” for

the prediction model, and the result of DCA indicated that the

DeepSurv model had a better net benefit at most threshold

probabilities (Figures 4A, B). After comprehensive consideration of

the C-index, time-dependent ROC, and IBS, the DeepSurv model was

found to have a better predictive performance than the other models,

including the traditional Cox model, CoxPH (Table 4). We randomly

selected three patients for the individual postoperative prognosis

demonstration. It showed the individual survival probability of

prognosis according to the DeepSurv model (Figure 4C).
Comparison between the DeepSurv model
and the TNM classification

As described previously, the TNM Classification is a unified

standard and is a prerequisite for ensuring the quality of care, in

which oncologists could communicate regarding the cancer extent for

individual patients as a basis for decision making on treatment
TABLE 1 Continued

Characteristics Training cohort Validation cohort p-value

Fib (g/L), median (IQR) 3.4 (1.5) 3.8 (1.2) 0.298

Alb (g/L), mean ± SD 35.3 ± 5.8 34.2 ± 5.8 0.246

Blood loss (ml), median (IQR) 500.0 (325.0) 500.0 (200.0) 0.487

Operative time (h), mean ± SD 10.1 ± 2.2 10.1 ± 2.2 0.929
fron
dCCA, distal cholangiocarcinoma; LNM, lymph node metastasis; CA19-9, carbohydrate antigen 19-9; TBIL, total bilirubin; GGT, g-glutamyl transpeptidase; Hb, hemoglobin; PLT, blood platelet;
ALT, alanine aminotransferase; Alb, albumin; IQR, interquartile range; AFR, albumin-to-fibrinogen ratio; WBC, white blood cell AST, aspartate transaminase; CEA, carcinoembryonic antigen.
A B

FIGURE 1

The results of LASSO regression analysis and the RSF plot for models. (A) LASSO coefficient profiles of the expression of 22 variables. (B) The length
of the horizontal axis where each variable is located represents the variable’s contribution to the outcome. LASSO, least absolute shrinkage and
selection operator; RSF, random survival forest.
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TABLE 2 Univariate Cox regression analyses for predicting OS of patients with dCCA in the training cohort.

Characteristics Number of patients (%) HR (95%CI) p-value

Age (years)

≤65 58 (49.2) –

>65 60 (50.8) 1.611 (1.013–2.564) 0.044*

Gender

Female 45 (38.1) –

Male 73 (61.9) 1.042 (0.649–1.673) 0.865

Smoking

No 78 (66.1) –

Yes 40 (33.9) 1.157 (0.717–1.867) 0.549

Diabetes

No 89 (75.4) –

Yes 29 (24.6) 0.919 (0.539–1.567) 0.755

T

T1/2 22 (18.6) –

T3/4 96 (81.4) 3.374 (1.445–7.787) 0.005**

LNM

No 67 (56.8) –

Yes 51 (43.2) 2.35 (1.470–3.779) 0.000***

AFR

High 50 (42.4) –

Low 68 (57.6) 2.370 (1.445–3.886) 0.001**

Differentiation

High–medium 75 (63.6) –

Poor 43 (36.4) 2.195 (1.361–3.541) 0.001**

CA19-9 (U/ml)

≤37 38 (32.2) –

>37 80 (67.8) 2.188 (1.293–3.703) 0.004**

Chemotherapy

No 89 (75.4) –

Yes 29 (24.6) 0.685 (0.382–1.228) 0.204

Blood loss (ml) 118 (100) 1.000 (0.999–1.001) 0.832

Operative time (h) 118 (100) 1.067 (0.956–1.191) 0.248

Fib (mg/dl) 118 (100) 1.002 (1.000–1.004) 0.052

Alb (g/L) 118 (100) 0.996 (0.959–1.035) 0.846

WBC (109/L) 118 (100) 1.012 (0.916–1.119) 0.807

PLT (109/L) 118 (100) 1.003 (0.999–1.006) 0.103

Hb (g/L) 118 (100) 0.998 (0.986–1.010) 0.709

ALT (U/L) 118 (100) 1.000 (0.999–1.002) 0.711

(Continued)
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management and individual prognosis, but can also be used to inform

