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The peripheral T-cell lymphomas (PTCL) are relatively rare, heterogeneous, and

therapeutically challenging. While significant therapeutic gains and improved

understanding of disease pathogenesis have been realized for selected PTCL

subtypes, the most common PTCL in North America remains “not otherwise

specified (NOS)” and is an unmet need. However, improved understanding of the

genetic landscape and ontogeny for the PTCL subtypes currently classified as

PTCL, NOS have been realized, and have significant therapeutic implications,

which will be reviewed here.
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Introduction

Historically, treatment paradigms utilized successfully in the management of many

aggressive B-cell lymphomas – namely, multiagent, anthracycline-based regimens, including

CHOP – have been empirically applied, perhaps unjustifiably (1), to the T-cell lymphomas.

With one notable exception (2), attempts to improve outcomes by “adding to” or “replacing”

anthracycline-based regimens have failed, and most T-cell lymphoma patients will succumb

to their lymphoma, or complications related to its treatment, within a few years of diagnosis.

Indeed, most of the T-cell lymphomas have been, and remain, a challenging and unmet

medical need (3).

The sheer geographic, clinical, histopathologic, molecular, and genetic heterogeneity of

the more than 25 peripheral T-cell lymphoma (PTCL) subtypes recognized by theWHO have

frustrated efforts to improve outcomes for patients afflicted with these mature T-cell derived

non-Hodgkin lymphomas (NHL) (4). Not surprisingly then, PTCL diagnosis and

classification are challenging, as demonstrated by the relatively high-rate (≈33%) of

reclassification following “expert” hematopathology review (5), after which ≈25-40% will

remain “unspecified” (6, 7). At the dawn of the 21st century, the PTCL were viewed as the

“next, and largely unexplored, frontier in lymphoma management” (8). Twenty years later,

significant gains, driven by collaborative and multidisciplinary efforts, have improved our

understanding of the PTCL generally, and PTCL, not otherwise specified (PTCL, NOS)
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specifically. The new frontier in lymphoma management spawned by

