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Background and purpose: Programmed cell death protein-1 (PD-1) and

programmed cell death-ligand-1 (PD-L1) expression status, determined by

immunohistochemistry (IHC) of specimens, can discriminate patients with

hepatocellular carcinoma (HCC) who can derive the most benefits from immune

checkpoint inhibitor (ICI) therapy. A non-invasive method of measuring PD-1/PD-

L1 expression is urgently needed for clinical decision support.

Materials and methods: We included a cohort of 87 patients with HCC from the

West China Hospital and analyzed 3094 CT images to develop and validate our

prediction model. We propose a novel deep learning-based predictor, Contrastive

Learning Network (CLNet), which is trained with self-supervised contrastive

learning to better extract deep representations of computed tomography (CT)

images for the prediction of PD-1 and PD-L1 expression.

Results: Our results show that CLNet exhibited an AUC of 86.56% for PD-1

expression and an AUC of 83.93% for PD-L1 expression, outperforming other

deep learning and machine learning models.

Conclusions: We demonstrated that a non-invasive deep learning-based model

trained with self-supervised contrastive learning could accurately predict the PD-1

and PD-L1 expression status, and might assist the precision treatment of patients

withHCC, in particular the use of immune checkpoint inhibitors.

KEYWORDS

hepatocellular carcinoma, PD-1/L1, deep learning, self-supervised learning, contrastive
learning, computed tomography
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1 Introduction

Immune checkpoint inhibitors (ICIs) have emerged as potentially

effective treatments for patients with 26 hepatocellular carcinoma

(HCC) in the advanced stage and is moving fast because of the

encouraging clinical results in regulating T-cell activation and

proliferation (1–4). Programmed cell death protein-1 (PD-1) and

programmed cell death-ligand-1 (PD-L1) are members of the widely

studied immune checkpoint pathway. PD-1 is mainly expressed on

the membrane of T cells and acts as a negative regulator of the

antigenic response (5). PD-L1 inhibits cytotoxic activity of T cells by

binding to PD-1 expressed on their surface, and allows the immune

escape of tumor cells (6). ICIs that work by blocking PD-1 and PD-L1

checkpoints (7–10) have shown potential for the improved treatment

of patients with HCC. However, only a few patients with HCC benefit

from this immunotherapy, and the durable response rate to anti-PD-1

treatment is only 15–20% (11, 12). Thus, it is important to be able to

identify HCC patients who would benefit the most from blocking the

PD-1/PD-L1 pathway.

Previous studies have demonstrated that the expression status of

PD-L1 in tumors is associated with clinical outcomes and treatment

responses to PD-1/PD-L1 pathway inhibition (13–15). Therefore,

evaluation of PD-1 and PD-L1 expression is crucial for identifying

individuals who will respond to checkpoint blockade, precise

treatment decision-making, and prognostic improvement in

patients. Histopathological examination is the gold standard for

evaluating the expression of PD-1 and PD-L1, but histopathological

biopsies are invasive procedures, and are associated with the risk of

sampling errors and morbidity. An alternative non-invasive method

for measuring PD-1/PD-L1 expression is urgently needed for clinical

decision support.

More recently, attention has focused on the fast-growing deep

learning (DL) field, which has made great achievements in many

practical applications such as image recognition and classification (16–

23). Based on sufficient training data, DL can effectively manage a large

amount of high-dimensional and noisy data by capturing typical complex

features and nonlinear relationships. An increasing number of DL

technologies have been applied in medical-related research (24–28).

For instance, Zhang et al. established a diagnostic tool based on a DL

framework for screening common, treatable blinding retinal diseases.

Apostolopoulos et al. (29) utilized a convolutional neural network (CNN)

to predict the presence of Covid-19 using X-rays and achieved promising

results. Wang et al. (30) proposed a DL framework for analyzing whole-

slide lymph node images to identify lymph nodes and tumour regions.

Besides, a series of works have utilized machine learning (ML) or DL on

the gene mutation or immune checkpoint pathway prediction in HCC or

intrahepatic cholangiocarcinoma (ICC) (31–33). Similarly, applying DL

to the prediction of PD-1/PD-L1 expression using computed

tomography (CT) images could enable effective, non-invasive

prediction, and promote individual and precise treatment decision-

making for patients with HCC.

However, several challenges that differ from traditional computer

vision tasks are encountered when applying DL to predict PD-1 and

PD-L1 expression using CT images. The first is how to extract proper

deep representation from CT images. The expression of PD-1 and

PD-L1 is not directly reflected in CT images, which requires the

model to extract more accurate deep representations from CT images.
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The second problem is the data utilization efficiency. As some patients

may have complete CT images but incomplete clinical information

like PD-1 or PD-L1 expression. These CT images were excluded

during data processing due to incomplete clinical information, which

significantly reduced data volume and data utilization efficiency. The

effective use of these unlabeled CT images is worthy of further

exploration. Finally, there is the problem of simultaneous

prediction of PD-1 and PD-L1 expression. PD-1 and PD-L1 levels

are strongly correlated, and predicting the expression of the two

metrics independently would not only increase the computational

cost of the network and reduce the computational efficiency, but may

also ignore the correlation between the expression of the two proteins.