and evaluate treatment guidelines, national cancer planning, and

research. First, variables involved in the TNM Classification were

applied to establish machine learning models. The result of the mean

AUC showed that the predictive performance with the time-

dependent ROC of DeepSurv (0.613) was better than that of SVM

(0.594), SurvivalTree (0.590), Coxboost (0.594), RSF (0.591), and

CoxPH (0.594) (Supplementary Figure 4). Then, the identified five

prognostic variables and TNM Classification variables were employed

to develop DeepSurv. Finally, the predictive performance between the

DeepSurv model and the TNM Classification was estimated using the

value of C-index, mean AUC, and IBS. The results in the training

cohort showed that the DeepSurv model is better than the TNM

Classification (0.746 vs. 0.589, 0.823 vs. 0.613, and 0.132 vs. 0.186,

respectively) (Supplementary Table 2). In the validation cohort, the
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performance of the DeepSurv model was also better than that of the

TNMClassification estimated by C-index, mean AUC, and IBS (0.711

vs. 0.568, 0.753 vs. 0.599, and 0.147 vs. 0.172, respectively). The results

mentioned above indicated that the DeepSurv model was better at

predictive performance and accuracy than the TNM Classification in

this study.
Risk stratification and guidance of
individualized chemotherapy for patients
with dCCA

It is crucial to develop a stratified treatment recommendation to

ensure individualized medicine. Patients in this study were stratified

into the low-risk group and the high-risk group based on the
TABLE 2 Continued

Characteristics Number of patients (%) HR (95%CI) p-value

GGT (U/L) 118 (100) 1.000 (1.000–1.001) 0.812

AST (U/L) 118 (100) 1.000 (0.998–1.002) 0.756

CEA (U/ml) 118 (100) 1.022 (0.995–1.050) 0.104

TBIL (mmol/L) 118 (100) 1.002 (1.000–1.004) 0.112
fron
***p-value <0.001; **p-value <0.01; *p-value <0.05.
LNM, lymph node metastasis; CA19-9, carbohydrate antigen 19-9; TBIL, total bilirubin; GGT, g-glutamyl transpeptidase; Hb, hemoglobin; PLT, blood platelet; ALT, alanine aminotransferase;
AFR, albumin-to-fibrinogen ratio; OS, overall survival; dCCA, distal cholangiocarcinoma; WBC, white blood cell; AST, aspartate transaminase; CEA, carcinoembryonic antigen.
TABLE 3 Multivariate Cox regression analyses for predicting OS of patients with dCCA in the training cohort.

Characteristics Number of patients (%) HR (95%CI) p-value

Age (years)

≤65 58 (49.2)

>65 60 (50.8) 0.984 (0.604–1.604) 0.948

T

T1/2 22 (18.6)

T3/4 96 (81.4) 2.674 (1.121–6.377) 0.027

LNM

No 67 (56.8)

Yes 51 (43.2) 2.074 (1.260–3.414) 0.004**

AFR

High 50 (42.4)

Low 68 (57.6) 1.933 (1.144–3.266) 0.014*

Differentiation

High–medium 75 (63.6)

Poor 43 (36.4) 1.840 (1.122–3.017) 0.016*

CA19-9 (U/ml)

≤37 38 (32.2)

>37 80 (67.8) 1.777 (1.033–3.057) 0.038*
**p-value <0.01; *p-value <0.05.
LNM, lymph node metastasis; CA19-9, carbohydrate antigen 19-9; AFR, albumin-to-fibrinogen ratio; OS, overall survival; dCCA, distal cholangiocarcinoma.
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DeepSurv model in the training cohort and the validation cohort,

respectively (Supplementary Figure 5). The benefit from

chemotherapy was estimated between the high-risk group and the

low-risk group by the Kaplan–Meier analysis and log-rank test in

the two cohorts. In the training cohort (Figures 5A, B), results

showed that there was no statistical difference in the prognosis in

the high-risk group, regardless of whether receiving chemotherapy

or not (p = 0.519). In the low-risk group, patients who received

postoperative chemotherapy had a better survival prognosis (p =

0.035). In the validation cohort (Figures 5C, D), there was no
Frontiers in Oncology 09
statistical difference in prognosis in the high-risk group (p = 0.643)