these efforts is dominated by novel therapeutic approaches, as

evidenced by the more than 100 ongoing clinical trials investigating

novel agents. Despite these significant advances, and evidence to

support a cautiously optimistic outlook (9), the PTCL, NOS remain a

diagnostic and therapeutic challenge, and are the subject of

this review.
Epidemiology

In North America and Europe, with the exception of American

Indians, PTCL, NOS is the most common PTCL subtype, accounting

for ≈30% of PTCL, and is twice as prevalent as either

angioimmunoblastic T-cell lymphomas (AITL) or anaplastic large

cell lymphomas (ALCL) (6, 7, 10). The median age at diagnosis is 60

years, and males are more commonly affected, with a male-to-female

ratio of 1.9:1 (6). A history of celiac disease, psoriasis, and a family

history of any hematologic malignancy in a first-degree relative are

risk factors for PTCL, NOS, with adjusted odds ratios ranging from

≈2-9, whereas a history of allergies and moderate alcohol

consumption are associated with a decreased risk (11). While long-

term (>40 years) cigarette smoking is a significant risk factor in PTCL

overall, this association did not reach statistical significance for PTCL,

NOS (11). Immune suppression may also confer an increased risk of

PTCL, NOS, possibly including those derived from cytotoxic T cells

(12, 13), and a history of prior immunosuppressive therapies has been

reported in 3.8% of PTCL, NOS patients (14). Consistent with the

importance of immune surveillance, PTCL, NOS is observed

following solid organ transplant, and accounts for approximately

one-third of T-cell derived post-transplant lymphoproliferative

disorders (15). Deleterious mutations or copy number alterations/

structural variants are recurrently observed in genes required for

immune surveillance (or evasion), including MHC class I, b2M, and

PD-L1 (16, 17). When observed, PTLD (PTCL, NOS) often occur

“late” (>5 years post-transplant), frequently involve extranodal sites,

and are often, but not always, EBV-associated, regardless of the time

of onset following transplant (15), and are seemingly associated with a

genetic landscape reminiscent of that observed in PTCL, NOS

generally (18). Not surprisingly, T-cell derivation is an adverse

prognostic factor on multivariate analysis in the setting of PTLD

(19). With the possible exception of PTLD, EBV more commonly

affects B-cells within the tumor microenvironment, and rarely infects

malignant T cells, at least in the West (14). However, EBV associated

PTCL, NOS is more common in Asia, where EBV infection is

associated with inferior outcomes (20). While previously classified

as a subtype of PTCL, NOS, in the current WHO classification these

lymphomas are now classified as nodal EBV-positive T and NK-cell

lymphomas (4).
Natural history and risk-stratification

The majority of patients diagnosed with PTCL, NOS present with

advanced-stage (III/IV) disease, usually with nodal or nodal/

extranodal involvement (14). Involvement of multiple extranodal

sites or exclusively extranodal involvement are less common, being
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observed in 29% and 13% of patients, respectively (14). Common

extranodal sites of involvement, observed in at least 10% of patients,

include the spleen, bone marrow, liver, and skin (14). Associated

complications, including hypercalcemia, hypogammaglobulinemia,

and hemophagocytic lymphohistiocytosis (HLH) are observed in

fewer than 10% of patients (14).

Approximately 30% of patients remain alive and disease free 24

months following initial diagnosis and treatment (14, 21), and

achieving this landmark is a surrogate for overall survival (22, 23).

Among PTCL, NOS patients who experienced disease progression or

recurrence within 24 months of diagnosis, the 3-year overall survival

from the time of progression was 19.4%. In stark contrast, event-free

survival at 24 months (EFS24) was associated with a 3-year overall

survival, from the time EFS24 was achieved, of 84.6% (22). As with

most aggressive NHL, advanced age and poor performance status are

adverse prognostic factors (6, 24–26), as are an elevated LDH (14, 24,

25), bone marrow involvement (14, 24), bulky (≥10 cm) disease (14),

thrombocytopenia (14), lymphopenia (27), neutrophilia (26),

hypoalbuminemia (26), and a high proliferative index (Ki67 ≥80%)

(25). These prognostic variables have been variously combined to

form prognostic indices, stratifying patients into low- and high-risk

groups, with EFS24 ranging from ≈20% to ≈50%, respectively. While

still utilized, one suspects that these indices may be supplanted by, or

at least incorporate, ontologically and/or genetically based approaches

for risk-stratification in the near future.
Disease ontology and classification

PTCL, NOS are morphologically heterogeneous, ranging from

sheets of intermediate- to large-sized cells that are relatively devoid of

an inflammatory environment (i.e. immunologically “cold”) to those

that are polymorphous and enriched for a range of inflammatory cells

(i.e. immunologically “hot”) (28, 29), including epithelioid histiocytes

[in “Lennert’s lymphomas” (30)]. T-cell specific antigens (e.g. CD2,

CD3, CD4) are commonly expressed, while CD4 and/or CD8

expression is variable, and not always associated with the presumed

cell of origin (31). The majority (>90%) of PTCL, NOS are derived

from mature ab T-cells. T-cell lymphomas derived from gd T cells

classically involve specific extranodal sites, but when classified as

PTCL, NOS, transcriptionally resemble extranodal NK/T cell

lymphomas (32).

Early transcriptional profiling efforts highlighted PTCL, NOS

heterogeneity, with subsets transcriptionally resembling either ALK-

ALCL or AITL, while others were transcriptionally disparate (33, 34).

Subsequent transcriptional profiling efforts demonstrated that ≈15%

of PTCL, NOS cases transcriptionally resemble follicular helper T-cell

(TFH)-derived PTCL (35). Consequently, the current WHO

classification separates TFH-derived PTCL, previously classified as

PTCL, NOS, based on the expression of at least two TFH-associated

antigens (i.e. CD10, CD279/PD-1, Bcl-6, CXCL13, ICOS, SAP, or

CXCR5) (4, 28).

