AUTHOR=Xie Tianshu , Wei Yi , Xu Lifeng , Li Qian , Che Feng , Xu Qing , Cheng Xuan , Liu Minghui , Yang Meiyi , Wang Xiaomin , Zhang Feng , Song Bin , Liu Ming TITLE=Self-supervised contrastive learning using CT images for PD-1/PD-L1 expression prediction in hepatocellular carcinoma JOURNAL=Frontiers in Oncology VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1103521 DOI=10.3389/fonc.2023.1103521 ISSN=2234-943X ABSTRACT=Background and purpose

Programmed cell death protein-1 (PD-1) and programmed cell death-ligand-1 (PD-L1) expression status, determined by immunohistochemistry (IHC) of specimens, can discriminate patients with hepatocellular carcinoma (HCC) who can derive the most benefits from immune checkpoint inhibitor (ICI) therapy. A non-invasive method of measuring PD-1/PD-L1 expression is urgently needed for clinical decision support.

Materials and methods

We included a cohort of 87 patients with HCC from the West China Hospital and analyzed 3094 CT images to develop and validate our prediction model. We propose a novel deep learning-based predictor, Contrastive Learning Network (CLNet), which is trained with self-supervised contrastive learning to better extract deep representations of computed tomography (CT) images for the prediction of PD-1 and PD-L1 expression.

Results

Our results show that CLNet exhibited an AUC of 86.56% for PD-1 expression and an AUC of 83.93% for PD-L1 expression, outperforming other deep learning and machine learning models.

Conclusions

We demonstrated that a non-invasive deep learning-based model trained with self-supervised contrastive learning could accurately predict the PD-1 and PD-L1 expression status, and might assist the precision treatment of patients withHCC, in particular the use of immune checkpoint inhibitors.