and the low-risk group (p = 0.071), regardless of whether receiving

chemotherapy or not. However, we still believe that risk

stratification based on the DeepSurv model has potential clinical

application in which postoperative chemotherapy might benefit

patients with dCCA in the low-risk group.
Discussion

dCCA, originating from the common bile duct and arising from

the biliary epithelium, is a heterogeneous and exceptionally aggressive

malignant tumor with poor prognosis (20), and the incidence of

dCCA is increasing globally. The clinical manifestations of dCCA are

frequently non-specific and are related to the biliary obstruction

caused by the tumor (21). The silent and asymptomatic nature of

dCCA, particularly in its early stages, in combination with its high

aggressiveness, intra- and inter-tumor heterogeneity, and

chemoresistance, significantly compromises the efficacy of current

therapeutic options, contributing to a dismal prognosis (22). Surgery

is a potential curative option of reference for early stage tumors.

Surgical strategies for dCCA usually require performing a

pancreaticoduodenectomy, with the removal of the head of the

pancreas, the first part of the duodenum, the gallbladder, and the

bile duct (23). However, only 35% of patients are eligible for surgical

treatment, and there is a very high rate of postoperative local

recurrence (24). The 5-year OS of patients with dCCA is 23% and

is slightly higher (27%) if R0 resection is achieved (the median

survival after R0 resection is 25 months) (25). Therefore, it is

important to increase awareness of this cancer. In the past decade,
FIGURE 2

The time-dependent ROC analysis in different models. The time-
dependent ROC analysis in SVM, SurvivalTree, Coxboost, RSF,
DeepSurv models, CoxPH, and DeepSurv had a higher mean AUC
than other models in the training cohort. ROC, receiver operating
characteristic; AUC, area under the ROC curve.
A B

D E

C

FIGURE 3

Calibration plots and ROC curve for the DeepSurv model. Calibration plots in (A) 1 year, (B) 2 years, and (C) 3 years in the training cohort. The ROC
of 1, 2, and 3 years between the DeepSurv model in the training cohort (D) and the validation cohort (E). ROC, receiver operating characteristic.
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increasing efforts have been made to understand the complexity of

these tumors and to develop new diagnostic tools and therapies that

might help to improve patient outcomes (26). Moreover, specific

prognostic models must be established for the early diagnosis,

prevention, and targeted and personalized treatment options for

patients with dCCA (3).

Machine learning is the name given to both the academic

discipline and the collection of techniques that allow computers

to undertake complex tasks. As an academic discipline, machine

learning comprises elements of mathematics, statistics, and

computer science. Machine learning techniques are attracting

substantial interest from medical researchers and clinicians, which

could accommodate different configurations of raw data, assign

context weighting, and calculate the predictive power of every

combination of variables available to assess diagnostic and

prognostic elements. Machine learning algorithms could handle

risk profiles that are highly individualized, allowing analysis of

disorders with multiple etiologies and incomplete data, as is typical

in real clinical settings. Using decision trees, medical researchers

could then extract the minimum data necessary to make a diagnosis

or therapeutic recommendations. For instance, a feature selection

algorithm reduced the number of features (from 29 to 8) necessary

for diagnosing autism spectrum disorder (ASD) with 100%

accuracy among 612 patients with ASD (27). In this study, the
Frontiers in Oncology 10
number of patients’ clinical features was also reduced from 21 to 5

after the analysis of the algorithm, which would reduce the time

needed to make an accurate diagnosis and improve patient

outcomes. We then established algorithms on data from the

training cohort and predicted the diagnostic outcome in the

validation cohort. We compared the predictive performance

between machine learning modes and the traditional Cox model

in the training cohort and the validation cohort and found that the

DeepSurv model was good at predicting prognosis and risk

stratification to guide treatment options.