Consistent with an ontologically informed classification schema,

two contemporaneous studies demonstrated that PTCL, NOS may be

further sub-classified into those that highly express one of two

transcription factors that regulate normal T-cell differentiation. One

subset expresses the zinc-finger transcription GATA-3, classically
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associated with T-helper type 2 (Th2) differentiation, and are enriched

for a number of its canonical transcripts (i.e. target genes). A second,

more heterogeneous subtype(s) is characterized by the expression of the

transcription factor T-bet (gene name: TBX21), which is classically

associated with T-helper type 1 (Th1) and cytotoxic T-cell (CTL)

differentiation and function. Iqbal et al. adopted an unbiased approach,

profiling 121 PTCL, NOS cases, and observed two dominant subtypes

upon unsupervised hierarchical clustering, one enriched for GATA-3,

and the other enriched for T-bet transcripts (35). Expression of GATA-

3 and T-bet transcripts and protein were inversely correlated (35). A

gene expression classifier was able to confidently assign 33% of cases to

the GATA-3 group and 49% to the T-bet group, and 18% of cases

remained unclassifiable. More recently, PTCL,NOS cases included in

this study were utilized as a training cohort to identify an abbreviated

molecular classifier (36). This abbreviated molecular classifier, which

included 153 transcripts (including 21 viral or housekeeping genes),

accurately and reproducibly discriminated “unspecified” from

“specified” PTCL subtypes, but also discriminated GATA-3 and T-

bet PTCL and was generally concordant (concordance 80%) with an

immunohistochemistry-based algorithm previously developed by the

same group (29). Consistent with prior observations, T-bet PTCL was

enriched in cytotoxic T-cell (CTL) related transcripts (35, 37). As the

transcripts utilized in the molecular classifiers were not disclosed,

interpreting this work within a broader context is challenging. In

contrast, Wang et al. adopted a biased approach after observing

evidence for cytokine-driven alternative macrophage polarization in

PTCL. Transcriptional profiling of cytokines, including those regulated

by T-bet (e.g. IFN-g) and GATA-3 (e.g. IL-4/IL-13), identified two

distinct clusters (37). GATA-3 expression, demonstrated by

immunohistochemistry, identified a distinct subset in a multicenter

cohort of PTCL, NOS patients, and was associated with inferior

progression-free and overall survival. In fact, not a single long-term,

disease-free survivor was observed in the GATA-3 group (37), as

primary refractory disease is frequently observed in these patients
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(38). Strikingly, a multicenter study failed to observe a significant

difference in survival when comparing patients within the GATA-3

group that had been treated with an anthracycline-based regimen (most

commonly CHOP or CHOEP) with those that had received supportive

care alone (most commonly hospice) [Figure 1 (39)].

The contrasting genetic landscape observed in “GATA-3 PTCL”

and “T-bet PTCL” provides further evidence that these are truly

distinct PTCL subtypes, and should be classified as such, although the

current WHO and ICC classifications view the current evidence as

insufficient for such a subclassification (4, 40, 41). For example, copy

number gains or amplifications involving c-Myc, STAT3, EZH2, and

Rel, among others, were recurrent in (and specific for) the GATA-3

subgroup, whereas losses involving the tumor suppressors p53,

PTEN, and CDKN2A/B were observed (42). T-cell receptor

signaling plays an important role in upregulating GATA-3 protein

expression in both conventional and malignant T cells in a PI3K/AKT

dependent manner (38, 43), suggesting that PTEN loss may promote

translation of GATA-3 transcripts in these lymphomas. Signaling

pathways influenced by the aberrant loci observed included PI3K/

mTOR and T-cell receptor dependent signaling, consistent with prior

studies (35, 38). The distinct, and “high-risk”, genetic landscape

associated with GATA-3 PTCL has led some to suggest that

GATA-3 does not have an independent oncogenic role, but is

simply a surrogate biomarker for a genetically high-risk PTCL

subset. However, a comprehensive and systematic analysis of

GATA-3 target genes in malignant T cells demonstrated that

GATA-3 targets (e.g. including c-myc) are oncogenic, and further

demonstrated via loss-of-function and gain-of-function studies that

GATA-3 is a bona fide proto-oncogene in these lymphomas (39).