It is worth exploring a suitable network structure to predict the

expression of PD-1 and PD-L1 simultaneously. We have attempted to

address these challenges in our study.

In this study, we propose a novel DL-based model, Contrastive

Learning Network (CLNet), for the noninvasive prediction of PD-1/PD-

L1 expression status in HCC patients based on CT images. As shown in

Figure 1, this prediction model was composed of the deep convolution

model ResNet-50 (34) and two independent fully connected layers to

simultaneously obtain the expression of PD-1 and PD-L1. To better

extract deep representations, we applied self-supervised contrastive

learning (35) in the first stage of development. In addition, we added a

new data augmentation patch shuffle to enhance the learning of the local

features. To improve the data utilization efficiency and enlarge the

patterns of training images, we introduced unlabeled images that

should have been discarded during data processing for self-supervised

training. We recruited 87 of patients with HCC from the West China

Hospital and analyzed 3094 CT images to develop and validate the

prediction model. The experimental results show that our CLNet

exhibited an AUC of 86.56% for PD-1 expression and an AUC of

83.93% for PD-L1 expression, outperforming other DL models and

machine learning strategies.
2 Materials and methods

2.1 Patients

The Institutional Review Board of West China Hospital approved

our retrospective study. Due to our study’s retrospective nature, the

requirement for written informed consent was waived. Patients in

West China Hospital with a pathological diagnosis of HCC from July

2012 to October 2016 were retrospectively included in our study with

the following inclusion criteria: (1) ages were 18 years older; (2)

pathologically confirmed HCC; (3) the interval between contrast-

enhanced CT imaging and surgery less than four weeks; (4) no history

of preoperative treatment. The exclusion criteria were as follows: (1)

Incomplete or poor-quality CT images (n = 18); (2) Incomplete

clinical data (n = 16). A total of 87 patients with HCC were finally

enrolled in this study as shown in Figure 2. Besides, we included 929

CT images from above 16 HCC patients with incomplete clinical data

as auxiliary training images in the self-supervised training process,

and the detailed illustration can be seen in the SubSection Model

Development. Based on time domain, patients underwent surgery

between July 2012 and September 2015 (n = 63) were assigned to

training cohort, and the subsequent patients underwent surgery
frontiersin.org
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between October 2015 and October 2016 (n = 24) were assigned to

validation cohort.
2.2 Image acquisition

CT images in this study were acquired frommulti detector CT. All

patients used three stages of CT (unenhanced phase, arterial phase,

portal vein phase) with LightSpeed VCT (GE Healthcare) or

Sensation 64 CT (Siemens Healthcare), and were injected with

contrast type iopromide injection (iodine concentration, 300-370

mg/mL; volume, 1.5–2.0 ml/kg of body weight; contrast type,

iopromide injection, Bayer Pharma AG). The arterial phase and the

portal vein phase was obtained 25 seconds and 60 seconds after the

injection of contrast agent. After obtaining the portal vein phase CT

images, we chose the tumor region as the input of the network for

prediction. To get precise tumor region, the tumor segmentation was

performed on the initial CT images with SEVB-Net, which is a

modified V-net developed by United Imaging Intelligence (36, 37).
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We centered the center point of the tumor region and expanded the

128×128 area as the final input.
2.3 Immunohistochemistry of PD-1 and
PD-L1 expression

The paraffin tissue from surgically resected specimens were cut

into 4 µm-thick sections, dewaxed, hydrated, and then antigen

retrieval. Then, tissue slides were incubated with primary antibodies

using rabbit anti-human PD-1 polyclonal antibody (5 mug/ml, cat #

PA5-20351; Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA,

USA.) and anti-human PD-L1 monoclonal antibody (5 µg/ml cat #

14-5983-82; Invitrogen) at 4°C overnight, followed by incubation with

secondary antibody (cat # K5007; Dako). PD-1 staining was

performed with 3,3’-diaminobenzidine and counterstained with

hematoxylin. Result of PD-1 expression was presented as the

proportion of PD-1 + tumor infiltrating immune cells (PD-1 +

immune cells/total immune cells), and the cut-off values for PD-1
FIGURE 1

The overall flow of image processing, self-supervised contrastive learning, and multi-task prediction. (Top) During the image processing stage, we
extracted the tumor regions from the original CT images as the input of the model using the segmentation network. (Middle) We used contrastive
learning to pre-train the proposed CLNet. A series of data augmentation strategies were used to produce two different views of the same image, and
contrastive learning would improve the model’s ability by gathering the two different views. Besides, we added additional unlabeled CT images to the
train set to increase the data patterns and improve the generalization of the model. (Bottom) We applied the model pre-trained with contrastive learning
as the backbone model and used the transfer learning strategy to train the prediction model. Two independent Multilayer Perceptrons (MLP) were added
for predicting PD-1 and PD-L1 expressions respectively.
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overexpression were determined by x-tile software, cases with

expression greater than 5% were considered as PD-1-positive. The

number of PD-L1 cells was quantified at ×400 (0.0484 mm2), results

of PD-L1 expression were presented as the proportion of PD-L1 +

tumor cells (PD-L1 + tumor cells/total tumor cells), and the cut-off

values for PD-L1 overexpression were determined to be 3%.
2.4 Self-supervised contrastive learning

In recent years, self-supervised learning has attracted many

researchers’ attention in the field of DL. By using self-defined

pseudo labels as supervision, self-supervised learning is able

to decrease the cost of producing the labels of the dataset.

