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immunotherapy/chemotherapy
for lung adenocarcinoma
populations with
different prognoses
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Wencheng Huang1, Xiaoxin Xu1 and Xiao Zhu2*†

1Huizhou First Hospital, Guangdong Medical University, Huizhou, China, 2Computational Oncology
Laboratory, The Marine Biomedical Research Institute, Guangdong Medical University,
Zhanjiang, China
Background: Lung adenocarcinoma (LUAD) kills millions of people every year.

Recently, FDA and researchers proved the significance of high tumor mutational

burden (TMB) in treating solid tumors. But no scholar has constructed a TMB-

derived computing framework to select sensitive immunotherapy/

chemotherapy for the LUAD population with different prognoses.

Methods: The datasets were collected from TCGA, GTEx, and GEO. We

constructed the TMB-derived immune lncRNA prognostic index (TILPI)

computing framework based on TMB-related genes identified by weighted

gene co-expression network analysis (WGCNA), oncogenes, and immune-

related genes. Furthermore, we mapped the immune landscape based on

eight algorithms. We explored the immunotherapy sensitivity of different

prognostic populations based on immunotherapy response, tumor immune

dysfunction and exclusion (TIDE), and tumor inflammation signature (TIS)

model. Furthermore, the molecular docking models were constructed for

sensitive drugs identified by the pRRophetic package, oncopredict package,

and connectivity map (CMap).

Results: The TILPI computing framework was based on the expression of TMB-

derived immune lncRNA signature (TILncSig), which consisted of AC091057.1,

AC112721.1, AC114763.1, AC129492.1, LINC00592, and TARID. TILPI divided all

LUAD patients into two populations with different prognoses. The random

grouping verification, survival analysis, 3D PCA, and ROC curve (AUC=0.74)

firmly proved the reliability of TILPI. TILPI was associated with clinical

characteristics, including smoking and pathological stage. Furthermore, we

estimated three types of immune cells threatening the survival of patients

based on multiple algorithms. They were macrophage M0, T cell CD4 Th2, and

T cell CD4 memory activated. Nevertheless, five immune cells, including B cell,
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endothelial cell, eosinophil, mast cell, and T cell CD4 memory resting, prolonged

the survival. In addition, the immunotherapy response and TIDE model proved

the sensitivity of the low-TILPI population to immunotherapy. We also identified

seven intersected drugs for the LUAD population with poor prognosis, which

included docetaxel, gemcitabine, paclitaxel, palbociclib, pyrimethamine,

thapsigargin, and vinorelbine. Their molecular docking models and best

binding energy were also constructed and calculated.

Conclusions: We divided all LUAD patients into two populations with different

prognoses. The good prognosis population was sensitive to immunotherapy,

while the people with poor prognosis benefitted from 7 drugs.
KEYWORDS

lung adenocarcinoma, tumor mutational burden, prediction of prognosis, immune
landscape, immunotherapy, chemotherapy, molecular docking technology
1 Introduction

The incidence of lung cancer is the second highest in the world

(1–3). Lung cancer kills millions of people yearly, and its 5-year

survival rates vary from 4-17% on the ground of stages and regional

differences (4). The most common histological type of lung cancer is

lung adenocarcinoma (LUAD) (5, 6). Last decade, many pioneers

studied the LUAD gene, and some of these outstanding scientists

achieved remarkable results. KRAS, EGFR, and BRAF are most

commonly oncogenes with a mutation in LUAD. TP53, STK11, and

KEAP have closely related to tumor suppressors (7).

Long non-coding RNA (lncRNA) is the over 200 bp RNA and is

disabled to encode proteins. In recent studies, lncRNA was found to

be associated with the development of tumors (8). There are infinite

lncRNA types. And lncRNA JPX can increase the number of lung

cancer cells and accelerate the growth of tumor cells (9). PD-L1

lncRNA splice isoform facilitates LUAD development by directly

enhancing c-Myc activity (10). Moreover, novel lncRNA UPLA1

regulates the activity of LUAD. UPLA1 can facilitate migration,

invasion, and proliferation of LUAD and is associated with cell cycle

arrest (11). Thus, numerous unknown features between lncRNA

and LUAD are worthy of research.

Tumor mutational burden (TMB) indicates the number of

mutations per million bases. Recently, FDA approved the

pembrolizumab (PD-1 antibody) for the treatment of adult and

pediatric patients with unresectable or metastatic high TMB (≥10

mutations/megabase) solid tumors (https://www.accessdata.fda.gov/

drugsatfda_docs/label/2020/125514s068lbl.pdf). The immune

checkpoint inhibitor (ICI)-based immunotherapy has shown a

strong vitality, especially ICIs targeting programmed cell death 1

(PD-1) and programmed cell death-ligand 1 (PD-L1). Yang et al.

creatively proposed ICI therapy before surgical resection of the

tumor, which improved the survival rate of some lung cancer

patients (12). Many studies have shown that tumor patients with

high TMB values can achieve better immunotherapy effects (13–16).

It shows that TMB is the latest and independent signature in
02
evaluating the efficacy of immunotherapy (17, 18). Some scholars

also extended the study of TMB to lung cancer. For example,

Hellmann et al. found that lung cancer patients with high TMB

had a better treatment response to Nivolumab and Ipilimumab

combined immunotherapy (19).

Nevertheless, now the development of TMB encountered some

problems. The first was the accuracy of TMB measurement.

Secondly, how to apply TMB to the prediction model was also a

problem (20). The literature review found that no scholar has

constructed a computing framework based on TMB to relate to

patients’ prognosis and immunotherapy sensitivity. Hence, we

decided to contribute in this direction (Figure 1).
2 Materials and methods

2.1 The datasets source

In this study, we collected 528 LUAD and 494 lung squamous

cell carcinomas (LUSC) samples from The Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/). The non-small cell lung

cancer (NSCLC) samples consisted of aforementioned LUAD and

LUSC samples. We only remained with the project of the vial with A

and deleted the samples with Vial B or C. Because the vial B or C

represents that corresponding samples were fixed by formalin and

embedded in paraffin, the effects on RNA-sequence had been

proved. We also averaged the RNA-sequence results of multiple

samples from the same patient. At last, we obtained 513 LUAD

samples. Furthermore, we obtained 288 normal lung samples from

the Genotype-Tissue Expression (GTEx) (https://gtexportal.org/).

At last, we tried to verify the reliability of the computing framework

in external Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/). We collected 9 LUAD datasets with

OS (1644 samples), which included GSE11969, GSE13213,

GSE26939, GSE31210, GSE36471, GSE63459, GSE68465,

GSE68571, and GSE72094. After sorting out these datasets, we
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obtained the mRNAs and lncRNAs expression matrix, overall

survival (OS) time, survival status, age, gender, smoking, race,

pathological stage, and pathological TNM (Table S1). The format

of RNA-sequence data we collected was transcripts per kilobase of

exon model per million mapped reads (TPM), which facilitated the

validation by external datasets. The brief experimental flow was

shown in the figure (Figure 1).
2.2 Identify the TMB-derived immune
lncRNA set

At the same time, we calculated the TMB value of 513 LUAD

samples by the TCGAmutations package of R (21). Nevertheless, we

only obtained the TMB value of 509 samples. Then we listed the

TMB value in a line. We picked out the 25% minimum as the low

TMB group (n = 127) and the 25% maximum as the high TMB

group (n = 127). These two groups were used to identify the TMB-

derived genes by weighted gene co-expression network analysis

(WGCNA) (22). WGCNA holds the idea that the disorder of

functional networks leads the tumors and the identification of

function-related genes based on the biological network would be

more logical. Therefore, it researched the gene functional network

analysis in multiple samples rather than simply expressed

correlation. We first explored co-expression networks of genes

between different TMB groups based on the WGCNA. We

constructed the Topological Overlap Matrix (TOM) to decrease

the noisy and false relation. Then TOM divides all genes into
Frontiers in Oncology 03
various module eigengenes (MEs) that consisted of similar

functional genes. Then we selected the best soft powers b to build

a scale-free network based on the function pickSoftThreshold. In

addition, each adjacency matrix was built according to the following

formula:

aij = jSijjb

(ai: adjacency matrix between gene i and gene j, Sij: similarity

matrix done by Pearson correlation of all gene pairs, b: soft power
value). And each adjacency matrix was transformed into a TOM

and corresponding dissimilarity (1-TOM). Furthermore, the

hierarchical clustering dendrogram based on 1-TOM was

constructed, which clustered genes with similar expressions into a

co-expression ME. At last, we chose MEs with high correlation

coefficients (cor > 0.4, P< 0.05) to conduct further analysis. The

TMB-derived lncRNAs and mRNAs of MEs with high correlation

coefficients were the candidate genes to construct the computing

framework. In addition, the correlation between module

membership (MM) and gene significance (GS) of each ME

was explored.

Not only that, we built lncRNA and mRNA differentially

expression maps between 288 lung samples and 513 LUAD

samples based on the limma package of R (23). There were two

qualifications to screen the qualified lncRNAs and mRNAs: (1)|

log2FC|≥1, FC refers to the fold change (the expression ratio of

lncRNAs or mRNAs between normal samples and LUAD samples).

Since the limma package just receives the expression matrix that is

log bottomed by 2, so |log2FC|=1 refers to tumors expressing twice
FIGURE 1

This briefly showed the experimental process of this study.
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or half of lncRNAs or mRNAs than normal tissues. (2) False

discovery rate (FDR)-adjusted P value< 0.05. This was aimed to

obtain oncogenic lncRNAs and mRNAs.

In addition, we collected 2524 immune-related mRNAs from

the immunology database and analysis portal (ImmPort) (https://

www.immport.org/) and systems biology of the innate immune

response (InnateDB) (http://www.innatedb.com/). Furthermore, we

intersected TMB-derived mRNAs, oncogenic mRNAs, and

immune-related mRNAs to determine candidate mRNAs. We

also intersected TMB-derived lncRNAs and oncogenic lncRNAs

to determine candidate lncRNAs. Then the Pearson analysis was

conducted between candidate lncRNAs and candidate mRNAs. The

high correlation coefficient and statistical meaning were

qualifications of Pearson analysis (cor > 0.4, P< 0.05). In the end,

we successfully identified the TMB-derived immune lncRNA set

(TILncSet) and TMB-derived immune mRNA set (TImSet). The

TMB-derived immune gene set (TIgeneSet) consisted of TILncSet

and TImSet.
2.3 Explore the biological functional
pathways of TIgeneSet

Curious about the biological functional pathways of TIgeneSet,

we used metascape to explore the potential functions of TIgeneSet

(https://metascape.org/). Firstly, we used the Molecular Complex

Detection (MCODE) algorithm to construct a protein-protein

interaction (PPI) network that showed the functions of TIgeneSet.

Secondly, the enrichment analysis in cell type signature also

identified cell types close related to TIgeneSet. Thirdly, the

enrichment analysis in transcriptional regulatory relationships

unraveled by sentence-based text mining (TRRUST) found

potential transcription factors related to TIgeneSet. At last, the

enrichment analysis in Transcription Factor Targets showed the

connected targets of TIgeneSet.

Furthermore, we constructed a node network using the

clusterProfiler package of R (24). We mainly used the Gene

Ontology (GO) (http://geneontology.org/) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) (https://www.kegg.jp/) to conduct

the functional enrichment analysis. The filter was P value of analysis

less than 0.05.
2.4 Construction and validation
of a computing framework for
the prediction of prognosis

First, we randomly divided 513 LUAD samples into the training

group (n = 257) and the testing group (n = 256). And the TCGA

group (n = 513) consisted of the training group and the testing group.

The aforementioned TILncSet may lead to the occurrence of LUAD.