While less aberrant, distinct and recurrent copy number alterations

were observed in T-bet PTCL, including gains involving BCL11B (42),

which impairs GATA-3 (Th2) dependent cytokine gene expression

upon binding GATA-3 (44). Compared to GATA-3 PTCL, recurrent

copy number losses were infrequently observed in T-bet PTCL,
FIGURE 1

GATA-3 expression is associated with dismal outcomes in PTCL, NOS. GATA-3 expression was determined by immunohistochemistry and patients were
stratified by treatment. Among GATA-3 positive patients (n=28) that received first-line anthracycline-based chemotherapy, 86% received CHOP or
CHOEP. Among GATA-3 negative patients (n=61), 87% were treated with CHOP/CHOEP. Consistent with prior studies, GATA-3 expression was
associated with inferior event-free survival (EFS). Importantly, no significant improvement in EFS was observed for GATA-3+ patients treated with CHOP/
CHOEP in comparison to PTCL, NOS patients (n=33) who received palliative or best supportive care alone (72% hospice care with or without
corticosteroids), highlighting the futility of current therapies in this subset. [Data reprinted with permission from (39)].
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although relevant focal losses affecting relevant genes, including

TNFAIP3, for example, were occasionally observed. Collectively, the

transcriptional and genomic differences observed between GATA-3

and T-bet PTCL demonstrate that these are genetically distinct PTCL

subtypes. Furthermore, the high-risk genetic landscape observed in

GATA-3 PTCL, including 17p/TP53 deletions and mutations,

collectively observed in ≈50% of GATA-3 PTCL, may explain, at

least in part, the chemotherapy resistance and dismal outcomes

observed in this subgroup.

In contrast to GATA-3 PTCL, the T-bet subgroup is more

heterogeneous, and includes minor subsets resembling, and likely

derived from, gd T cells and conventional cytotoxic T cells (CTL) (31–

33), including a subset with mutations preferentially affecting

epigenetic modifiers, including the DNMT3A methyltransferase

domain, leading to hypomethylation of the EOMES locus and

increased eomesodermin expression, culminating in the induction

of a cytotoxic T-cell transcriptional program (31). DNMT3A mutated

cases were associated with dismal outcomes, but the inferior survival

observed was restricted to T-bet PTCL. While DNMT3A mutations

were also observed in GATA-3 PTCL, those mutations did not

involve the methyltransferase domain, and were of no prognostic

significance. TET2 mutations are also recurrent in T-bet PTCL, and

rarely (prevalence <10%) observed in GATA-3 PTCL (36, 45). A rare

subset of CTL-derived PTCL, NOS harboring a recurrent IRF4

translocation have also been described (46). In addition, EBV-

associated, nodal PTCL, are rarely observed, and usually express

CD8 and cytotoxicity-related proteins (45, 47). These findings further

highlight the genetic disparities between GATA-3 and T-bet PTCL,

but also highlight the heterogeneity within the T-bet subgroup, which

is likely comprised of, at the very least, both Th1- and CTL-related

lymphomas. Efforts to discriminate these PTCL, NOS subtypes using

immunohistochemistry-based algorithms, analogous to those utilized

in the classification of diffuse large B-cell lymphoma subtypes, are

ongoing (29). The Amador algorithm, for example, includes stains for

GATA-3, CCR4, T-bet, and CXCR3, and accurately classified 85% of

PTCL, NOS cases when compared with a transcriptionally defined

classifier (29). Of course, this ongoing work has significant

therapeutic implications, as PTCL, NOS subsets likely have different

dependencies, and thus varying degrees of vulnerability to both

conventional and novel agents. In fact, the dismal outcomes

observed in GATA-3 PTCL, as defined by immunohistochemical

staining for GATA-3 alone, following multiagent, anthracycline-

based chemotherapy may suggest that this approach is futile in

these patients (37, 39, 48, 49). While acknowledging the limitations

of making cross-cohort comparisons, it is notable that the outcomes

observed in these studies is comparable to those observed in a

genetically high-risk subset of PTCL, NOS, defined by TP53 and/or

CDKN2A deletions/mutations (>50% of which were biallelic/

homozygous) (16). While not reported, the constellation of copy

number alterations observed and the prevalent GATA-3 expression

reported in this TP53/CDKN2A-altered group (or “group 2”, as

defined by Watatani et. al.) would suggest that this group, if

transcriptionally profiled, would likely be classified as falling within

the GATA-3 subtype (16). Given the anticipated prevalence of TP53/

CDKN2A alterations in GATA-3 PTCL (≈50%), these findings may

further suggest that GATA-3 expression itself is an adverse prognostic

factor, irrespective of the underlying genetic landscape (or at least
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TP53/CDKN2A status). This contention is supported by the recent