Specifically, contrastive learning is one of the representative self-

supervised learning methods (38–41), which gathers two

perspectives of the same image (positive pairs) and rejects different

images (negative pairs). Constructing two perspectives of the same

image is to make close the model outputs of these two views and

further makes the model learn the deep feature provided by the

image itself. The model trained by contrastive learning can be

applied to various downstream tasks because it has learned the

deep feature from the image itself.
Frontiers in Oncology 04
We used self-supervised contrastive learning (35) to train the

network during the first training stage. The ability to extract a deep

representation of images is one of the most important functions of the

DL model, and the quality of the deep representation produced by the

DL model is directly related to the final prediction performance. For

our classification task, the expressions of PD-1/PD-L1 are not directly

reflected in the CT images, it needs the model to have the ability to

extract the deep feature from images. Contrastive learning is a novel

self-supervised training strategy that can effectively mine deep

representations of images. And the model trained by contrastive

learning has learned from the image itself, so its ability of feature

extraction is suitable for this task. Besides, contrastive learning does

not need label information when extracting features, so the model

trained by contrastive learning is also applicable to the expression

prediction of PD-1 and PD-L1 at the same time. In this study, we

adopted an advanced contrastive learning method, SimSiam (35),

which utilizes only positive pairs. As shown in Figure 1, for a given CT

input image x, different data augmentation methods are used to

generate two different views x1 and x2 of x. ResNet-50 (34) followed

by projection MLPs, was chosen as the backbone encoder f(x), and a

prediction MLP head h(x) was added to one branch to match another

view of the image. x1 and x2 entered two branches of the above

models, and the outputs were obtained as follows:
FIGURE 2

The flowchart of patient enrollment. A total of 87 patients with HCC from 121 were finally enrolled in this study.
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p1 ≜ h(f (x1)) (1)

z2 ≜ f (x2) (2)

After obtaining the two output vectors, we use the negative cosine

similarity to maximize the similarity between x1 and x2:

D(p1, z2) = −
p1

‖ p1 ‖2
·

z2
‖ z2 ‖2

(3)

where ||·||2 denotes the l2-norm. To prevent model collapse, a

stop-gradient operation was performed on D(p1, stopgrad(z2)), and

the final training loss was defined as follows:

L =
1
2
D(p1, stopgrad(z2)) +

1
2
D(p2, stopgrad(z1)) (4)

Constructing two different views of the same image is an

important part of extracting the deep representation of CT images.

We retained the commonly used data augmentation methods of

contrastive learning, such as Random Resized Crop, Random

Horizontal Flip, and ColorJitter. At the same time, we add a new

data augmentation method, patch shuffle, for comparison. This data

augmentation method divides the image into four patches and

randomly puts the four patches together into one image with the

probability of P. The training with contrastive learning increases the

similarity between the patch shuffled image’s deep representation and

the original image’s deep representation. This new data augmentation

method aims to deepen the model’s understanding of the local

representation of the training images. An illustration of the

aforementioned data augmentation strategies is shown in Figure 3.
2.5 Multi-task prediction

The ability to determine PD-1 and PD-L1 expression is critical for

personalized medical treatment and selection of immunosuppressive

agents for patients with HCC. Relying on CT images of patients to

simultaneously predict their PD-1 and PD-L1 expression is a

meaningful but challenging task. In essence, these are two two-class

classification tasks, i.e., judging whether the patient’s PD-1 expression
Frontiers in Oncology 05
is negative or positive and whether PD-L1 expression is negative or

positive through the patient’s CTimage. The model trained by self-

supervised contrastive learning is well suited for the simultaneous

prediction of PD-1 and PD-L1 expression because it does not use PD-

1 or PD-L1 labels but rather extracts tumor-related features from the

CT images, which are generalizable to the prediction of both PD-1

and PD-L1 expression. Therefore, this model can be used as the

backbone for multi-task prediction of PD-1 and PD-L1 expression. As

shown in Figure 1, we applied the transfer learning strategy to train

the prediction model in the second training stage. Specifically, we only

retained the convolution layers of the contrastive-learning model and

added two new fully connected networks for predicting PD-1 and PD-

L1 expression. The two fully connected networks have the same

structure, which is combined with three linear layers with batch

normalization (BN) layers and ReLU activation functions. For

labelled datasets, D = fxi, y1i , y2i g, xi denotes the training image, y1i
denotes the PD-1 expression label, and y2i denotes the PD-L1

expression label. The convolution layers of CLNet are defined as C

(·), the fully connected network for PD-1 prediction is defined as FPD-1

(·), and the fully connected network for PD-L1 prediction is defined as

FPD-L1(·). The output of fully connected network for PD-1 prediction

aPD-1 is computed as:

aPD−1 = FPD−1½C(x)� (5)

Similarly, the output of fully connected network for PD-L1

prediction aPD-1 is computed as:

aPD−L1 = FPD−L1½C(x)� (6)

The predicted probability of PD-1 expression pPD-1 for class i is

computed by softmax as:

pPD−1i =
exp(aPD−1i )

oC
j=1exp(a

PD−1
j )