So TILncSet was more likely to take part in the LUAD progression

than other lncRNAs. Therefore, we conducted a statistical analysis

based on TILncSet using R-version 4.1.1. And the univariate Cox

proportional risk regression analysis, multivariate Cox proportional

risk regression analysis, and Kaplan-Meier (KM) method were
Frontiers in Oncology 04
conducted to identify significant lncRNAs to predict prognosis in

the training group. The univariate Cox regression analysis and

multivariate Cox regression analysis estimated the TMB-derived

immune lncRNA signature (TILncSig). And the formulas of the

Cox proportional risk regression analysis were as follows.

h (t,  X) = h0(t)*exp  (b1*  X1 +   b2*  X2 +… +   bn*  Xn)

On the left of the formula, h (t, X) represents the risk function of

the individual where X is the predictor or covariate and t is time. The

right h0(t) is the baseline hazard rate of h (t, X) when the X is 0, and it

is the quantity to be estimated from the sample data. It’s the same for

all individuals, so the only difference in risk between individuals is the

difference in covariates X. The exp (b1*X1+b2*X2+···+bn*Xn) is called

the partial hazard function, and it’s different for each individual.

(b1*x1+b2*x2+···+bn*xn) is the linear combination of covariate X. h0(t)

is the baseline risk function, which represents the risk when all

covariates X are 0. It is the same for all individuals, so the difference in

risk among individuals is only the difference in covariates. It’s called

the partial hazard function, and it’s different for each individual. Take

the logarithm of both sides of the equation and apply the

mathematical transformation:

ln
h   (t,  X)
h0   (t)

=   b1*  X1 +   b2*  X2 +… +   bn*  Xn

Then we can figure out the relative risk (RR):

RR =  
h   (t,  Xi)
h   (t,  Xj)

=  
h0   (t)* exp   (b

‘
*  Xi)

h0   (t)* exp   (b ‘
*  Xj)

=   exp  ½b ‘
*(Xi −  Xj)�,   i,   j = 1,   2,  …,   n

According to the above theory, we proposed a quantitative

computing framework to predict individual prognosis in the

training group.

Risk Score(TILncSig) = exp(ln(h0(t)) +o
n

i=1

b(lncRNAi)*expr( lncRNAi ))

Risk Score (TILncSig) is the prognostic index of each LUAD

patient. We also called risk score (TILncSig) as TMB-derived

immune lncRNA prognostic index (TILPI). The n is the number

of lncRNA signatures. b(lncRNAi) is the coefficient of lncRNAi

obtained by multivariate Cox regression analysis. Expr (lncRNAi) is

the expression level of lncRNAi.

In addition, we conducted the KM method to estimate the

survival probability of individuals. For the nth time point tn in the

study, the survival probability can be calculated as:

S(tn) = S(tn−1) (1 −
dn
rn

)

S (tn–1) is the probability of survival at the time point tn–1. dn
refers to the number of events occurring at the time point tn. rn is

the alive people number at time point tn. When t0 = 0, that S (0) = 1.

We used the median TILPI of the training group as a boundary

to judge the risk of patients. This boundary was applied to verify the

reliability of the computing framework in the testing group and

the TCGA group. Furthermore, we confirmed the reliability of the
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computing framework. First of all, we used survival analyses and 3D

principal component analysis (3D PCA) to verify the difference

between the high-TILPI subgroup and the low-TILPI subgroup.

Secondly, the performance of TILPI was also evaluated by the time-

dependent receiver operating characteristic (ROC) curve. Thirdly,

the independent hazard of TILPI and the clinical characteristics

were also proved in the study. Furthermore, we also verified the

independence of the computing framework by grouping each

clinical characteristic. And the Chi-Square test was used to prove

clinical characteristics’ relationship to the computing framework. In

addition, we conducted gene set enrichment analysis (GSEA) to

identify the pathways enriching in different risk subgroups (25).

The included KEGG pathways of GSEA were 186. And P value<

0.05 was the filter. At last, we constructed a novel model called

nomogram to predict individual survival probability, which

consisted of TILPI and 8 types of clinical characteristics (age,

gender, smoking, race, pathological stage, and pathological

TNM) (26).
2.5 Mapping of immune landscape based
on computing framework

The tumor immune microenvironment (TIME) is the basis of

immunotherapy. Based on 8 quantification algorithms, we

described the immune cells’ infiltration landscape in detail. The 8

quantification algorithms were Cell type Identification by

Estimating Relative Subsets of RNA Transcripts (CIBERSORT)

(22 types of immune cells) (27), CIBERSORT-absolute mode

(CIBERSORT-ABS) (22 types) (27, 28), Estimating the

Proportions of Immune and Cancer cells (EPIC) (8 types) (29),

Microenvironment Cell Populations-counter (MCPCOUNTER)

(10 types) (30), Quantifying Immune Contexture of Human

Tumors (QUANTISEQ) (11 types) (31), Tumor Immune

Estimation Resource (TIMER) (6 types) (28, 32), Tumor and

Immune System Interaction Database (TISIDB) (28 types) (33),

and digitally portraying the tissue cellular heterogeneity landscape

(XCELL) (36 types) (34). In addition, we picked out types of

immune cells more distributed in different TILPI subgroups based

on intersection analyses. There were 2 conditions for intersection

analyses. Firstly, the standard-compliant immune cells must be

proven more distributed in a risk subgroup with at least 2

algorithms. Secondly, this result can’t contradict another algorithm.

TIME has not only all kinds of immune cells but also numerous

stromal components. Therefore, we collected the TIME score and

stroma score from XCELL. And the cytotoxicity score of

MCPCOUNTER was also calculated. Furthermore, we also got

the stromal score and tumor purity based on an algorithm called

Estimation of STromal and Immune cells in MAlignant Tumour

tissues using Expression data (ESTIMATE) (35). The other TIME

components were also collected from the tumor immune

dysfunction and exclusion (TIDE). They included interferon

gamma (IFNG), T-cell-inflamed signature (Merck18 score), CD8,

CD274 (PD-L1), cancer-associated fibroblast (CAF), myeloid-

derived suppressor cell (MDSC), and tumor-associated

macrophage M2 (TAM M2) (36). Furthermore, we planned to
Frontiers in Oncology 05
obtain the immune subtype of samples based on 6 types of immune

subtypes, which consisted of wound healing (immune C1), IFN-g
dominant (immune C2), inflammatory (immune C3), lymphocyte

depleted (immune C4), immunologically quiet (immune C5), and

TGF-b dominant (immune C6) (37). The difference and correlation

analyses above were based on the Wilcoxon test and Pearson

correlation coefficient.
2.6 Prediction of immunotherapy sensitivity
based on computing framework

Immune checkpoint inhibitor (ICI) was a significant

immunotherapy, which decreases the expressions of immune

checkpoint proteins. It was reported that the TIDE score was

excellent to predict the response to immunotherapy. Therefore,

we planned to combine the TIDE score with TILPI to predict

immunotherapy sensitivity. We first collected the average

expression levels of cytotoxic T lymphocyte (CTL) signatures

(CD8A, CD8B, GZM, GZMB, PRF1) to predict the distribution of

CTL. According to the average expression levels of CTL, we divided

all samples into the hot-tumor subgroups with above-average CTL

levels and the cold-tumor subgroups with below-average CTL

levels. Every hot tumor has a T cell dysfunction score while every

cold tumor has a T cell exclusion score. In hot tumor subgroups, the

T cell dysfunction score was derived by systematically identifying

genes that were related to CTL infiltration levels to affect patients’

OS. T cell dysfunction score of each gene was calculated as follows:

Dysfunction  =
d

StdErr(d)

Then we compared the dysfunction scores of each gene to

identify key genes that affected CTL and death hazards. For each

hot-tumor sample, the final T-cell dysfunction score was modeled

from Cox-PH regression:

Hazard = a*CTL + b*P  + d*CTL*P

In this model, CTL represents the CTL level. The P represents

the expression level of the candidate gene. The coefficient d reflects

the influence of interaction between CTL and candidate gene P on

death hazard. In the cold-tumor subgroup, the T cell exclusion score

is derived by the expression levels of 3 types of cells that restrict T

cell infiltration in tumors. They are CAF, MDSC, and TAM. T cell

exclusion score of the cold-tumor subgroup was acquired from

TIDE (http://tide.dfci.harvard.edu/). In the end, the TIDE score is

the combination of the T cell dysfunction score from the hot-tumor

subgroup and the T cell exclusion score from the cold-tumor

subgroup. Based on the above computation, we analyzed the

correlation between the TILPI computing framework and various

scores of TIDE.

Moreover, we found a novel immune prediction model called

tumor inflammation signature (TIS) (38). It has proved that the TIS

model retrospectively predicted the clinical benefit of anti-PD-1

treatment in clinical trials. TIS model also quantifies an adaptive

immune response in TIME. TIS model is composed of 18 genes
frontiersin.org
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(CD3D, IDO1, CIITA, CD3E, CCL5, GZMK, CD2, HLA-DRA,

CXCL13, IL2RG, NKG7, HLA-E, CXCR6, LAG3, TAGAP,

CXCL10, STAT1, GZMB). We also connected TILPI with the TIS

model to predict the immunotherapy response. At last, we

conducted time-dependent ROC curves for the TIDE model, TIS

model, and TILPI computing frameworks in 1, 3, and 5 years’ OS.

The 5 published transcriptomics signatures of the immune

response were used to validate the possibility that the low TILPI

group was suitable for immunotherapy. Tertiary lymphoid

structures (TLS) signature is based on differentially expressed

genes in tumor tissue with TLS (39). Jerby-Arnon immune

resistance are the resistance program combining a gene set related

to T cell exclusion, post treatment, and functional resistance (40).

Roh immune score is defined by the genes set involved in immune

activation associated with tumor rejection (41). Ock anti-CTLA-4

signature is derived from the expression of 105 genes associated

with the response to immunotherapy (42). EaSIeR model is based

on multi-task machine learning to predict different hallmarks of

immune responses (43). All these transcriptomics signatures were

calculated following the methodology and code in the original

studies. The format of RNA-sequence data we used was TPM.
2.7 Prediction of sensitive drugs
and tumor evolutionary status
based on computing framework

We wished TILPI computing frameworks perform in predicting

the sensitive drugs of individualized chemotherapy. This research

was based on the R package called pRRophetic (44). The version of

pRRophetic was published in 2016 including 251 types of drugs.

The second algorithm to identify sensitive drugs was oncopredict

(45). We used semi-inhibitory concentration (IC50) as the

boundary to pick out sensitive drugs for different risk subgroups.

The drugs with lower IC50 were sensitive for this subgroup. The

sensitive drugs for a risk subgroup must meet 2 filters: the P value of

the Wilcoxon test< 0.05 and the P value of Spearman correlation

analysis< 0.05. Furthermore, we used the connectivity map (CMap)

to identify sensitive drugs inhibiting up-regulated TMB-derived

oncogenic genes (https://clue.io/). The research was conducted in

28 cell lines, different doses (0.001 uM-90uM), and different

processing times (1h-72h). We only selected known compounds

and targets. And the absolute normalized CMap score of qualified

drugs must be greater than 1.5. At last, we intersected 3 derived

drugs to identify candidate drugs.

In addition, we analyze the modes of interaction between the

candidate drugs and their targets based on Autodock Vina 1.2.2

(46). The molecular structures of candidate drugs were retrieved

from PubChem (https://pubchem.ncbi.nlm.nih.gov/). And the 3D

coordinates of their targets were downloaded from the PDB (http://

www.rcsb.org/). Then we constructed the molecular docking

models by Autodock Vina 1.2.2 (http://autodock.scripps.edu/).

Based on network pharmacology, we next searched for potential

targets of candidate drugs targeting LUAD. LUAD targets are from

the GeneCards database (www.genecards.org/). The SMILE

numbers of the candidate drugs were acquired from the Pubchem
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database (https://pubchem.ncbi.nlm.nih.gov/) and then

sequentially imported into the SwissTargetPrediction database

(http://www.swisstargetprediction.ch/) for target prediction.