observation that GATA-3 itself functions as a proto-oncogene (39),

and is consistent with its role in the differentiation, homeostatic

survival, and proliferation of conventional (non-malignant) T-cell

subsets (50–58). These recent findings also have therapeutic

implications, as GATA-3 target genes, including ITK, are

targetable (39).
PTCL, NOS pathogenesis

The antigen-, costimulatory-, and cytokine-dependent signals

that regulate the differentiation, proliferation, survival, and function

of conventional (non-malignant) T cells are co-opted by malignant T

cells during T-cell lymphomagenesis (Figure 2). Ligands and

cytokines, provided by constituents of the tumor microenvironment

(TME), instigate signaling cascades that metabolically and

transcriptionally regulate malignant T cells. The antigen-,

costimulatory-, and cytokine-receptor dependent signaling inputs

provided by the TME regulate and activate transcription factors

that regulate target genes with either a cell-autonomous and/or

non-cell-autonomous role in T-cell lymphomagenesis. Of course,

the repertoire of target genes regulated in this manner is not easily

extrapolated from our understanding of conventional (non-

malignant) T cells, as transcriptional reprogramming is highly

context dependent, being determined by the enhancer and

epigenetic landscapes, both of which, in comparison to their

conventional counterparts, are altered in malignant T cells (16, 42,

59, 60). Target genes with a cell-autonomous role may cooperate with

recurrently altered oncogenes (e.g. c-myc, STAT3) and tumor

suppressors (e.g. p53, CDKN2A), promoting the growth and

survival of malignant T cells. Conversely, target genes with a non-

cell-autonomous role (e.g. cytokines/chemokines) regulate the

recruitment, homeostatic survival, expansion, and functional

polarization of constituents of the TME. These distinctions can be

arbitrary, and are by no means mutually exclusive. For example, CSF-

1, a critically important homeostatic cytokine for tissue-resident

macrophages, may also activate malignant T cells in an autocrine

manner upon binding its receptor (i.e. CSF-1R), which is aberrantly

expressed by a subset of PTCL, NOS, culminating in PI3K/AKT

activation (61). This model of T-cell lymphomagenesis, described as a

“three signal” model [Figure 2 (62)], has been recently reviewed (63,

64), and is consistent with the genetic landscape associated with

PTCL, NOS, as many of the recurrent copy number variants and

mutations observed in these lymphomas regulate signaling cascades

normally associated with antigen-, costimulation-, or cytokine-

receptor dependent signaling. While many gain-of-function

mutations may render cells independent from exogenous, ligand-

dependent signaling, this is not universally true, and thus a three-

signal model also highlights the TME’s supportive role in disease

pathogenesis. Conversely, receptors (e.g. Notch) that are rarely

subject to mutations or copy number alterations in mature T-cell

lymphomas (in contrast to T-ALL) (42, 65), remain dependent upon

ligand- and TME-dependent signaling (66). Finally, the signaling

cascades triggered by exogenous and TME-dependent factors, and

those activated by gain-of-function genetic alterations, confer

sensitivity (or resistance) to novel, targeted agents. Consequently,
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our current, three-signal understanding of PTCL, NOS pathogenesis

has significant therapeutic implications.

Analogous to the pathogenic role of “chronic active” and “tonic”

B-cell receptor (BCR) signaling in many B-cell lymphomas (67),

malignant T cells seemingly exploit T-cell receptor (TCR) dependent

signals (38). Just as the genetic landscape observed in B-cell

lymphomas supports the BCR’s pathogenic role, activating

translocations and mutations involving signaling intermediates

downstream of the TCR are recurrently observed in PTCL, NOS.