(7)

And the predicted probability of PD-L1 expression pPD-L1 for class

i is computed by softmax as:

pPD−L1i =
exp(aPD−L1i )

oC
j=1exp(a

PD−L1
j )

(8)
FIGURE 3

Illustration of different data augmentation strategies for contrastive learning. Random Resized Crop would crop a random part of the image and resize it
to a uniform size. Random Horizontal Flip would randomly flip the image horizontally. GaussianBlur would randomly blur the image with Gaussian noise.
In addition, we introduced the patch shuffle strategy that divided the image into four patches and randomly put the four patches together to deepen the
model’s understanding of the local representation.
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where C denotes the number of ground truth labels, i.e., positive

and negative. In summary, the loss function of the prediction model

consists of the cross-entropy of two classifiers for PD-1 and PD-L1

expression, which can be written as:

loss =
1
2
½CrossEntropy(pPD−1, y1) + CrossEntropy(pPD−L1, y2)� (9)

With the above formula, we can update the network weights using

the correspondence between the training images and PD-1/PD-L1

labels at the same time to achieve the effect of multi-task training. This

not only improves the training efficiency of the network, but also

helps the model to explore the relationship between PD-1 and PD-L1

expression as multi-task training.
2.6 Model development

The development of the model was divided into two stages. The

first stage was self-supervised training, for which we used contrastive

learning for better deep representation extraction. The second stage

was the supervised training, for which we used transfer learning for

the simultaneous prediction of both PD-1 and PD-L1 expression. In

the first phase of training, we used unlabeled images to pre-train the

model. A number of medical images with incomplete clinical

information were added in actual image processing. Even though

these images met the standard for network training, they would have

been discarded owing to missing clinical information like PD-1 or

PD-L1 status, which would have resulted in the waste of data

resources. However, we were still able to include these images

during the phase of self-supervised training. We collected additional

929 unlabeled CT images from 16 patients with a pathological

diagnosis of HCC and incomplete clinical information in West

China Hospital from July 2012 to October 2016. We included these

unlabeled CT images in the training set for the self-supervised

training stage. This not only improved the data utilization

efficiency, but also increased the data patterns and improved the

generalization of the model. Different from the training setting of

supervised learning, the setting of the large epoch is beneficial for

contrastive learning. The training epoch of contrastive learning was

set to 800 because large training epochs can help improve the model’s

ability to extract deep representations. The initial learning rate of

contrastive learning is set to 0.025 with batch size 128. In the second

phase of training, we followed the common practice of transfer

learning by freezing the parameter value in the convolution layers

of ResNet-50, and only training two fully connected modules. The

training epoch of transfer learning was set to 100, and the initial

learning rate is set to 0.5 with batch size 256. The learning rate in

transfer learning was set to 0.5 because we found the learning rate in

transfer learning often needed a higher value for better network

performance than supervised learning. Besides, we chose the

Stochastic Gradient Descent (SGD) optimizer to optimize the

model training with momentum of 0.9. To the supervised DL

models including Res-Net-50, VGGNet-19_BN, DenseNet-100, and

PrymidNet-110, the training epoch was set to 200 with the initial

learning 0.01, weight decay 0.001 and batch size 256, which was the

optimal setting for a fair comparison. Python (3.7.13) was used to
Frontiers in Oncology 06
conduct this research on the Ubuntu (20.04.4) operating system. All

experiments related to DL were performed using the Pytoch

framework (1.11.0) with four NVIDIA GeForce RTX 3080ti GPUs.
2.7 Validation and statistics analysis

After obtaining the trained prediction model, we tested its

performance on the validation set. There are a series of CT images

from each patient in the validation set, and every CT image would

separately enter into the prediction model to get its probability of PD-

1 and PD-L1 expression. For each patient, we selected only the top k

probability among all images and derive its mean value as the final

probability of PD-1 or PD-L1 expression for this patient. Further, if

the number of patient’s CT images is less than k, we would derive the

mean value of all images’ probability as the final probability. The

value of k was set to 10 for both PD-1 and PD-L1 prediction. We used

this statistical approach because the most clearly expressed CT image

often best reflect the tumor condition, and combining the expression

of these images could provide a more reasonable prediction.

We used the area under the curve (AUC) values under the

receiver operating characteristic (ROC) curve to assess the

prediction performance of the proposed model for discriminating

PD-1 and PD-L1 expression. Besides, accuracy (Acc), sensitivity

(Sen), specificity (Spec) and Matthews correlation coefficient (Mcc)

were also calculated for validation, as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Sensitivity =
TP

TP + FN
(11)

Specificity =
TN

TN + FP
(12)

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FN)(TP + FP)(TN + FN)(TN + FP)
p (13)

where TP, TN, FP, and FN represented the true positive, true

negative, false positive, and false negative, respectively.
3 Results

3.1 Clinical characteristics

We retrospectively identified a cohort of 121 patients with

histologically proven HCC between July 2012 to October 2016. Of

the 121 patients, 87 who met the inclusion criteria were included and

34 patients were excluded. We assigned consecutive patients who

underwent surgery between July 2012 to September 2015 to the

training cohort (number: 63; average age: 53.13 ± 11.79 years; 57

men and 6 women) and patients who underwent surgery from

October 2015 to October 2016 to the validation cohort (number:

24;average age: 47.96 ± 13.76 years; 22 men and 2 women). The

validation cohort included younger patients relative to the training
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cohort. There were no sex differences between the training and

validation cohorts. The training and validation cohorts had a

prevalence of PD-1 positivity by immunohistochemistry of 41.27%

and 41.67%, respectively, and the prevalence of PD-L1 positivity by

immunohistochemistry was 22.22% and 29.17%, respectively. The

baseline characteristics of patients in the training and validation

cohorts are shown in Table 1. The p-value in Table 1 describes the

difference of the clinical and pathological characteristics of patients
Frontiers in Oncology 07
between the training and validation cohorts. The values (ALL P >

0.05) demonstrated that there was no statistical difference in the

baseline characteristics and laboratory features between training and

validation cohorts.
3.2 Comparison with deep learning models

We first compared the CLNet model with other DL models in

predicting PD-1/PD-L1 expression in a validation cohort. The other

DL models included ResNet-50 (34), VggNet-19 BN, DenseNet-100

and PyramidNet-101 (42–44). These DL models were supervised

models trained from beginning. We used grid search to find the

optimal parameter setting under different training strategies, i.e., the

optimal performance of our CLNet and other supervised DL models

were provided for a fair comparison. As shown in Table 2, CLNet

exhibited an AUC of 86.56% 83.93%, ACC of 84.38% and 83.33%,

sensitivity (Sen) of 92.86% and 85.00%, specificity (Spec) of 80.88%

and 82.14%, and MCC of 0.688 and 0.671 for the prediction of PD-1

and PD-L1 expression, respectively. Compared with ResNet-50,

which has the same convolution structure as our model, the AUC

for PD-1 and PD-L1 expression was increased by 8.41% and 8.57%,

and the ACC was increased by 4.17% 266 and 6.25%, respectively.

This illustrates that contrastive learning is conducive to the extraction

of features related to PD-1 and PD-L1 expression. In addition, the

proposed CLNet performs better than other models, such as

DensNet-100 and PrymidNet-100, which illustrates the effectiveness

of our model.

We also used a receiver operating characteristic (ROC) curve to

visualise the prediction results. Figure 4 shows the comparison of

ROC curves among the DL models. CLNet obtained the best area

under the curve for PD-1/PD-L1 expression prediction. We also used

the heat map to plot the results of the t-test to visualise the prediction

differences of the above models. The values in each square of the heat

map represent the corresponding p-values between two DL models,

and two statistical variables were considered statistically significant

when the p-value was less than 0.05. As shown in Figure 5, all p-values

between our model and the other models were less than 0.05, which

indicated significant differences in quality of predictions between

CLNet and the other DL models.
3.3 Comparison with machine learning
methods

In this subsection, CLNet was compared with other machine

learning (ML) methods¸ (45) including K-nearest neighbor (KNN),

support vector machine (SVM), decision tree. As shown in Table 3,

the performance of our model was much better than that of

traditional ML methods. The AUC of CLNet was 18.8% and

21.07% higher than that of the decision tree in predicting PD-1 and

PD-L1, respectively. To explore the model’s ability to autonomously

extract features, we did not introduce an additional feature extraction

method when performing ML methods, similar to the development of

CLNet. The results illustrate that our model has a stronger ability to

predict PD-1 and PD-L1 expression than traditional ML methods.
TABLE 1 The clinical characteristics of patients with HCC in the training
and validation cohorts.

Patient
characteristic

Development
cohort

Validation
cohort

p-Value

Number 63 24 –

Age, mean ± SD,
yr

53.13 ± 11.79 47.96 ± 13.76 0.085

Gender 0.866

Male 57 (90.47) 22 (91.67)

Female 6 (9.53) 2 (8.33)

HBV 0.487

+ 58 (92.06) 22 (91.67)

- 5 (7.94) 2 (8.33)

ALT (IU/L) 0.150

<40 38 (60.32) 11 (45.83)

AST (IU/L) 0.078

<35 29 (46.03) 6 (25.00)

ALB (g/L) 0.410

<40 17 (26.98) 6 (25.00)

AFP (ng/mL) 0.421

<400 37 (58.73) 12 (50.00)

CEA (ng/mL) 0.369

<3.4 38 (60.32) 16 (66.67)

GGT (µ/L) 0.756

<45 23 (36.51) 7 (29.17)

PLT (×109/L) 0.335

<100 15 (23.81) 6 (25.00)

TBIL (µmol/L) 0.597

<17.1 36 (57.14) 15 (62.50)

MVI 0.119

Absent 38 (60.32) 7 (29.17)

Present 25 (39.68) 17 (70.83)

BCLC 0.249

0-A 9 (14.29) 6 (25.00)

B 33 (52.38) 12 (75.00)

C 21 (33.33) 6 (25.00)
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3.4 Ablation study

In this subsection, we describe several ablation experiments

conducted to analyze the effectiveness of the proposed training

strategy. We first compared the performance of the model trained

only with normal training images during the self-supervised training

phase, and the models trained by additional CT images of patients

with incomplete clinical information but high CT image quality.