Targets with a probability >0 were selected as potential targets for

candidate drugs. The BATMAN-TCM database was also used to

obtain the target information for candidate drugs (http://

bionet.ncpsb.org.cn/batman-tcm/). The filter was score cutoff >10

and adjusted P_value >0.05. We also used NCI-60 cell line set in

CellMiner database to search for genes associated with drug

candidates (P<0.05) (47).

The stemness score is known as a significant score for the

prediction of tumors’ progression (48). The epigenetically

regulated-mRNA expression-based stemness score (EREG-

mRNAss) was used to assess the tumor evolutionary status

because EREG-mRNAss was related to known tumor biological

functions, therapy sensitivity, clinical characteristics, and tumor

pathology. Furthermore, we obtained another similar stemness

score called RNA expression-based stemness score (RNAss). We

planned to connect TILPI computing frameworks with stemness

scores to estimate the evolutionary status of the tumor. Therefore,

we conducted the correlation analysis between TILPI and various

stemness scores.
2.8 Statistical analysis

We used R version 4.1.1 to analyze data and create figures and

tables (https://www.r-project.org). We also drew diagrams with the

help of an online website called bioinformatics (https://

www.bioinformatics.com.cn/). The KM method was conducted to

verify clinical characteristics’ independence of computing

frameworks. The log-rank test was used to calculate the P value

of survival difference between two subgroups. Furthermore, we used

the Chi-Square test to prove clinical characteristics’ relationship to

the computing framework. The other correlation analyses were

based on the Wilcoxon test and Pearson correlation coefficient.
3 Results

3.1 Identify the TMB-derived immune
lncRNA set

We collected 509 patients with TMB values and divided them

into four equal parts according to the TMB score. Then we took the

first 127 and the last 127 patients as the low TMB subgroup and

high TMB subgroup. Furthermore, we conducted WGCNA to find

TMB-derived mRNA modules, so the mRNA expressed differently

between the high and low TMB subgroups was identified. We

used Topological Overlap Matrix (TOM) to construct a new

neighborhood matrix to reduce error and false correlation.

Consequently, we sorted out the mRNA matrix and determined the

optimal power value (b = 4). This value considered both scale

independence and mean connectivity (Figure 2A). Moreover, we

divided all mRNAs into 19 module eigengenes (MEs) based on the

functional correlation (Figures 2B, C). In the end, we obtained 2 MEs
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expressing differently between the high and low TMB subgroups.

They were MEantiquewhite1 (cor = -0.56, P = 2e-22) and

MEaliceblue (cor = 0.51, P = 4e-18) (Figure 2C). However, the

other 17 MEs were lower associated with the high TMB group

(cor<0.4) (Figure 2C). Subsequently, we aimed to confirm the

correlation between gene significance (GS) and module
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membership (MM). We got excellent results for MEantiquewhite1

(cor = 0.68, P< 1e-200) and MEaliceblue (cor = 0.78, P = 3e-142)

(Figures 2D, E). But in the rest of the MEs, GS had poor correlations

with MM. In conclusion, we obtained 8527 TMB-derived mRNAs

from MEantiquewhite1 and MEaliceblue. Moreover, we used

WGCNA to find TMB-derived lncRNA modules. And TOM was
B
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A

FIGURE 2

Determine the optimal power value (b = 4) taking into account both “scale independence” and “mean connectivity” (A). There were 19 MEs
according to lncRNAs’ functional relevance (B, C). Verify the correlation between GS and MM. (F) The best power value (b) was 3 (D, E). There were
28 MEs (G, H). Verify the correlation between GS and MM (I-J).
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used to construct a new neighborhood matrix to reduce errors and

false correlations. Lastly, we made the lncRNA matrix and

determined the optimal power value (b = 3). This value considered

both scale independence and mean connectivity (Figure 2F).

Afterward, according to the functional relevance, we divided all

lncRNAs into 28 MEs (Figures 2G, H). Finally, we found that two

lncRNA MEs were correlated with TMB. They were MEblueviolet

(cor=-0.52, P=3e-19) and MEantiquewhite4 (cor=0.45, P=3e-14)

(Figure 2H). And the remaining 26 MEs were irrelevant (cor<0.4).

Then, we intended to confirm the correlation between GS and MM.

MEblueviolet (cor=0.69, p=2.9e−77) and MEantiquewhite4

(cor=0.61, p=4.3e−155) also did good jobs (Figures 2I, J). However,

in the rest 26 MEs, GS was not highly correlated with MM. Finally,

2053 TMB-derived lncRNAs were identified based on MEblueviolet

and MEantiquewhite4.

Furthermore, we used the limma package of R to identify

differentially expressed mRNAs between 288 normal lung samples

from GTEx and 513 LUAD samples from TCGA. Two prerequisites

were required before confirming the differential expression of mRNAs:

(1) |log2FC| ≥ 1 (2) FDR adjusted P value< 0.05. Then, we got a total of

14437 differentially expressed mRNAs. But only 7925 mRNAs met the

above two prerequisites (Figures 3A, B). In addition, also for those

samples, we found 1187 lncRNAs differentially expressed by limma

package. Then we sorted out 871 oncogenic lncRNAs that met the

abovementioned premises (Figures 3C, D).
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Furthermore, we collected 2524 immune-related mRNAs from

the immunology database and analysis portal (ImmPort) and

systems biology of the innate immune response (InnateDB).

Based on the above, we obtained 8527 TMB-derived mRNAs by

WGCNA, 7925 oncogenic mRNAs selected by the limma package,

and 2524 immune-related mRNAs. At last, we intersected these

three mRNA sets and obtained 267 immune TMB-derived

oncogenic mRNAs (Figure 3E). As for lncRNA, we identified 871

oncogenic lncRNAs and 2053 TMB-derived lncRNAs. Then we

analyzed the intersection and got 176 eligible TMB-derived

oncogenic lncRNAs (Figure 3F). Then we conducted the Pearson

correlation analysis to investigate their correlation (Figure 3G).

Finally, we obtained 36 immune TMB-derived oncogenic lncRNAs

(cor>0.4), which was called TMB-derived immune lncRNA set

(TILncSet). And the 43 immune TMB-derived oncogenic mRNAs

(cor>0.4) were called TMB-derived immune mRNA set (TImSet).

The TMB-derived immune gene set (TIgeneSet) consisted of

TILncSet and TImSet.
3.2 Explore the functional biological
pathways of TIgeneSet

As we all know, although lncRNA can’t encode proteins, it has

immeasurable effects on cellular life activities. We intended to examine
B C D

E F G

A

FIGURE 3

The heatmap of differently expressed mRNAs (A). The volcano map of differently expressed mRNAs (B). The heatmap of differently expressed
lncRNAs (C). The volcano map of differently expressed lncRNAs (D). The intersection analysis of TMB-derived mRNAs, oncogenic mRNAs, and
immune- related mRNAs (E). The intersection analysis of TMB-derived lncRNAs and oncogenic lncRNAs (F). The Pearson correlation network
between lncRNAs and mRNAs (G).
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what the 43 mRNAs and 36 lncRNAs from these experiments would

play in LUAD. Therefore, we utilized a meta scape to explore the

potential functions of these 79 genes. The meaningful enriched

pathways must meet the following prerequisites: P value<0.01, a

minimum count of 3, and an enrichment factor >1.5. Furthermore,

we made a network of enriched terms based on 20 pathway clusters
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with the smallest P value. In the network, each gene of pathway clusters

was represented by a node and was colored by pathway cluster ID

(Figure 4A). The size of nodes referred to gene counts of pathway

clusters, and the color was correlated with the P value (Figure 4B). The

function of 20 pathway clusters was brilliant, which included positive

regulation of protein phosphorylation, regulation of MAPK cascade,
B C

D

E F G

H I

J
K

A

FIGURE 4

The functional biological pathways were clustered (A, B). The PPI network and MCODE algorithm of TIgeneSet (C, D). The enrichment analysis in cell
type signature (E). The enrichment analysis of TRRUST. (G) The enrichment analysis in transcription factor targets (F). The GO functional enrichment
analysis of TIgeneSet (H, I). The KEGG functional enrichment analysis of TIgeneSet (J, K).
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cytokine signaling in the immune system, regulation of immune

effector process, ERK1 and ERK2 cascade, T cell-mediated

immunity, translational initiation, positive regulation of cell cycle.

Wielding the above genes, we also constructed a protein-protein

interaction (PPI) network based on three pathways with the

smallest P value (Figure 4C). Their functional descriptions were

positive protein phosphorylation, regulation of MAPK cascade, and

RAF-independent MAPK1/3 activation. If a subset contains

between 3 and 500 proteins, we will conduct the Molecular

Complex Detection (MCODE) algorithm to show its density in

the network. The PPI network showed the relationship between 22

protein subsets of 3 pathways. MCODE1 represented the four red

high-density protein subsets, and the other four blue high-density

protein subsets were represented by MCODE2 (Figure 4C).

MCODE1 included E2F1, MAPK1, CDK1, and NUP153. These

four proteins possessed significant interactions between the two

(Figure 4D). And MCODE2 included COPS5, TPT1, BIRC5, and

PLK1. Except for the fact that there was no interaction between

TPT1 and BIRC5, the rest of the proteins had functional

interactions between them (Figure 4D). Backing to the

macroscopic level, MCODE1 and MOCDE2 also interacted

through 4 proteins (Figure 4D).

The enrichment analysis in cell type signature showed the

relationship between 76 genes and some cell types, such as lung

proliferating NK T cells and lung goblet cells. Lung proliferating NK

T cells were associated with the innate form of the immune barrier.

And the abnormal proliferation of lung goblet cells refers to LUAD

(Figure 4E). The relationship between these genes and LUAD was

inseparable. In addition, the enrichment analysis in transcriptional

regulatory relationships unraveled by sentence-based text mining

(TRRUST) indicated the relationship between 76 genes and

transcription factors. These transcription factors or target genes

corresponding to transcription factors were TP53, E2F3, TP73,

IRF1, RB1, RELA, SP1, E2F1, NFKB1, MYC, STAT3, and JUN

(Figure 4F). The above were sorted by P value. TP53 is closely

related to the functional activity of LUAD cells. TP73 is highly

homologous to TP53, its function involves all aspects of cellular life

activities, and its transcriptionally translated protein p73 is a

carcinostatic factor. IRF1 negatively regulated the expression of

the oncogene kpna2 in LUAD cells under conditions of growth

stimulation and hypoxia. SP1 is associated with LUAD transfer.

E2F1 and KLF6 form a positive feedback pathway in LUAD,

regulating the cell cycle and leading to cisplatin resistance in

LUAD. MYC drives the evolution of small-cell lung cancer

subtypes. Activating the STAT3 signaling pathway can promote

the development of LUAD. Therefore, the relationship between

these transcription factors or target genes and LUAD is indivisible.

Furthermore, the enrichment analysis in transcription factor

targets showed 14 connected targets (Figure 4G). The E2F family is

involved in developing LUAD and affects prognosis and efficacy.

E2F1 is correlated with the cell cycle and LUAD resistance.

Abnormalities in the STAT pathway are closely related to cell

hyperplasia, differentiation, and LUAD development.

We manipulated the GO and KEGG functional enrichment

analysis to explore further what roles 36 lncRNAs and 43 mRNAs
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play in LUAD. P value<0.05 was the filter in GO and KEGG

analysis. Then we found 961 meaningful pathways in the GO

analysis. There were 827 pathways for biological process (BP), 51

for cell component (CC), and 83 for molecular function (MF). We

respectively selected ten excellent pathways in BP, CC, and MF to

draw intuitive diagrams. Pathways of BP were associated with the

regulation of tumor cell response, apoptosis pathway, cell cycle,

tumor-related signaling pathway, and regulation of tumor necrosis

factor. Pathways of CC were associated with mitotic processes,

protein translation processes, and protein kinase complexes.