For example, gain-of-function mutations in Src family kinases (SFK),

including Fyn, are observed in PTCL, NOS (prevalence <5%). These

mutations predominantly disrupt inhibitory interactions between the

Fyn SH2 domain and its c-terminal domain by rendering Fyn

resistant to Csk-dependent phosphorylation (68). More recently,

rare translocations involving the SFK genes for Fyn and Lck have

been described (69). Among these, a FYN-TRAF3IP2 fusion, which

juxtaposes the Fyn membrane localization (and SH3) domains (but

not the kinase domain) with almost the complete open reading frame

of TRAF3IP2 (including its TRAF6 binding domain), was most

prevalent. TRAF3IP2, which normally activates NF-kB and MAPK

pathways downstream from IL-17 receptor signaling, activates these

pathways in an IL-17 independent manner. When ectopically

expressed in a T-ALL cell line, this fusion led to constitutive NF-kB

(but not MAPK) activation. Activation of proximal kinases required

for TCR signaling (e.g. Zap-70) was not observed, and NF-kB

activation occurred independently from formation of the CARD11/

BCL10/MALT1 (CBM) complex, yet TCR activation further

increased NF-kB activation in these cells. Therefore, while this

novel fusion “hijacks” TCR-dependent NF-kB signaling, further

amplification of signaling following TCR activation was observed in

these cells. In contrast, a novel (and rare) KHDRBS1-LCK fusion,

which includes the Lck kinase domain, increased proximal (and SFK-

dependent) TCR signaling, resembling “chronic active” antigen-

receptor signaling.
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Vav1, mutated in ≈10% of PTCL, NOS (16, 70, 71), is a

multidomain and multifunctional protein, with both guanine

nucleotide exchange factor (GEF)-dependent and GEF-independent

functions, that amplifies and diversifies TCR signaling. In addition to

preferentially activating the Rho family GTPase Rac1 and remodeling

the actin cytoskeleton, Vav1 also activates NFAT and promotes the

ubiquitin-dependent degradation of the Notch intracellular domain

independently from its GEF activity. In addition, optimal NFAT

activation, even in cells that express constitutively active Vav1,

requires TCR activation (72). Systematic interrogation of the broad

spectrum of Vav1 mutations (and translocations) observed in many

cancer types suggest that approximately 50% of Vav1 mutations are

non-functional passenger mutations (73). Among the remaining

mutations (and translocations) that are functional, a subset (or so-

called “trivalent” mutations) activates both Rac1 and NFAT, but also

eliminates Notch inhibitory functions associated with wildtype Vav1.

As a class, these trivalent mutations are translocations or truncating

mutants that involve the c-terminal SH3 domain, and are commonly

observed in PTCL, NOS, but are quite distinct from a class of

monovalent mutations that, despite eliminating Notch inhibitor

capacity, preserve Rac1 and NFAT activating capacity, and are

more commonly observed in alternative T-cell lymphomas

(including CTCL, AITL, and ATLL). A less common bivalent class

of gain-of-function (GOF) missense mutations observed in multiple

Vav1 domains culminate in Rac1 and NFAT activation, but do not

affect Notch inhibition, and are also observed in PTCL, NOS (and

other T-cell lymphomas). Selected Vav1 mutants and fusions lacking

the c-terminal SH3 domain, when transgenically expressed in mouse

T cells, lead to the development of PTCL resembling nodal TFH-

derived lymphomas (73). However, the expression of similarly

mutated Vav1 in a p53-deficient context did not lead to the

development of PTCL resembling nodal TFH-derived lymphomas

(74). Instead, the PTCL that emerged in transgenic mice highly

expressed GATA-3 and transcriptionally resembled GATA-3
FIGURE 2

A three-signal model of T-cell lymphomagenesis. Ligands and cytokines/chemokines provided by constituents of the tumor microenvironment engage
three broad classes of cell-surface receptors expressed by malignant T cells, including the T-cell receptor (“signal 1”), costimulatory/coinhibitory
receptors (“signal 2”), and cytokine/chemokine receptors (“signal 3”). Receptor engagement instigates a signaling barrage culminating in significant
transcriptional changes that regulate the proliferation, survival, cytoskeletal remodeling, and metabolism of malignant T cells. Relevant primary/secondary
messengers and transcription factors are shown, and those that are preferentially expressed (or activated) in GATA-3 or non-GATA-3 PTCL are indicated.
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associated PTCL, NOS, and resembling their human counterparts

(42), marked c-Myc pathway activation was also observed in these

lymphomas. Collectively, these observations highlight the

cooperativity between specific mutations (and presumably the

pathways they activate) and the broader genetic landscape across

the spectrum of PTCL. To date, very few PTCL, NOS cases, stratified

into GATA-3 and non-GATA-3 subtypes, have been sequenced.