There is no widely used staging system for dCCA, although it

can be staged according to the TNM Classification, which has

become the benchmark for classifying patients with cancer, defining

prognosis, and determining the best treatment approaches (28, 29).

Despite providing a clinically meaningful classification correlated

with prognosis (30), the current TNM Classification has some

limitations. First, it has limited discriminatory ability between T2

and T3 tumors in surgically resected dCCA (31). T2 tumors include

multifocal disease or disease with a vascular invasion that probably

reflects disseminated disease, and the OS in patients with these

tumors does not differ from the OS in patients with metastatic

disease. Second, although size has been included as a prognostic

factor for dCCA in the 8th edition of the American Joint Committee

on Cancer (AJCC) Cancer Staging Manual, the only cutoff size
A B C

FIGURE 4

DCA of the DeepSurv model and the individual postoperative prognostic prediction. The 1-year (B) and 2-year (C) DCA of the DeepSurv model.
(C) The estimated prognosis of patients in the training cohort. The blue line represents patient 2, the yellow line represents patient 35, and the red
line represents patient 46. DCA, decision curve analysis.
TABLE 4 Comparison of the bootstrapped C-indexes, mean AUC, and IBS of different models for dCCA patients in the training cohort and the
validation cohort.

Characteristics C-index Mean AUC IBS

Training cohort Validation cohort Training cohort Validation cohort Training cohort Validation cohort

SVM 0.763 0.686 0.819 0.736 – –

SurvivalTree 0.749 0.692 0.814 0.737 0.135 0.236

RSF 0.745 0.690 0.813 0.730 0.140 0.225

Coxboost 0.747 0.690 0.816 0.734 0.141 0.207

DeepSurv 0.746 0.711 0.823 0.754 0.132 0.147

CoxPH 0.724 0.701 0.788 0.753 0.145 0.196
The DeepSurv model had a more stable prediction ability and a better performance than other models.
AUC, area under the ROC curve; IBS, integrated Brier score; dCCA, distal cholangiocarcinoma.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1106029
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1106029
considered is 5 cm in T1 tumors. Several reports have shown that a

2-cm cutoff value might identify very early tumors with a very low

likelihood of dissemination and potentially long-term survival with

low recurrence rates (32). Finally, the TNM Classification misses

relevant prognostic factors, such as the presence of cancer-related

symptoms (abdominal pain or malaise) or the degree of liver

function impairment. Notably, Chaiteerakij R et al. proposed a

new staging system for dCCA based on tumor size and number,

vascular encasement, lymph node and peritoneal metastasis,

Eastern Cooperative Oncology Group performance status, and

CA19-9 level, which has shown a better performance in

predicting survival than the TNM Classification (33). After the

analysis in this study, we found that 1) the predictive performance

of DeepSurv was better than that of other machine learning models

and CoxPH by assessing C-index, mean AUC, and IBS; 2) the

identified five prognostic variables by algorithms, including AFR,

tumor differentiation, T stage, LNM, and CA19-9, were better than

TNM Classification variables at predicting prognosis; and 3) the

predictive performance of DeepSurv was better than that of the

TNM Classification.

Presently, numerous studies have found that the nutritional

status of the tumor patient is one of the key factors influencing the

progression of the tumor (34). Malnutrition in cancer patients is a

well-recognized phenomenon, especially for patients with digestive

system tumors, driven by a combination of reduced food intake,

decreased physical activity, and abnormal catabolic–metabolic

balance caused by tumors (35). At the same time, inflammation

also plays an important role in the pathogenesis of malignant
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tumors, which is considered to be the seventh characteristic of

tumors (36). In daily practice, serum Alb has been used as a simple

and reproducible parameter to assess nutrition status, an

independent predictor of survival outcome in cancer patients,

such as in gastric cancer in which lower serum Alb concentration

was associated with worse patient prognosis (37). Xifeng Xu et al.

showed that hypoalbuminemia is an independent poor prognostic

indicator in patients with non-metastatic breast cancer (38).