Pathways of MF were associated with immune-related receptors,

cytokines, protein kinases, their related functions, and regulation of

growth factors. Then we obtained a diagram that showed the

correlation between functional pathways and genes. In the figure,

each functional pathway was wired to the corresponding genes. In

the adjacent dot plot, larger dots indicated more genes associated

with the corresponding pathway, and the dots were colored

according to the P value. The gene ratio was the ratio of the

number of genes associated with the pathway to the total number

of genes obtained (Figure 4H). Obviously, in BP, the positive

regulation of the MAPK cascade was associated with the most

genes. This pathway was associated with ten genes, which were

TDGF1, LEP, IGF2, DHX33, CD36, DKK1, SEMA3A, PTPN11,

MYDGF, and RIPK2. And other pathways, like a response to tumor

necrosis factor and positive regulation of tumor necrosis factor

production, were associated with 5 and 6 genes (Figure 4H). In CC,

the spindle was connected with the most genes. They are PLK1,

BIRC5, MAPK1, CDK1, ARHGEF2, and TPT1 (Figure 4H). In MF,

signaling receptor activator activity was correlated with the most

genes. These 13 genes were TDGF1, LEP, IGF2, GNRH2, IL12B,

CD70, CHGB, DKK1, GUCA2A, INHA, TNFSF13, SEMA3A, and

CALCB. In conclusion, a sector chart was constructed to show the

results visually (Figure 4I).

We got 46 functional pathways in the KEGG analysis and

selected 21 significant ones. These functional pathways were

divided into immune therapy and escape, oncogenesis,

therapeutic resistance, and signaling pathways. And there were

relationships between functional pathways and genes (Figure 4J).

Each pathway was wired to the associated genes (Figure 4J). In

immune therapy and escape, cytokine-cytokine receptor interaction

was associated with five genes, including LEP, IL12B, CD70, INHA,

and TNFSF13. And NOD-like receptor signaling pathway possesses

four corresponding genes. There are NLRP7, DHX33, MAPK1, and

RIPK2 (Figure 4J). The number of genes associated with this

pathway was similar to oncogenesis pathways. The four genes

related to proteoglycans in cancer were IGF2, MAPK1, IL12B,

and PTPN11. We also found four genes associated with the cell

cycle, which included PLK1, CCNA2, CDK1, and E2F1. CCNA2,

MAPK1, CDK1, and E2F1 were enriched in cellular senescence

(Figure 4J). In therapeutic resistance, we proved that these genes

took part in both EGFR tyrosine kinase inhibitor resistance and

platinum drug resistance (Figure 4J). In signaling pathways, the

RAS signaling pathway and MAPK signaling pathway were also

enriched pathways (Figure 4J). Moreover, we drew a sector chart to

show the results visually (Figure 4K).
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3.3 Construction and validation of the TILPI
computing framework

3.3.1 Construct the TILPI computing framework in the

training group

To enhance the practicability of TILncSet, we hoped it could

determine the prognosis of patients with LUAD. According to the

above results, we knew that TILncSet possibly induces LUAD,

which is more likely to participate in the pathogenic pathway of

LUAD than other lncRNAs. Therefore, we sought prognostic

lncRNA signatures of LUAD based on TILncSet. We divided all

meaningful TCGA samples (n=513) (the TCGA group) into two

groups, namely the training group (n=257) and the testing group

(n=256) (Table S1). We counted some clinical characteristics of

patients in each group, and it was easy to see that these clinical

characteristics were particularly evenly distributed in each group, so

the reliability of the grouping was preliminarily verified (Table S1).

To screen for prognostic-related lncRNAs, univariate Cox

proportional hazard regression analysis was used to analyze the

relationship between expression levels of 36 TMB-derived immune

lncRNAs and OS in the training group, and 7 TMB-derived

immune lncRNAs were found to be significantly associated with

the prognosis of LUAD patients (AC091057.1, AC129492.1,

AC112721.1, TARID, AC114763.1, LINC00592, AC025166.1)

(Figure 5A). In addition, we hoped to screen out lncRNAs with

independent prognostic value from these 7 candidate lncRNAs, and

conducted multivariate Cox proportional hazards regression

analysis for these 7 candidate lncRNAs. Finally, 6 of 7 candidate

lncRNAs (AC091057.1, AC129492.1, AC112721.1, TARID,

AC114763.1, LINC00592) were identified as independent

prognostic lncRNAs (Figure 5B). The six all lncRNAs of TILncSig

were risk factors for LUAD patients because their coefficients based

on multi-Cox analysis were all positive. Then a TMB-derived

immune lncRNA signature (TILncSig) was constructed. Next, we

built a computing framework to evaluate the risk score generated by

TILncSig’s expressions in individuals. The computing framework

was as follows:

TILPI = exp(ln(h(t0)) +o
n

i=1
coef (lncRNAi)*expr( lncRNAi ))

ln(h(t0))=-0.7850

TILPI is a prognostic risk score for the LUAD patients. For each

individual, his TILPI = exp (-0.7850 + 0.0908 * expression

(AC091057.1) + 0.3175 * expression (AC129492.1) + 0.1009 *

expression (AC112721.1) + 0.1987 * expression (TARID) +

0.2754 * expression (AC114763.1) + 0.1442 * expression

(LINC00592)). The median score of the LUAD patients in the

training group (median =0.8510) was used as a risk cutoff to classify

patients into the low-risk group with low TILPI (TILPI ≤0.8510) or

high-risk group with high TILPI (TILPI >0.8510).

To further verify the effectiveness of grouping, we utilized 3D

principal component analysis (3D PCA) to verify the reliability in

the training group, and the results proved that our grouping was

reliable (Figure 5C). Kaplan–Meier analysis showed that the

survival time of patients in the low-risk group are significantly
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better than patients in the high-risk group (P<0.001) (Figure 5D). In

the training group, the 5-year survival rate of the high-risk

subgroup was 7.8%, worse than 11.6% in the low-risk subgroup.

Based on the above data, we demonstrated that TILPI did a good job

of relating to the OS of patients. To prove the credibility of TLIPI,

we used the time-dependent ROC curves to observe the training

group. Finally, the area under the curve (AUC) value of the TILPI

was 0.730 in the training group. It meant that TILPI had excellent

credibility in judging OS in the training group, but other clinical

characteristics didn’t (age (ACU=0.542), gender (ACU=0.625), race

(AUC=0.511), smoking (AUC=0.506), pathological stage

(AUC=0.648), pathological T (AUC=0.635), pathological N

(AUC=0.597), pathological M (AUC=0.478)) (Figure 5E).

We also used univariate Cox proportional hazards regression

analysis to verify the independence of clinical characteristics (age,

gender, smoking, pathological stage, and pathological TNM) and

TILPI in the training groups. The results showed that age,

pathological stage, pathological T, pathological N, and TILPI were

independent risk factors (P<0.05), while gender, smoking, and

pathological M wasn’t (P>0.05) (Figure 5F) (Table S2). Next, we

used multivariate Cox proportional hazards regression analysis on

age, pathological stage, pathological T, pathological N, and TILPI. In

the end, only pathological N and TILPI were eligible independent risk

factors in the training group (P<0.05) (Figure 5G) (Table S2). We

considered that the expressions of TILncSig were factors that affected

individual TILPI. Firstly, all of TILncSig were expressed less in the low-

risk subgroup than in the high-risk subgroup (P<0.001) (Figure 5H).

Therefore, AC091057.1, AC129492.1, AC112721.1, TARID,

AC114763.1, and LINC00592 were likely disadvantageous to LUAD

patients in the training group.

3.3.2 Verify the reliability of the TILPI computing framework in

the TCGA group and the testing group

In the previous experiment in the training group, the potential of

the computing framework to relate to OS was demonstrated. However,

it was still necessary to further verify its reliability in the testing group.

When the same TILncSig and risk cutoff as those derived from the

training group was applied to the testing group, 256 patients of the

testing group was classified into the low-risk group (n = 121) and high-

risk group (n = 135) with significantly different overall survival. As

Figure 5J showed that the overall survival of 135 patients in the high-

risk group was much poorer than 121 patients in the low-risk group

(P=0.014). Of course, we also used 3D PCA to verify the reliability of

grouping in the testing group. Meanwhile, the result proved that our

grouping was reliable (Figure 5I). The time-dependent ROC curves

showed that TILPI (AUC=0.750), pathological stage (AUC=0.750), and

pathological N (AUC=0.657) had credibility in judging OS in the

testing group, but other clinical characteristics didn’t [age

(ACU=0.532), gender (ACU=0.546), race (AUC=0.516), smoking

(AUC=0.542), pathological T (AUC=0.638), pathological M

(AUC=0.530)] (Figure 5K). Furthermore, we verified the

independence of clinical characteristics and TILPI in the testing

groups. And the result showed that only the pathological stage and

TILPI were statistically meaningful (P<0.05) (Figures 5L, M) (Table

S2). Moreover, the expressions of TILncSig influencing TILPI in the

testing group were similar to the training group. AC091057.1,
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AC129492.1, AC112721.1, TARID, AC114763.1, and LINC00592 were

all life-threatening in the testing group, too (P<0.001) (Figure 5N).

The prognostic performance of the TILncSig in the TCGA group

was similar to the above results. We similarly used the median TILPI of
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the training group (0.8510) as a cutoff to divide the TCGA group

(n=513) into the low-risk subgroup (n=250) and high-risk subgroup

(n=263). As we expected, 3D PCA also showed that grouping based on

TILPI was reliable (Figure 6A). The overall survival of 263 patients in
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FIGURE 5

We successfully identified TILncSig based on univariate and multivariate Cox proportional hazards regression analyses in the training group (A, B). In
the training group, the 3D PCA, survival analysis, and ROC curve verify the reliability of the TILPI computational framework (C-E). The univariate and
multivariate Cox analyses prove the independent prognostic hazard of TILPI (F, G). The expression of TILncSig was different in different risk
subgroups (H). Verify the reliability of the TILPI computational framework in the testing group (I-N). ***P < 0.001.
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the high-risk group was much poorer than 250 patients in the low-risk

group (P<0.001) (Figure 6B). And Similar to the training group, the

survival rate was 9.9% in the high-risk group at 5 years lower than

13.2% in the low-risk group (Figure 6B). The results of the time-

dependent ROC curves in the TCGA group showed that TILPI

(AUC=0.740) and pathological stage (AUC=0.698) had credibility in

judging OS in the TCGA group while other clinical characteristics

didn’t (age (ACU=0.537), gender (ACU=0.585), race (AUC=0.514),

smoking (AUC=0.522), pathological T (AUC=0.636), pathological N

(AUC=0.626), pathological M (AUC=0.508)) (Figure 6C).

Furthermore, according to the independence analyses based on
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univariate and multivariate Cox proportional hazards regression of

clinical characteristics and TILPI in the TCGA group, the only

meaningful result was TILPI (P=0.005) (Figures 6D, E) (Table S2).

In addition, we also demonstrated that AC091057.1, AC129492.1,

AC112721.1, TARID, AC114763.1, and LINC00592 were all life-

threatening in the TCGA group too (P<0.001) (Figure 6F).

Unlike the other two groups, we investigated whether the

expressions of 43 above mRNAs affected the individual TILPI in the

TCGA group.We found that 30 of the 43mRNAs were associated with

TILPI. The 21 mRNAs were expressed more in the high-risk subgroup

(BIRC5, CCDC88A. CCNA2, CDK1, CALCB, COPS5, DDX21,
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FIGURE 6

Verify once again the reliability of the TILPI computational framework in the TCGA group (A-G). *P < 0.05; **P < 0.01; ***P < 0.001.
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DHX33, DKK1, DUSP4, E2F1, EIF4E, HMGB3, INHA, LEP, NLRP7,

NUP153, PAK2, PLK1, PTGES, PTPN11, RIPK2, SEMA3A, TRAIP).