Table 4 shows that including more images in the self-supervised pre-

training process could significantly improve the network’s

performance in PD-1 and PD-L1 expression prediction (PD-1: p-

value = 0.015; PD-L1: p-value = 0.013). While these unlabeled images
Frontiers in Oncology 08
are usually discarded during traditional data processing, we reused

them for self-supervised pre-training because contrastive learning

does not require label information. Experimental results prove that

additional image information can extend the image patterns that the

model learns, thus improving the model’s ability to extract

image features.

To validate the effectiveness of the patch shuffle strategy used in

contrastive learning, we conducted a group of comparative

experiments in which we trained the network with and without the

patch shuffle strategy. The results are summarized in Table 5.

The results showed that adding the patch shuffle strategy improved

the AUC and ACC by 6.50% and 8.34% for PD-1 expression and
TABLE 2 Performance comparison between proposed CLNet with other DL models such as ResNet-50, VGGNet-19 BN, DenseNet-100, and PrymidNet-
110 for predicting PD-1 and PD-L1 expressions.

Pathway Model AUC (%) Acc (%) Sen (%) Spec (%) Mcc

PD-1 ResNet-50 78.15 80.21 78.57 80.88 0.568

VGGNet-19_BN 75.42 73.96 78.57 72.06 0.473

DenseNet-100 78.36 81.25 78.57 82.35 0.592

PrymidNet-110 75.63 76.04 75.00 76.47 0.483

CLNet (ours) 86.56 84.38 92.86 80.88 0.688

PD-L1 ResNet-50 75.36 77.08 70.00 82.14 0.541

VGGNet-19_BN 71.70 71.88 57.50 82.14 0.426

DenseNet-100 73.75 73.96 87.50 64.29 0.519

PrymidNet-110 72.86 73.96 82.50 67.86 0.520

CLNet (ours) 83.93 83.33 85.00 82.14 0.671
AUC, Area under the receiver operating characteristic curve; Acc, Accuracy; Sen, Sensitivity; Spec, Specificity; Mcc, Matthews correlation coefficient.
The highest value is in bold.
A B

FIGURE 4

Receiver operating characteristic (ROC) curve of the four DL models and proposed CLNet. Our CLNet achieves the best performance in both PD-1 and
PD-L1 prediction tasks. (A) denotes PD-1 expression and (B) denotes PD-L1 expression.
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improved the AUC and ACC by 5.36% and 6.25% for PD-L1

expression compared with regular contrastive learning. The

performance of training with only the patch shuffle strategy was

not satisfactory, only achieving 72.06% AUC and 73.96% ACC on

PD-1 and 71.25% AUC and 72.92% ACC on PD-L1. This shows that

patch shuffle is an appropriate method for adding more image

patterns during contrastive learning, but traditional data

augmentation methods such as Random Resized Crop and Random

Horizontal Flip are necessary. Further, we validated the performance

of the patch shuffle strategy on supervised training based on ResNet-

50. Results in Table 6 show that patch shuffle augmentation does not

improve the model ability in supervised learning, we consider the

reason may be that the pattern provided by patch shuffle is benefit for

capturing the invariance between the original image and the image
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shuffled on the patch unit during contrastive learning, but is difficult

to be contained by supervised learning mode.

Besides, we further explored the performance of the transformer-based

model in supervised learning. Swin Transformer (46) was chosen because

it needed less data to train compared with other transformer models.

Table 7 shows that Swin Transformer achieved a similar performance in

AUC and ACCwith ResNet-50, and higher Sen and lower Spec compared

with ResNet-50. We would like to explore the performance of Swin

transformer by modifying its modules in future work.

For the settings of linear layers, the modules of BN and ReLU could

help the model mitigate the impact of overfitting and are commonly used

in linear layers. The reason that we chose the three layers is that there is a

huge gap between the dimension of the linear layer’s input (2048) and

the dimension of output (2). The three layers structure performs better
TABLE 3 Performance comparison between our proposed model and traditional machine learning strategies for predicting PD-1 and PD-L1 expressions.

Pathway Model AUC (%) Acc (%) Sen (%) Spec (%) Mcc

PD-1 KNN 61.76 69.79 85.00 44.64 0.332

SVM 66.17 69.79 82.14 64.69 0.465

DecisionTree 67.76 59.38 96.43 44.12 0.397

CLNet (ours) 86.56 84.38 92.86 80.88 0.688

PD-L1 KNN 58.30 60.42 60.00 60.71 0.238

SVM 57.68 62.50 70.00 57.15 0.275

DecisionTree 62.86 61.46 85.00 44.64 0.331

CLNet (ours) 83.93 83.33 85.00 82.14 0.671
frontier
The highest value is in bold.
A B

FIGURE 5

Heat map of the significance t-test, the values in each square of the heat map represent the corresponding p-values between two DL models, and two
statistical variables were considered statistically significant when the p-value was less than 0.05. All statistical tests were performed on the predicted
results of the validation cohort. The left heat map represents the corresponding p-values of PD-1 expression and the right represents PD-L1 expression.
We set the value in each square to zero if the corresponding p-value is less than 0.001. (A) denotes PD-1 expression and (B) denotes PD-L1 expression.
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TABLE 6 Performance comparison between the supervised ResNet-50 with and without patch shuffle strategy.