Inflammation promotes the release of Fib, which further

promotes tumor cell proliferation and metastasis by participating

in extracellular matrix formation and inducing epithelial–

mesenchymal transition (39, 40). Guoying Wang et al. confirmed

that elevated levels of Fib predicted poor outcomes in patients with

hepatocellular carcinoma (41). Juan Zhao et al. found that high

levels of Fib were related to poor prognosis in patients with early

stage resectable extrahepatic CCA (42). AFR, which takes both Alb

and Fib into account, has been indicated as a prognostic factor for

various malignancies, including non-small cell lung cancer (43),

chronic lymphocytic leukemia (44), and breast cancer (45). In this

study, we also found that AFR was an independent prognostic

variable, and the dCCA patients with low AFR might have poor OS.

Even in clinical settings where cancer patients undergo uniform

therapeutic regimens, the response and OS rates are highly variable

(46). Risk stratification is essential in the evaluation and

management of cancer patients. Jianzhen Lin et al. (47)

demonstrated that patients with refractory biliary tract

carcinomas can derive considerable benefit from receiving

personal ized therapy guided by molecular profi l ing .
A B

DC

FIGURE 5

Kaplan–Meier survival analysis in different risk groups. There was no significant difference in prognosis for high-risk patients in the training cohort
(A) and the validation cohort (C). Patients who received chemotherapy had a better prognosis than those who did not in the training cohort (B) and
the validation cohort (D).
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Consequently, it is important to formulate a simple and powerful

risk stratification system to identify patients with aggressive cancer

courses and assist in optimizing treatment strategies. Machine

learning has helped refine risk stratification and triage patients for

treatment options. Therefore, we next stratified patients in this

study according to the DeepSurv model to validate the prognostic

value of this risk stratification model through a retrospective

analysis of patients in our hospital that reflected real-world

clinical conditions. For low-risk groups, patients with dCCA

would benefit from postoperative chemotherapy and have a better

survival outcome.
Study limitation

This study had potential limitations. First, this was a small study

with a small sample size in each cohort or group, which could

provide results quickly. However, it might also not yield reliable or

precise estimates. Another limitation of this small study is that

many of the nuances and complexities of machine learning

analyses, such as sparsity or high dimensionality, are not well

represented in the data. Second, this study represented the data of

our single center only, which made it difficult to determine whether

a particular outcome was a true finding. Additionally, this was a

retrospective study, and an inferior level of evidence, selection bias,

and information bias is inevitable. Future studies, preferably with

larger patient cohorts from multi-centers and prospective design,

should be encouraged to further confirm our preliminary outcomes.
Conclusions

We constructed accurate prediction models for the survival of

patients with dCCA using a novel machine learning platform based

on medical data. In this study, the DeepSurv model was good at

predicting prognosis and risk stratification to guide treatment

options. AFR level might be a potential prognostic factor for

dCCA. For the low-risk group in the DeepSurv model, patients

might benefit from postoperative chemotherapy. Machine learning

has the potential to transform the way that medicine works. We

look toward a future of medical research and practice greatly

enhanced by the power of machine learning.
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SUPPLEMENTARY FIGURE 2

Cumulative incidence curves of the training cohort and the validation cohort.
Cumulative incidence curve in the training cohort and the validation cohort.

There was no statistically significant difference between the survival of the

two cohorts using the log-rank test (p = 0.21).

SUPPLEMENTARY FIGURE 3

The Kaplan–Meier analysis and log-rank test in different AFR groups. The Kaplan–

Meier analysis in different AFR groups. Therewas a statistically significant difference
between the survival of the two groups using the log-rank test (p = 0.0013).
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SUPPLEMENTARY FIGURE 4

The time-dependent ROC analysis in TNM Classification. The time-
dependent ROC analysis in TNM Classification and the DeepSurv algorithm

had the highest mean AUC.

SUPPLEMENTARY FIGURE 5

The Kaplan–Meier analysis and log-rank test in different risk group according
to DeepSurv model. (A) The DeepSurv risk stratification of patients in the

training cohort. (B) The DeepSurv risk stratification of patients in the
validation cohort.
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