And nine mRNAs were expressed more in the low-risk subgroup

(ADAM33, ARHGEF2, C4BPA, CTSH, GNRH2, IL12B, SPINK5,

TNFSF13, TPT1) (P<0.05) (Figure 6G). These results suggested that

the expressions of 9 mRNAs would improve the prognosis of LUAD

patients, while 21 other mRNAs were adverse.

Subsequent survival analyses examined the likelihood of a single

gene predicting survival. AC114763.1, LINC00592, TARID, and

AC091057.1 independently predicted patient survival (P<0.05)

(Figures S1A-D). AC129492.1 and AC112721.1, on the other hand,

did not perform well (Figures S1E, F). TILPI’s potential to predict

survival was also extended to 1077 patients with NSCLC. Taking the

median TILPI (0.8510) of the above training group as cutoff, survival

probability of patients in the high TILPI group was significantly lower

than those in the low TILPI group (P=0.01) (Figure S1G).

At last, we tried to verify the reliability of TILPI in GEO datasets

and collected 9 LUAD datasets with OS (1644 samples). They were

GSE11969, GSE13213, GSE26939, GSE31210, GSE36471,

GSE63459, GSE68465, GSE68571, and GSE72094. However, the

platforms of 9 all external datasets didn’t cover TILncSig.

3.3.3 Clinical characteristics independence
analysis of TILPI

Curious about whether the prognostic value of the TILPI was

independent of common clinical characteristics, multivariate Cox

regression analyses were performed on age, gender, the degree of

smoking, race, pathological TNM and pathologic stage. (Table S3).

Firstly, we divided samples based on age into the old subgroup (age >

65, n = 262) and the young subgroup (age ≤ 65, n = 260). As the

figure showed that the low-risk subgroup and the high-risk subgroup

exhibited obvious survival differences in the old subgroup (P< 0.001)

(Figure 7A), while these differences weren’t statistical meaning in the

young subgroup (P=0.057) (Figure 7B). For the gender, there were

survival differences between the high-risk subgroup and low-risk

subgroup in the male samples (n=242, P=0.004) (Figure 7C), while

the female samples (n=280) were as well (P<0.001) (Figure 7D). But

we found that TILPI wasn’t independent of smoking (P>0.05)

(Figures 7E-H) or race (Figures 7I-K). Regarding the pathological

T, the computing framework was unable to relate to the survival

probability of patients in the T1 subgroup (n=172, P=0.386), but it

was able to relate to the survival probability of patients in the T2

subgroup (n=281, P=0.007), T3 subgroup (n=47, P=0.001), and T4

subgroup (n=19, P=0.031) (Figures 7L-O). In addition, the

computing framework wasn’t independent in the N1 subgroup

(n=99, P=0.309) (Figure 7P), but it was independent in the N0

subgroup (n=335, P=0.003) and N2 subgroup (n=75, P=0.026)

(Figures 7Q, R). What’s more, the computing framework was able

to divide patients into high-risk subgroups and low-risk subgroups in

the M0 subgroup (n=335) (P<0.001) (Figure 7S), while wasn’t in the

M1 subgroup (n=26, P=0.634) (Figure 7T). Moreover, the computing

framework was valid in the stage II subgroup (P=0.046) and stage III

subgroup (P=0.007) (Figures 7U, V), but it was invalid in the stage I
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subgroup (P=0.106) or stage IV subgroup (P=0.886) (Figures 7W, X).

In conclusion, there wasn’t independence between TILPI and seven

clinical characteristics (age, smoking, race, pathological stage,

pathological T, pathological N, and pathological M).

3.3.4 Clinical characteristics correlation analysis
of TILPI

We were also curious about whether the prognostic value of the

TILPI was associated with common clinical characteristics, Chi-square

tests were performed on age, gender, the degree of smoking, race,

pathological TNM and pathologic stage (Figure 8A) (Table S3). Firstly,

it was obvious that the age of patients wasn’t associated with TILPI (P =

0.402) (Figure 8B) or race (P=0.208) (Figure 8C). There were more

female patients than male patients, but higher TILPI was more likely to

occur in male patients than in female patients (P = 0.001) (Figure 8D).

Furthermore, we also found that TILPI was related to smoking (P =

0.001) (Figure 8E). What’s more, pathological T and pathological N

were statistically meaningful (P = 0.001, P = 0.003) (Figures 8F, G), but

pathological M was not (P=0.344) (Figure 8H). The pathological stage

was closely related to TILPI. In conclusion, five clinical characteristics

were associated with TILPI, which included gender, smoking,

pathological stage, pathological T, and pathological N.

According to independence and correlation analysis, we knew that

TILPI was related to various clinical characteristics (smoking,

pathological stage, pathological T, and pathological N) (Table S3).

Thus, the reliability of TILPI in predicting prognosis may depend on

these clinical features.

3.3.5 GSEA pathway correlation analysis of TILPI
Through GSEA, we found 36 significant enriched pathways in

different risk subgroups (P<0.05). Thirty pathways were enriched in

the high-risk group. And ten pathways possessed excellent biological

functions concerning LUAD (pathways in cancer, cell cycle, p53

signaling pathway, mismatch repair, DNA replication, starch and

sucrose metabolism, glycolysis gluconeogenesis, galactose metabolism,

pentose and glucuronate interconversions, maturity-onset diabetes of the

young) (Figure 9A). In the high-risk group, five pathways were related to

cell division and DNA mutations, while the last five pathways were

related to energy metabolism, meaning we could kill LUAD cells by

affecting their division and energy metabolism. Furthermore, six

significant pathways enriched in the low-risk group (allograft rejection,

asthma, hematopoietic cell lineage, intestinal immune network for IgA

production, renin-angi system, viral myocarditis) (Figure 9B). In the low-

risk group, three pathways were all immune response-activated

pathways, suggesting that immune activation may be responsible for

protecting the low-risk group. Therefore, individuals in the high-risk

group may transform into the low-risk group by activating these

immune pathways, thus prolonging OS.

3.3.6 Construction of the prognosis nomogram
based on TILPI and clinical features

To use TILPI more accurately to stratify the risk of LUAD

patients in the clinic, we used TILPI and several clinical
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characteristics (age, gender, race, smoking, pathological stage,

pathological TNM) to construct a new model that could calculate

the OS probability (Figure 9C). To verify the reliability of this

model, we fitted the calculated survival time with the actual

survival time. The results showed that the 1-year survival rate
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prediction, 2-year survival rate prediction, and 3-year survival

rate prediction all had a good fit with the actual survival time

(Figures 9D-F). It also verified the reliability of TILPI. We

confirmed that this new prognostic calculation model enabled to

help clinicians to calculate the survival time of patients more easily.
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FIGURE 7

Explore the clinical independence of the TILPI computational framework by grouping. The low-risk and the high-risk subgroups exhibited obvious
survival differences in the old subgroup (A), while these differences weren’t statistical meaning in the young subgroup (B). For the gender, there were
survival differences between the high-risk and low-risk subgroups in the male samples (C), while the female samples were as well (D). But TILPI
wasn’t independent of smoking (E-H) and race (I-K). TILPI was unable to relate to the survival probability of patients in the T1 subgroup, but it was
able to relate to the survival probability of patients in the T2, T3, and T4 subgroups (L-O). In addition, TILPI was not independent in the N1 subgroup
(P), but it was independent in the N0 and N2 subgroups (Q, R). What is more, TILPI was able to divide patients into high-risk and low-risk subgroups
in the M0 subgroup (S), while was not in the M1 subgroup (T). Moreover, TILPI was valid in the stage II and stage III subgroups (U, V), but it was
invalid in the stage I and stage IV subgroup (W, X).
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3.4 Mapping of immune landscape based
on TILPI

The tumor immune microenvironment (TIME) is the soil of

immunotherapy. The ratio of immune cells will show more accurate

treatment in individualized immunotherapy if the relationship
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between immune cells and TIME is close-knit. Therefore, we

applied eight algorithms to describe the immune infiltration

landscape in detail. These algorithms were cell type identification

by CIBERSORT, CIBERSORT-ABS, EPIC, MCPCOUNTER,

QUANTISEQ, TIMER, TISIDB, and XCELL. Firstly, we found 22

types of immune cells by CIBERSORT. And we drew four pictures
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FIGURE 8

The correlation analyses between TILPI computational framework and clinical characteristics. TILPI was correlated with gender, smoking,
pathological TNM, and pathological stage (A). TILPI wasn’t associated with (B), as was race (C). The higher TILPI was more likely to occur in male
patients (D). TILPI was related to smoking (E). What’s more, the correlation between TILPI and pathological T was statistically meaningful (F), as was
pathological (G). But pathological M was not (H). TILPI, TMB-derived immune lncRNA prognostic index. *P < 0.05; **P < 0.01; ***P < 0.001.
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that described the composition of immune cells. These plots were

based on the Wilcoxon test and illuminated the difference between

22 immune cells in high-risk and low-risk subgroups.

Furthermore, we found that the distribution of 11 immune cells

in the subgroups was statistically significant (P<0.05) (Figure 10A).

There were four types of immune cells more distributed in the high-

risk subgroup. They were macrophage M0, macrophage M1, plasma

cell, and T cell CD4 memory activated. And the other seven types of
Frontiers in Oncology 17
immune cells were more distributed in the low-risk subgroup,

which included B cell memory, dendritic cells resting, monocyte,

mast cell resting, eosinophil, T cell CD4 memory resting, T cell

regulatory (Tregs). However, the remaining 11 types of immune

cells were not significantly statistical, which included B cell naive,

dendritic cell activated, macrophage M2, mast cell activated,

neutrophil, NK cell activated, NK cell resting, T cell CD4 naïve, T

cell CD8, T cell follicular helper, T cell gamma delta. And the
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FIGURE 9

30 pathways were enriched in the high-risk group, and ten possessed excellent biological functions concerning LUAD (A). There were six significant
pathways enriched in the low-risk subgroup (B). A new model was constructed consisting of TILPI and several clinical characteristics (age, gender,
race, smoking, pathological stage, and pathological TNM) (C). The new model’s 1, 2, and 3-year survival rate predictions fit well with the actual
survival time (D-F).
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heatmap showed 16 types of immune cell expression. And the more

immune cells are expressed, the more the color in the graph tends to

be red.

Conversely, the fewer immune cells are expressed, the more the

color in the heatmap inclines to be blue (Figure 10B). The plot

showed Twenty-two types of immune cells and their expression.
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Macrophage M2 was the most expressed (Figure 10C). In the

landscape diagram, the immune infiltration landscape of each

sample was shown. Twenty-two colors represented twenty-two

types of cells, the abscissa represented the samples, and the

percentage of color length on the ordinate represented the ratio

of immune cells (Figure 10D). Secondly, we wielded CIBERSORT-
B C

D E F

G H I

J K L

A

FIGURE 10

The infiltration landscape of 22 immune cells based on CIBERSORT (A-D). The other seven algorithms showed the infiltration of immune cells, which
included CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ, TIMER, TISIDB, and XCELL (E-K). The intersection of immune cells of different
algorithms (L). *P < 0.05; **P < 0.01; ***P < 0.001.
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ABS to obtain a picture based on the Wilcoxon test, which indicated

the distribution of 22 types of immune cells in the high-risk and

low-risk subgroups (Figure 10E).

Furthermore, we found that the graph’s distribution of 11

immune cells was statistically significant (P<0.05). They were

three types more distributed in the high-risk subgroup. They were

macrophage M0, mast cell resting, and T cell CD4 memory

activated. The other eight types were more distributed in the low-

risk subgroup, which involved B cell memory, eosinophil,

macrophage M2, mast cell activated, monocyte, myeloid dendritic

cell resting, T cell CD4 memory resting, T cell regulatory (Tregs).

But the remaining ten types were not statistically significant, which

included B cell naive, B cell plasma, macrophage M1, myeloid

dendritic cell activated, neutrophil, NK cell activated, NK cell

resting, T cell CD4 naive, T cell CD8, T cell follicular helper.