Pathway Model AUC (%) Acc (%) Sen (%) Spec (%) Mcc

PD-1 ResNet-50 78.15 80.21 78.57 80.88 0.568

+ patch shuffle 77.73 75.00 71.43 76.47 0.450

PD-L1 ResNet-50 75.36 77.08 70.00 82.14 0.541

+ patch shuffle 73.57 70.83 60.00 78.57 0.393
F
rontiers in Oncology
 1
0
 frontier
Results show that patch shuffle cannot improve the performance of supervised training.
The highest value is in bold.
TABLE 7 Performance comparison among supervised ResNet-50, supervised Swin Transformer and our self-supervised CLNet.

Pathway Model AUC (%) Acc (%) Sen (%) Spec (%) Mcc

PD-1 ResNet-50 78.15 80.21 78.57 80.88 0.568

Swin Transformer 80.67 79.17 85.71 76.47 0.573

CLNet (ours) 86.56 84.38 92.86 80.88 0.688

PD-L1 ResNet-50 75.36 77.08 70.00 82.14 0.541

Swin Transformer 75.00 75.00 90.00 64.29 0.543

CLNet (ours) 83.93 83.33 85.00 82.14 0.671
The highest value is in bold.
TABLE 4 Performance comparison between training with and without extra unlabeled CT images.

Pathway Model AUC (%) Acc (%) Sen (%) Spec (%) Mcc

PD-1 CLNet_original 82.35 77.08 92.86 70.59 0.586

CLNet (ours) 86.56 84.38 92.86 80.88 0.688

PD-L1 CLNet_original 78.21 75.00 87.50 66.07 0.547

CLNet (ours) 83.93 83.33 85.00 82.14 0.671
CLNet original denotes the proposed model trained without additional images.
The highest value is in bold.
TABLE 5 Performance comparison among different data augmentation strategies for contrastive learning.

Pathway Model AUC (%) Acc (%) Sen (%) Spec (%) Mcc

PD-1 Original_aug 80.06 76.04 96.43 67.65 0.585

Patch shuffle 72.06 73.96 78.57 72.06 0.482

CLNet (ours) 86.56 84.38 92.86 80.88 0.688

PD-L1 Original_aug 78.57 77.08 77.50 76.79 0.554

Patch shuffle 71.25 72.92 75.00 71.43 0.506

CLNet (ours) 83.93 83.33 85.00 82.14 0.671
Original aug denotes the regulate data augmentation strategies used in contrastive learning.
The highest value is in bold.
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than one and two layers by +5.04% and +1.68% of AUC in PD-1

prediction and +3.22% and +1.08% of AUC in PD-L1 prediction.
3.5 Visualization of deep representations

We visualized the deep representations of the proposed model

using t-SNE, which could reduce the features of the high dimension

into the low dimension. We used yellow dots to represent the

distribution of positive cases’ deep representations, and purple dots

to represent the distribution of negative cases’ deep representations.

As shown in Figure 6, the deep representations of positive cases and

negative cases for both PD-1 and PD-L1 expression are obviously

separated by our CLNet. It proves that the model we proposed can

effectively extract the deep features of CT images, and improve the

discrimination ability for PD-1 and PD-L1 expressions.
4 Discussion

PD-1andPD-L1expressionstatusassessedbyimmunohistochemistry

can provide guidance for clinical decision-making and individualized

treatment of patients with HCC. However, invasive needle biopsies for

immunohistochemistry may cause sampling errors and morbidity;

therefore, an alternative non-invasive method to predict PD-1 and PD-

L1 is urgently needed. In this study, we built and validated the first DL

model based on self-supervised contrastive learning using CT images to

non-invasivelypredict the expressionofPD-1andPD-L1 inHCCpatients.

We introduced a self-supervised pre-training approach to reuse the

unlabeled images that should have been discarded in supervised model

training, enriching the model’s input patterns and improving the data
Frontiers in Oncology 11
utilization efficiency. We also improved the original contrastive learning

method by adding a comparison between a normal image and a patch-

shuffled image with a certain probability, which increased the difficulty of

model training, thus improving the capability of the prediction model to

capture deep representations. Ablation studies showed the effectiveness of

our proposed strategies in improving the data utilization efficiency and

enhancing the learningabilityof themodel.Ourmodelwas comparedwith

differentDL andMLmodels, and ourAUC value and othermajormetrics

were the highest among them for the prediction of PD-1 and PD-L1

expression in HCC patients. Specifically, our proposed model can non-

invasively predict the expression status of PD-1 and PD-L1 in HCC

patients, and achieved a performance of 86.56% AUC, 84.38% ACC,

92.86% Sen, 80.88% Spec, 0.688Mcc for PD-1, and 83.93% AUC, 83.33%

ACC, 85.00% Sen, 82.14% Spec, and 0.671 MCC for PD-L1. The results

indicated that our model could achieve reliable predictive performance,

which also validated the correlation between CT images of HCC patients

and expression status of the immune checkpoint pathway. The

experimental results also show the superiority of our approach

compared to traditional DL and ML models. This improvement proves

that applying contrastive learning to the DL model with additional CT

images and various data patterns is beneficial for model training.