Thirdly, we applied EPIC to obtain a graph based on the

Wilcoxon test, which implied the distribution of 8 types of

immune cells in high-risk and low-risk subgroups. (Figure 10F)

Furthermore, we found that graph’s distribution of three immune

cells was statistically significant (P<0.05). And there was 1 type

more distributed in the high-risk subgroup. It was the NK cell. The

other two types were more distributed in the low-risk subgroup, B

cell and endothelial cell. But the remaining five types were not

statistically significant, including CAF, macrophage, T cell CD4, T

cell CD8, and uncharacterized cells. Fourthly, we used

MCPCOUNTER to draw a picture based on the Wilcoxon test,

which showed the distribution of 10 types of immune cells in high-

risk and low-risk subgroups (Figure 10G).

Furthermore, we found that CAF and T cell CD8 were not

statistically significant, and the distribution of the remaining

immune cells in the graph was statistically significant (P<0.05).

They were three types more distributed in the high-risk subgroup.

They were macrophage/monocyte, monocyte, and NK cell. And the

other five types were more distributed in the low-risk subgroup,

which included B cell, endothelial cell, myeloid dendritic cell,

neutrophil, and T cell. Fifthly, we wielded QUANTISEQ to draw

a diagram based on the Wilcoxon test, which showed the

distribution of 11 types of immune cells in the high-risk and low-

risk subgroups (Figure 10H).

Moreover, we found that the distribution of 7 immune cells in

the diagram was statistically significant (P<0.05). And there were

two types, including T cell CD4 (non-regulatory) and

uncharacterized cells more distributed in the high-risk subgroup.

The other five types were more distributed in the low-risk subgroup.

They involved B cells, macrophage M2, neutrophils, NK cells, and T

cell regulatory (Tregs). Nevertheless, the remaining four types were

not statistically significant. They were macrophage M1, monocyte,

myeloid dendritic cell, and T cell CD8. Sixthly, we manipulated

TIMER to obtain a picture based on the Wilcoxon test, which

indicated the distribution of 6 types of immune cells in high-risk

and low-risk subgroups (Figure 10I).

Furthermore, we found that the distribution of 3 immune cells in the

picture was statistically significant (P<0.05). And all the types were more

distributed in the low-risk subgroup. They were B cell, myeloid dendritic
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cell, and T cell CD4. But the rest of the cells were not statistically

significant, which included macrophage, neutrophil, and T cell CD8.

Seventhly, we operated TISIDB to draw a diagram based on the

Wilcoxon test, which showed the distribution of 28 types of

immune cells in the high-risk and low-risk subgroups

(Figure 10J). In addition, we found that the distribution of 20

immune cells in the graph was statistically significant (P<0.05). And

there were seven types more distributed in the high-risk subgroup.

They were T cell CD4 central memory, activated CD4 T cell, T cell

gamma delta, B cell memory, T cell NK, neutrophil, and T cell CD4

Th2. The other 13 types more distributed in the low-risk subgroup,

which included activated B cell, activated dendritic cell, CD56bright

natural killer cell, eosinophil, B cell naïve, immature dendritic cell,

mast cell, MDSC, monocyte, NK cell, plasmacytoid dendritic cell, T

cell follicular helper, type 17 T helper cell. However, the remaining

eight types were not statistically significant. There were T cell CD4

activated memory, activated CD8 T cell, T cell CD8 activated

memory, CD56dim natural killer cell, T cell CD8 central memory,

macrophage, T cell regulatory (Tregs), T cell CD4 Th1. Eighthly, we

used XCELL to obtain a picture based on the Wilcoxon test, which

indicated the distribution of 36 types of immune cells in the high-

risk and low-risk subgroups (Figure 10K).

Furthermore, we found that the distribution of 23 immune cells

in the picture was statistically significant (P<0.05). And there were

seven types more distributed in the high-risk subgroup. They were

common lymphoid progenitor, macrophage M1, plasmacytoid

dendritic cell, T cell CD4 memory, T cell CD4 Th1, T cell CD4

Th2, T cell CD8 naïve. The other 16 types were more distributed in

the low-risk subgroup. They were B cell, CAF, class−switched

memory B cell, common myeloid progenitor, endothelial cell,

eosinophil, granulocyte−monocyte progenitor, hematopoietic stem

cell, macrophage M2, mast cell, myeloid dendritic cell, myeloid

dendritic cell activated, T cell CD4 activated memory, T cell CD4

central memory, T cell CD4 naïve, T cell NK. But the remaining 13

types were not statistically significant. They were B cell memory, B

cell naïve, B cell plasma, macrophage, monocyte, neutrophil, NK

cell, T cell CD4 (non−regulatory), T cell CD8, T cell CD8 central

memory, T cell gamma delta, T cell regulatory (Tregs).

Based on Venn diagram, we found that 8 algorithms have

multiple overlapping immune cell types (Figure 10L). We

estimated three types of immune cells threatening the survival of

patients in the high-TILPI subgroup based on multiple algorithms

(Table S4). They were macrophage M0, T cell CD4 Th2, and T cell

CD4 memory activated. On the contrary, five immune cells,

including B cell, endothelial cell, eosinophil, mast cell, and T cell

CD4 memory resting, prolonged the survival (Table S4).

TIME has not only immune cells but also numerous stromal

components. We obtained the stroma score, immune score, estimate

score, and tumor purity from ESTIMATE. Stromal and immune scores

were calculated to relate to the levels of stromal invasion and immune

cells and thus to infer the tumor tissue’s tumor purity which meant the

proportion of tumor cells in TIME. In the same way, stroma score (R=-

0.14, P=0.0022), immune score (R=-0.16, P=0.00018), and estimate

score (R=-0.16, P=0.00034) were negatively correlated with TILPI
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(Figures 11A-C). But the tumor purity was the opposite. It was

positively correlated with TILPI (R=0.16, P=0.00027) (Figure 11D).

And stroma score, immune score, and estimate score were also higher

in the low-TILPI group, while tumor purity was higher in the high-

TILPI group (P<0.01) (Figures 11E, F). Furthermore, we obtained three

kinds of scores (stroma score, immune score, and TIME score) based

on XCELL. Stromal score and immune score related to the level of
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infiltrating stromal and immune cells in TIME. We found that three

kinds of scores were all higher in the low-TILPI group (P<0.001). It also

verified that three types of scores were all negatively correlated with

TILPI (Figure 11G). We also analyzed their correlation with TILPI by

Pearson correlation analysis, and stroma score (R=-0.33, P<0.001),

immune score (R=-0.21, P<0.001), and TIME score (R=-0.27, P<0.001)

were all negatively correlated with TILPI (Figures 11H-J). Moreover,
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FIGURE 11

TILPI was negatively correlated with stroma score, immune score, and estimate score and positively related to tumor purity in the ESTIMATE
algorithm (A-F). TILPI also was negatively correlated with stroma score, immune score, and TIME score in the XCELL algorithm (G-J). TILPI was
positively correlated with the cytotoxicity score of MCPcounter (K, L). MSI and MDSC were positively correlated with TILPI, but the TAM-M2 was the
contrary. The other TIME components from TIDE weren’t related to TILPI (M-T). *P < 0.05; **P < 0.01; ***P < 0.001.
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MCPcounter is a model based on the gene expression matrix, and

absolute abundance scores of eight immune cells and two stromal cells

were generated for each sample. We first analyzed the Pearson

correlation between cytotoxicity score based on MCPcounter and

TILPI. According to the results, cytotoxicity score and TILPI were

positively correlated (R=0.14, P=0.0019) (Figure 11K). To verify this
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result, we also performed the Wilcoxon test on the TCGA group to

observe whether there was a cytotoxicity score difference between the

high-TILPI and low-TILPI groups. And the result showed that the

cytotoxicity score was higher in the high-TILPI group (P<0.05)

(Figure 11L), which further verified cytotoxicity score and TILPI

were positively correlated. In addition, we got eight types of scores
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FIGURE 12

MSI and MDSC were positively correlated with TILPI, but the TAM-M2 was the contrary. The other TIME components from TIDE weren’t related to
TILPI (A). TILPI was also correlated with the immune subtype of distribution. The low-TILPI subgroup was more distributed in immune C3 (n=124),
and most of the samples in the high-TILPI subgroup were distributed in immune C2 (n=92) (B). The TIDE model proved that the low-TILPI subgroup
was more sensitive to immunotherapy (C-F). The correlation between TILPI and immunotherapy once again demonstrated the sensitivity of the low-
TILPI subgroup to immunotherapy (G). TILPI wasn’t correlated with the TIS model (H-I). The ROC curves showed TILPI computational framework
was better related to prognosis than the TIDE model and TIS model (J-M). **P < 0.01; ***P < 0.001.
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by TIDE: MSI, IFNG, Merck18, PD-L1, CD-8, MDSC, CAF, and

TAM-M2. We found that MSI (R=0.15, P=0.00089) and MDSC

(R=0.38, P<0.001) were positively correlated with TILPI by Pearson

correlation analysis (Figures 11M, N). And TAM-M2 was negatively

correlated with TILPI (R=-0.15, P=0.00062) (Figure 11O).

Unfortunately, IFNG, Merck18, PD-L1, CD-8, and CAF were

independent of TILPI (P>0.05) (Figures 11P-T). In the Wilcoxon

test, MSI and MDSC were higher in the high-TILPI group (P<0.01,

P<0.001), and TAM-M2 was higher in the low-TILPI group (P<0.01),

while IFNG, Merck18, PD-L1, CD-8, and CAF were meaningless

(P>0.05) (Figure 12A). At last, TILPI was also correlated with the

immune subtype of distribution (P = 0.001) (Figure 12B). Only 454

samples were corresponding immune subtypes. They were divided into

five subtypes, which were immune C1 (n=82), immune C2 (n=147),

immune C3 (n=177), immune C4 (n=20), and immune C6 (n=28).

The low-TILPI subgroup wasmore distributed in immune C3 (n=124),

and most of the samples in the high-TILPI subgroup were distributed

in immune C2 (n=92) (Figure 12B).
3.5 Association between TILPI and
immunotherapy sensitivity

Tumor immune dysfunction and exclusion (TIDE) was a computing

framework for evaluating the likelihood of tumor immune escape in gene

expression profiles of tumor samples. We calculated the immune

dysfunction score, immune exclusion score, and TIDE score. The

Wilcoxon test showed immune dysfunction was higher in the low-

TILPI group, immune exclusion was higher in the high-TILPI group,

and TIDE was higher in the high-TILPI group, which was the most

important (Figure 12C). The Pearson correlation analysis showed

immune dysfunction was negatively correlated with TILPI (R=-0.23,

P<0.001) (Figure 12D), while immune exclusion (R=0.21, P<0.001) and

TIDE (R=0.15, P=0.00082) were positively correlated with TILPI

(Figures 12E, F). As we know, high TIDE scores indicated severe

immune evasion, and it was clear that the high-TILPI group was more

prone to immune evasion than the low-TILPI group. Thus, there was no

doubt that the low-TILPI group was more suitable for immunotherapy.

What’s more, the true immunotherapy response had lower TILPI than

the false immunotherapy response (P< 0.001), which further verified that

the low-TILPI group was more suitable for immunotherapy in the

LUAD patients (Figure 12G).

The TIS was a marker of the immune microenvironment gene

expression profile. It is based on eighteen genes to relate to the clinical

benefit of PD-1-directed therapy. We first analyzed the correlation

between TIS and TILPI, but TIS was independent of TILPI (P>0.05)

(Figure 12H). And the Wilcoxon test showed TIS was no difference

between high-TILPI and low-TILPI (Figure 12I). Furthermore, we

calculated the reliability of three models (TIS, TIDE, TILPI) in LUAD

patients’ 1 year, 2 years, and 3 years OS. The results showed that TIS

did not do a good job in relating to the OS of LUAD patients

(AUC=0.442, AUC=0.465, AUC=0.497) (Figure 12J), and TIDE

didn’t either (AUC=0.615, AUC=0.570, AUC=0.578) (Figure 12K).

Fortunately, TILPI had excellent credibility in relating to the OS of

LUAD patients (AUC=0.737, AUC=0.657, AUC=0.650) (Figure 12L).

In summary, TILPI has an advantage over TIS and TIDE, and the time-
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dependent ROC curves between TILPI (AUC=0.737), TIS

(AUC=0.442), and TIDE (AUC=0.615) also verified it (Figure 12M).

Immunotherapy associations based on TIDE predictions also apply

to LUSC and NSCLC populations. In the LUSC population, TILPI was

significantly lower in the immunotherapy-responding group than in

the non-responding group (P=0.0015) (Figure S1H). This was also the

case in NSCLC patients, with the immunotherapy response group

having a lower TILPI (P<0.001) (Figure S1I). The following five

published transcriptomics signatures of immune responses confirmed

that the low TILPI groupmay be more suitable for immunotherapy. As

you can see, the low TILPI group had a higher TLS score, implying

higher immune activity (Figures S1J, K). The low TILPI group induced

weaker immune resistance (Figures S1L, M) and stronger ability to

suppress immune resistance (Figures S1N, O), which also indicated

that the low TILPI group may be more suitable for immunotherapy.

The low TILPI group also had a higher Roh immune score, which was

associated with higher immune activation (Figures S1P, Q). The Ock

anti-CTLA-4 signature expression level of the low TILPI group was

higher, which was also associated with better immunotherapy efficacy

(Figures S1R, S). There was no difference in EaSIeR score between

different TILPI groups, but there was a tendency for lower EaSIeR score

in the lower TILPI group (Figures S1T, U).
3.6 Relationship between TILPI
and drug sensitivity

Furthermore, we wished TILPI computing frameworks also

relate to sensitive drugs to a specific population. Firstly, we

conducted analyses of drug sensitivity based on the pRRophetic

package updated in 2016. The judgmental standard of drug

sensitivity was IC50. The patients with lower IC50 were sensitive

to this drug. The filter was P value of the Wilcoxon test less than

0.05. Then we picked out 12 types of drugs more sensitive in the

low-TILPI subgroup, which included AS605240, AZ628, Crizotinib,

Erlotinib, KIN001-135, Phenformin, Salubrinal, TAK-715, TL-2-

105, WZ3105, YM155, and Z-LLNle-CHO. And 82 types of drugs

were also determined for patients with poor prognosis in the high-

TILPI subgroup. Secondly, we conducted analyses of drug

sensitivity based on the oncopredcit package. The judgmental

standard of drug sensitivity was the same as the pRRophetic

possessing package. Then 11 types of drugs were identified for the

low-TILPI subgroup. They were ABT737, Axitinib, AZD6482,

BMS.754807, Doramapimod, GSK269962A, PF.4708671,

PRT062607, Ribociclib, SB505124, and ZM447439. And the

number of sensitive drugs in the high-TILPI subgroup was 92.

Thirdly, we used 95 up-regulated mRNAs from 267 immune TMB-

derived oncogenic mRNAs to estimate drugs inhibiting these up-

regulated genes base on the Connectivity Map (CMap). Then we got

the results of 423,422 lines under different cell lines, dose, and time.

We only selected known compounds and targets. And the absolute

normalized CMap score of qualified drugs must be greater than

1.5. Therefore, we obtained 285 qualified drugs for LUAD

patients (Figure 13A).

At last, we intersected the drugs based on pRRophetic,

oncopredcit, and CMap for the population with poor prognosis.
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That is, in the high-TILPI subgroup. In conclusion, we identified

seven sensitive drugs: Docetaxel, Gemcitabine, Paclitaxel,

Palbociclib, Pyrimethamine, Thapsigargin, and Vinorelbine for

poor prognostic population (Figure 13B). Docetaxel, Paclitaxel,

and Vinorelbine are tubulin inhibitors that target ABCB1, BCL2,

CYP2C8, MAP2, MAP4, MAPT, NR1I2, TLR4, and numerous

subtypes of TUB proteins. And Gemcitabine is the ribonucleoside

reductase inhibitor targeting RRM1, CMPK1, RRM2, and TYMS.

Palbociclib is the CDK inhibitor that targets CDK4, CDK6, and

CCND3. Pyrimethamine is the dihydrofolate reductase inhibitor

and targets DHFRP1, HEXA, STAT3, DHFR, and SLC47A1.

Thapsigargin is the ATPase inhibitor that targets ATP2A1.
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Furthermore, we constructed molecular docking models to

evaluate the affinity of 7 candidate drugs to their targets. Firstly,

the best binding energy of Gemcitabine for RRM1 was -66.514 kcal/

mol (Figure 13C). It indicates that the affinity between Gemcitabine

and RRM1 was low, as seen from the figure (Figure 13C).

Nevertheless, the best binding energy of the docking model

between palbociclib and CDK4 was -7.573 kcal/mol (Figure 13D).

The best binding energy for pyrimethamine to its target DHFR

was -4.056 kcal/mol (Figure 13E). It was without doubt that

palbociclib and pyrimethamine had low binding energy for their

targets, indicating high stable binding and potential. Unfortunately,

we failed to construct the molecular docking models of docetaxel,
B C
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A

FIGURE 13

The volcano map showed the qualified drugs based on CMap (A). The intersection analysis estimated seven more reliable drugs based on
pRRophetic, oncopredict, and CMap (B). The molecular model of gemcitabine docking RRM1 (C). The molecular model showed the details that
palbociclib docking CDK4 (D). Pyrimethamine firmly docked its target protein DHFR (E). The stemness score was different between different TILPI
subgroups (F, G). *P < 0.05; ***P < 0.001.
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thapsigargin, paclitaxel, and vinorelbine. Seven types of sensitive

drugs for the high-TILPI subgroup, especially Palbociclib and

pyrimethamine, were worth further exploration.

Based on network pharmacology, we next searched for potential

targets of candidate drugs targeting LUAD. A total of 8907 LUAD

target genes were collected from genecard database. The numbers of

drug targets from SwissTargetPrediction, Batmant-TCM, and

Pubchem databases were as follows: docetaxel (341 targets),

gemcitabine (116 targets), paclitaxel (244 targets), palbociclib (315

targets), pyrimethamine (65 targets), thapsigargin (1337 targets),

and vinorelbine (115 targets). There may be 8 targets of docetaxel

acting on LUAD, including ABCA3, TP53, STK11, BIRC5, EGFR,

ERBB2, KRAS, and RB1 (Figure S2A). The potential targets of

gemcitabine for LUAD are TP53, KRAS, HYAL2, EGFR, and

ERBB2 (Figure S2B). The paclitaxel may act on TP53, BIRC5,

EGFR, ERBB2, TXNRD1, and KRAS to control the progression of

LUAD (Figure S2C). For palbociclib, its potential targets for LUAD

treatment may be TP53, BIRC5, ERBB2, SMARCA4, MYC, KRAS,

BRAF, and RB1(Figure S2D). However, the effective target of

pyrimethamine for LUAD seems to be only TP53 (Figure S2E).

The thapsigargin may kill LUAD cells by targeting BIRC5, IRS1,

MYC, MVP, HMOX1, ERBB2, CADM1, and TP53 (Figure S2F).

The vinorelbine may act on SMARCA4, EPCAM, and ERBB2 to

treat LUAD (Figure S2G). In total, there are 18 possible targets of

these 7 drugs for LUAD, including ABCA3, BIRC5, BRAF,

CADM1, EGFR, EPCAM, ERBB2, HMOX1, HYAL2, IRS1,

KRAS, MVP, MYC, RB1, SMARCA4, STK11, TP53, and

TXNRD1 (Figure S2H). Of these, the targets BIRC5, ERBB2,

KRAS, and TP53 played a role in more than half of the drugs.

The R package limma was used to analyze the differences between

the high and low TILPI groups, and 57 up-regulated genes were

found in the high TILPI group (Figure S2I) (Table S5). There are 19

up-regulated genes that are potential targets of LUAD, among

which ABCC2, F2, GAL, INHBE, and UGT2B7 may be potential

targets of docetaxel, paclitaxel, pyrimethamine, and thapsigargin in

the treatment of high TILPI group (Figure S2J).

In the NCI-60 cell lines of CellMiner database, thirteen of the 57

up-regulated genes of high TILPI group were associated with the

therapeutic sensitivity of 7 candidate drugs (P<0.05) (Table S6).

They are ABCC2, BEST3, CREB3L3, CYP24A1, DSG4, GAL, GIP,

IGF2BP1, MUC13, RAB3B, TFF1, TRIM15 and UGT2B7

(Figure S2K).
3.7 Prediction of tumor evolutionary status
based on computing framework

The stemness score reliably evaluates the similarity of tumor

cells to stem cells. The higher stemness score was correlated with

therapy resistance, tumor biological functions, and clinical

characteristics. We found that the high-TILPI subgroup possessed

higher EREG-mRNAss and RNA expression-based stemness scores

(RNAss) (Figure 13F). It could be one of the reasons that the high-

TILPI subgroup had a poor prognosis. And TILPI was also
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positively correlated with EREG-mRNAss but statistically

meaningless (R=-0.014, P=0.75) (Figure 13G). In addition,

TILPI was also positively correlated with RNAss (R=0.12,

P=0.0065) (Figure 13H).
4 Discussion

Lung cancer remained second in the global cancer rankings in

2021 (1–3). And LUAD is the most common histological type of

lung cancer (5, 6). So far, traditional imagology and histopathology

are still the gold standards for diagnosing and prognosis of LUAD.

However, we aimed to construct a prognostic model based on

lncRNA expression. Until a few years ago, lncRNA was regarded as

a superfluous substance transcribed by genes (49). However, some

in-depth studies have proved that lncRNA was involved in

the biological activities of genes (50–52). LncRNA is closely

related to tumor function. We first identified 267 TMB-derived

oncogenic mRNAs and 176 TMB-derived oncogenic lncRNAs, and

we obtained 43 immune TMB-derived oncogenic mRNAs and 36

TMB-derived oncogenic lncRNAs based on Pearson analysis. Next,

we explored the potential functions of 79 mRNAs and lncRNAs by

meta scape. And then, we further found the pathogenesis pathways

of LUAD. We ascertained 30 GO pathways and 21 KEGG pathways

in functional enrichment analysis.

Based on KM method analyses, univariate Cox proportional

risk regression, and multivariate Cox proportional risk regression,

we further study found that six lncRNAs in TILncSet expression

level were closely related to the patient’s OS, and all of them were a

negative correlation, in other words, they were risk factors

(AC091057.1, AC129492.1, AC112721.1, TARID, AC114763.1,

LINC00592). Some scholars also have pointed out that

AC091057.1 is a risk factor for LUAD patients (53). Other

researchers have found that AC129492.1 impacts the prognosis of

patients with hepatocellular carcinoma, colon cancer, and

osteosarcoma (54–56). It has been reported that AC112721.1 is

abnormally expressed in patients with breast cancer and bladder

cancer (57, 58). Confusingly, TARID has been shown to activate the

expression of the tumor suppressor gene TCF21 by inducing

promoter demethylation (59, 60), which is contrary to our results,

and the specific reasons remain to be further studied. LINC00592 is

ferroptosis-related lncRNA, which has been identified as an

independent prognostic predictor of LUAD and may be involved

in the immune response to LUAD (61). It can also be used as a

prognostic marker for disease-free survival in patients with gastric

cancer (62) and is differentially expressed in cervical cancer (63).

Unfortunately, no studies on AC114763.1 have yet to be researched.

It is expected that these lncRNAs will be further studied.