The model proposed in this study has a number of advantages

over existing models. First, as a discriminative approach, contrastive

learning groups similar examples closer and diverse examples farther

from each other to learn the underlying representations of images

(38). A series of relevant studies have focused on this basic idea and

improved the contrastive strategy by modifying the data

augmentation, model structure, loss function, and memory bank

(39, 40, 47–49). We applied the self-supervised contrastive learning

strategy SimSiam (35) to improve the ability of the DL model to

extract deep representations of CT images. We chose SimSiam with
A B

FIGURE 6

Visualization of deep representations from proposed model using t-SNE. Yellow dots represent the distribution of deep representations for positive
cases, and purple dots represent the distribution of deep representations for negative cases. (A) denotes PD-1 expression and (B) denotes PD-L1
expression.
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ResNet-50 as the basic architecture to obtain a better deep

representation. Compared with other contrastive learning strategies,

our training strategy maintained its promising performance by

grouping similar examples closer without diverting examples far

from each other, which could significantly reduce the training

overhead. Through experiments, we found that prediction models

using contrastive learning have a better performance than other DL

architectures. For example, our model increased the AUC of PD-1

and PD-L1 expressions by 8.41% and 8.57%, respectively, compared

with ResNet-50, which shows that our model has stronger

generalization and deep representation learning ability than other

DL models. In addition, we introduced an extra data augmentation

method called patch shuffle, which further enriched the feature

patterns of the training CT images. This strategy improves the

performance by 6.50% and 367 5.36% compared with the original

augmentation strategies, which proves that this operation could help

the model capture the invariance between the original image and the

image shuffled on the patch unit, and thus enhance the model’s

extraction of local representation

Furthermore, we introduced additional unlabeled CT images from

patients with incomplete clinical information like PD-1 or PD-L1

expression during the self-supervised training phase. Training images

are the cornerstones of the DL. In general, the more input images for

model training, the more data patterns the model can accept, and the

greater its generalization. However, we received several unlabeled

medical images from patients with incomplete clinical information.

Even though these images met the standard for network training, they

were discarded owing to missing label information, which resulted in

the waste of data resources. However, the contrastive learning we used

is a self-supervised training method that trains the model without label

information; therefore, we could reuse these unlabeled images that

should have been discarded to increase the number of training images

during this self-supervised training stage. We included these unlabeled

CT images in the training set for the self-supervised training stage. The

results in Table 4 show that introducing additional unlabeled CT

images significantly improved the performance of the prediction

model (+4.21% for PD-1; +5.72% for PD-L1), which demonstrates

that enriching the input patterns is an effective strategy for improving

the model’s generalizability. This strategy is applicable to all self-

supervised learning models and can effectively improve data

utilization efficiency, providing a new method for future training

data processing.

Our DL model simultaneously predicted the expression of PD-1

and PD-L1. The training phase of contrastive learning does not

require label information, so the deep representation extracted by

the convolution layers could be applied for the prediction of both PD-

1 and PD-L1 expression. Therefore, the label information of PD-1 and

PD-L1 expression is needed only to train the two full connection

layers with fewer parameters, which could save training time and

memory occupation to improve calculation efficiency. In addition, we

used the joint loss function of the two full connection layers to update

the predictor, which could strengthen the relevance of PD-1 and PD-

L1 predictions and enrich the learning mode of the model. Compared

with previous works on predicting the expression of a single protein

(PD-1 or PD-L1), our model can obtain more comprehensive

expression data from HCC patients, which is more conducive to

the formulation of personalized treatment plans.
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Although our model achieved promising results in the prediction

of PD-1 and PD-L1 expression, there are still some limitations to our

study. First, CLNet extracts deep representations of CT images by

closing the distance between similar images, whereas useful

representations are concentrated in the local area near the tumor

lesion. While we used patch shuffle to enhance the learning of local

representation, it is worth continuing to explore how to extract

features from the local region by using better data augmentation

methods or introducing attention mechanisms. Second, the data in

this study were obtained from a single medical center, and the results

need to be externally validated at other medical centers. Third, we

only choose more DL network backbones for the contrastive learning.

But the experiment illustrated the effectiveness of contrastive learning

in the prediction of PD-1 and PD-L1 expression. So it is enough to

only choose ResNet-50 as the backbone model.

For validating the effectiveness of our method for clinical use, we

consider containing HCC patients’ CT images in other medical

centers as an external validation set to test the performance of our

model is a feasible strategy. Besides, we can observe whether including

more CT images of HCC patients for model training could improve

the model performance, which could also validate the generalization

and clinical use of our model. We will positively try the above

strategies in our future work.
5 Conclusion

In this study, we proposed a DL model for the noninvasive

prediction of PD-1/PD-L1 expression in patients with HCC. Self-

supervised contrastive learning and patch shuffle augmentation were

used to help the model better extract deep representations of CT

images. Based on the characteristics of self-supervised training of the

model with unlabeled images, we introduced additional training

images to improve the data utilization efficiency and the patterns of

training images. Our DL model could simultaneously predict PD-1/

PD-L1 expression, which is important for guiding the individualized

treatment of patients with HCC. CLNet exhibited an AUC of 86.56%

for PD-1 expression and an AUC of 83.93% for PD-L1 expression,

performing better than other DL and machine learning models. The

results of PD-1/PD-L1 expression prediction illustrate that our DL

model may provide a new method for clinical decision-making in

patients with HCC.
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