Based on TMB, we built a novel computing framework called

TILPI. It was an innovative step forward. TILPI calculated a risk

score for each patient based on the expression of TILncSet. After

testing, TILPI distinguished the prognosis of different risk score

subgroups well in all groups (training group, test group, and TCGA

group), and the higher TILPI, the worse prognosis. The reliability of
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TILPI was verified, as the AUC value of the TILPI based on time-

dependent ROC curves in all groups was higher than or equal

to 0.73.

Furthermore, the independence and correlation analysis of

some clinical factors were carried out, and the results showed that

TILPI was closely related to the degree of smoking, pathological T,

pathological N, and pathological stage. Studies have found that,

compared with the smoker LUADs, never-smoker LUADs have a

higher prevalence of clinically actionable driver alterations (78%-

92% v 49.5%; P<.0001) (64). It also suggests that never-smoking

patients have a better prognosis. And TILPI wasn’t associated with

and independent of race and age. However, studies have found that

East Asian LUADs have more stable genomes and better prediction

accuracy than European LUADs (65). It may be due to the improper

grouping method and insufficient sample size, which made for our

failure to find the relationship between race and TILPI, and further

improvement is needed. The specific relationship and mechanism

between TILPI and other clinical factors remain to be further

studied. Fortunately, the Norman plot based on TILPI could still

relate to the prognosis of LUAD patients, and we look forward to its

clinical performance in the future. Yan Li et al. presented a

framework called bioRFR to quantify wellness-to-disease

transition in cancer patients by gene expression. They considered

that cancer does not progress linearly, making it difficult or

impossible to recover once it passes a tipping point. BioRFR was

able to identify if a patient has passed this tipping point and provide

personalized treatment. We must consider it in the future (66).

We also found ten pathways pathogenic to LUAD and six

protectives to LUAD patients through gene enrichment. The

prognosis of LUAD patients could be improved by inhibiting

these pathogenic pathways or activating these protective

pathways. It was a significant finding. Hopefully, it will be

validated in the clinic. In summary, we have constructed a new

and effective prognostic model for LUAD, accurately distinguishing

between low-risk and high-risk LUAD patients. Compared with

expensive molecular tests, TILPI is cheaper and more convenient.

However, our research is still limited to calculation and analysis,

and biological studies are required in the future.

Then, we used eight algorithms to describe the immune infiltration

landscape, and we screened out meaningful immune cells by the

Wilcoxon test, which were selected from eight immune infiltration

landscape sets. Then we took the intersection. Then we ended up with

eight immune cells. They were B cell, endothelial cell, eosinophil, mast

cell, T cell CD4 memory resting, T cell CD4 Th2, macrophage M0, and

T cell CD4 memory activated. B cell, endothelial cell, eosinophil, mast

cell, and T cell CD4memory resting was more in the low-risk subgroup.

T cell CD4 Th2, macrophage M0, and T cell CD4 memory activated

were more in the high-risk subgroup. We also used ESTIMATE and

XCELL algorithms to calculate the stroma score of each sample and

combined themwith the immune score to reflect tumor purity. The two

algorithms’ stroma scores were negatively correlated with TILPI. The

higher the stroma score was, the lower TILPI was. As predicted, tumor

purity was higher in the high TILPI group.

The predicted immunotherapy response based on TIDE

suggested that LUAD patients with low TILPI may be better

candidates for immunotherapy, and this possibility applied
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to LUSC and NSCLC patients as well. The five published

transcriptomics signatures of immune responses confirmed that

the low TILPI group may be more suitable for immunotherapy.

They were the TLS signature, Jerby-Arnon immune resistance

program, Roh immune score, Ock anti-CTLA-4 signature, and

EaSIeR model. In conclusion, TILPI is a good predictor of TME

status and is superior to TIDE and TIS. In the study of Xu et al.,

TIDE was also used to relate to the effect of immunotherapy in

patients. The difference is that their results showed that patients in

the high-risk group responded better to immunotherapy, while we

concluded that the low-risk group responded better to

immunotherapy (67). Further research is required on this issue.

We also reviewed the latest developments of seven sensitive

drugs. Network pharmacological analysis suggested that there were

18 potential therapeutic targets for LUAD, including ABCA3,

BIRC5, BRAF, CADM1, EGFR, EPCAM, ERBB2, HMOX1,

HYAL2, IRS1, KRAS, MVP, MYC, RB1, SMARCA4, STK11,

TP53, and TXNRD1. Differential analysis based on R package

limma found 57 genes up-regulated in the high TILPI group.

Among them, ABCC2, F2, GAL, INHBE, and UGT2B7 may be

potential targets of docetaxel, paclitaxel, pyrimethamine, and

thapsigargin in the treatment of high TILPI group. In the NCI-60

cell lines of CellMiner database, thirteen of the 57 up-regulated

genes of high TILPI group were associated with the therapeutic

sensitivity of 7 candidate drugs. Both docetaxel and paclitaxel

belonged to taxanes, which, combined with platinum drugs, was

the first-line treatment option for LUAD. It was reported that

docetaxel prolonged OS versus ICI in NSCLC patients (68). Other

researchers have also combined paclitaxel with other drugs, such as

nanoparticle albumin and ICI (69, 70). Furthermore, gemcitabine

plus platinum was the standard chemotherapy for squamous

NSCLC. And some novel research proved that the combination of

gemcitabine and other drugs exhibited synergistic antitumor

efficacy, which included albumin-bound paclitaxel and ICI (71,

72). In addition, vinorelbine was not a new chemotherapy drug, but

it still has powerful effects (73, 74). As for CDK inhibitors,

palbociclib was more commonly used in breast cancer patients

with RB mutations but has recently been studied in NSCLC (75, 76).

Pyrimethamine is an antimalarial drug and has also been proven to

have antitumor activity (77). But the clinical research between

pyrimethamine and chemotherapy for lung cancer was lacking.

This clinical research absence also existed in thapsigargin. In

conclusion, the dominant position of docetaxel, paclitaxel,

gemcitabine, and vinorelbine in the chemotherapy of LUAD

must be emphasized. Nevertheless, the potential significance of

palbociclib, pyrimethamine, and thapsigargin in the chemotherapy

of LUAD waited for further research.

The computing framework combined with prognosis may be

novel research related to immunotherapy and chemotherapy. This

computing framework also played some roles but also possessed

limitations. Firstly, the details of TILncSig affecting OS were waiting

for deeper exploration by biologists. Secondly, the details of the

immune cells differently distributed in different TILPI subgroups

that affected OS need further biological research. Thirdly, we

believed that the low-TILPI subgroup was more sensitive to

immunotherapy, but this conclusion needs to be verified in the
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clinic. Fourthly, the effects of 7 sensitive drugs in the high-TILPI

subgroup must also be researched in the clinic. Fifthly, they need

more abundant samples. The external datasets should be employed

for validation rather than our limited TCGA datasets. Sixthly,

prospective analyses of the TILPI computing framework are

required because all datasets in the study are retrospective. In any

case, we will try our best to solve these problems step by step in

further research.
5 Conclusion

We identified TILncSig based on TMB-related genes by

WGCNA, oncogenes, and immune genes in LUAD. Then we

construct the TILPI computing framework to relate to individual

prognosis. TILPI could also map the immune infiltration landscape

of immune cells, tumor cells, and stromal components based on

creatively combined analyses of multiple algorithms. Furthermore,

the TILPI computing framework successfully identified different

prognostic LUAD populations and selected sensitive immunotherapy/

chemotherapy for them.We believed that the low-TILPI subgroupwas

more sensitive to ICI, and the high-TILPI subgroup had a better effect

on seven drugs.
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SUPPLEMENTARY FIGURE 1

AC114763.1, LINC00592, TARID, and AC091057.1 independently predicted
patient survival (A-D). AC129492.1 and AC112721.1, on the other hand, did not

perform well (E, F). The survival probability of NSCLC patients in the high TILPI

group was significantly lower than those in the low TILPI group (G). In the LUSC
population, TILPI was significantly lower in the immunotherapy-responding

group than in the non-responding group (H). Patients with NSCLC who
responded to immunotherapy had a lower TILPI (I). The low TILPI group had

a higher TLS score (J, K). The low TILPI group induced weaker immune
resistance (L, M) and stronger ability to suppress immune resistance (N, O).
The low TILPI group also had a higher Roh immune score (P, Q). The Ock anti-

CTLA-4 signature expression level of the low TILPI group was higher (R, S).
There was no difference in EaSIeR score between different TILPI groups, (T, U).

SUPPLEMENTARY FIGURE 2

There may be 8 targets of docetaxel acting on LUAD (A). The potential targets
of gemcitabine for LUAD are TP53, KRAS, HYAL2, EGFR, and ERBB2 (B). The
paclitaxel may act on TP53, BIRC5, EGFR, ERBB2, TXNRD1, and KRAS to

control the progression of LUAD (C). For palbociclib, there may be as many as
eight targets for LUAD (D). The effective target of pyrimethamine for LUAD

seems to be only TP53 (E). The thapsigargin may kill LUAD cells by eight
targets (F). The vinorelbine may act on SMARCA4, EPCAM, and ERBB2 to treat

LUAD (G). In total, there are 18 possible targets of these 7 drugs for LUAD (H).
Based on differential expression analysis, 57 up-regulated genes were found

in the high TILPI group (I). There are 19 up-regulated genes that are potential

targets of LUAD (J). In the NCI-60 cell lines of CellMiner database, thirteen of
the 57 up-regulated genes of high TILPI group were associated with the

therapeutic sensitivity of 7 candidate drugs (K).
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3D PCA 3D principal component analysis

AUC area under curve

BP biological process

CAF cancer associated fibroblast

CAR10 CAR intergenic 10

CC cell component

CIBERSORT Cell type Identification by Estimating Relative Subsets of
RNA Transcripts

CIBERSORT-
ABS

CIBERSORT-absolute mode

CMap connectivity map

CTL cytotoxic T lymphocyte

EGFR epidermal growth factor

EPIC Estimating the Proportions of Immune and Cancer cells

EREG-mRNAss epigenetically regulated-mRNA expression-based stemness
score

ESTIMATE Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data

FDR false discovery rate

GEO Gene Expression Omnibus

GO Gene Ontology

GS gene significance

GSEA gene set enrichment analysis

GTEx Genotype-Tissue Expression

IC50 semi-inhibitory concentration

ICI immune checkpoint inhibitors

IFNG interferon gamma

ImmPort immunology database and analysis portal

InnateDB systems biology of the innate immune response

KEGG Kyoto Encyclopedia of Genes and Genomes

KM Kaplan-Meier

lncRNA long non-coding RNA

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinomas

M distant metastasis

MCODE Molecular Complex Detection

MCPCOUNTER Microenvironment Cell Populations-counter

MDSC myeloid-derived suppressor cell

ME module eigengene

MF molecular function
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MM module membership

MSI microsatellite instability

N regional lymph nodes

NSCLC non-small cell lung cancer

OS overall survival

PPI protein-protein interaction

QUANTISEQ Quantifying Immune Contexture of Human Tumors

RNAss RNA expression-based stemness score

ROC receiver operating characteristic

T primary tumor

TCGA The Cancer Genome Atlas

TIDE tumor immune dysfunction and exclusion

TIgeneSet TMB-derived immune gene set

TILncSet TMB-derived immune lncRNA set

TILncSig TMB-derived immune lncRNA signature

TILPI TMB-derived immune lncRNA prognostic index

TIME Tumor immune microenvironment

TIMER Tumor Immune Estimation Resource

TImSet TMB-derived immune mRNA set

TIS tumor inflammation signature

TISIDB Tumor and Immune System Interaction Database

TLS tertiary lymphoid structures signature

TMB tumor mutation burden

TOM Topological Overlap Matrix

TPM transcripts per kilobase of exon model per million mapped
reads

Tregs T cell regulatory

TRRUST transcriptional regulatory relationships unraveled by
sentence-based text mining

WGCNA weighted gene co-expression network analysis

XCELL digitally portraying the tissue cellular heterogeneity
landscape

YB-1 Y-box-binding protein 1.
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