Therefore, the mutational spectrum, at least within the context of a

“three signal” model, and its potential relationship to both the

putative cell-of-origin and the broader genetic landscape within

these ontologically defined PTCL, NOS subsets, remain a significant

gap in knowledge.

Consistent with the three-signal model previously proposed, copy

number alterations and GOF mutations are recurrently observed in

other TCR (signal 1)-related enzymes and adaptors (e.g. PLCg,
CARD11), and either costimulation (signal 2)-related (e.g. ICOS-

CD28 fusions, CD28 mutations) or cytokine (signal 3)-related (e.g.

JAK2, JAK3, STAT3, SOCS1) genes (16, 42, 75, 76). As noted, the

relationship between this mutational spectrum, PTCL, NOS ontology

and classification, and the broader genetic landscape, are not yet fully

defined. Furthermore, improved understanding of poorly understood

or previously uncharacterized drivers may lead to further additions to,

or refinements of, our current understanding of T-cell

lymphomagenesis and unveil novel therapeutic targets. For

example, ligand-dependent Notch signaling was recently discovered

as an important driver of proliferation in PTCL, NOS (66).

Constituents of the TME play a direct role in PTCL pathogenesis,

by providing ligands/cytokines that engage antigen, costimulatory,

and cytokine receptors expressed by malignant T cells, but also play

an indirect role, by suppressing host anti-tumor immunity (62).

Macrophages, for example, are constituents of the TME in PTCL,

NOS (37, 77), and when abundant are associated with poor outcomes

(48). In contrast, abundant B-cells and/or dendritic cells within the

TME may be associated with more favorable outcomes (77). PTCL-

derived and subtype-specific cytokines promote the recruitment,

expansion and functional polarization of TME constituents.

Macrophages, for example, are characterized by considerable

plasticity, and under the influence of GATA-3 dependent cytokines

highly express PD-L1 (17, 37), and other immune checkpoints (77),

and foster immune evasion and disease progression (78). Given the

importance of the TME in PTCL pathogenesis, novel therapeutic

strategies to functionally attenuate, exploit, or even deplete

constituents of the TME are being actively investigated. The extent

to which the microenvironmental ecosystem diverges across, or is

defined by, PTCL, NOS subtypes, and its relative contribution to

disease pathogenesis, or utility as a therapeutic target, are poorly

understood, but important questions.
Frontline Treatment

As previously noted, the use of anthracycline-based regimens

(usually CHOP) in the frontline setting is not only an extrapolation

from the treatment paradigm utilized in the management of aggressive

B-cell lymphomas, but is not curative for most PTCL, NOS patients. In

fact, a recently reported retrospective study demonstrated that survival

was dismal for patients with GATA-3 PTCL (as defined by
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immunohistochemistry) whether they received CHOP/CHOEP or

supportive care alone (39). And, more to the point, there was no

significant difference between the two groups. Attempts to improve a

suboptimal backbone by adding additional agents (79), even a relatively

effective one [e.g. brentuximab vedotin (2)], have failed to improve

outcomes in PTCL, NOS. For example, the ECHELON-2 trial

randomized patients to receive either brentuximab vedotin (BV)-

CHP or CHOP. Notably, ≈75% of those enrolled were ALCL patients

(2), for whom the overall response rate with single-agent brentuximab

vedotin exceeds 80% (80). While a significant survival benefit was

observed in the overall study population treated with BV-CHP, this

benefit was likely restricted to patients with ALCL. While

underpowered to address the potential benefit of BV-CHP in PTCL,

NOS, no significant difference in progression-free [hazard ratio: 0.79,

95% CI 0.43-1.43] or overall survival [hazard ratio 0.75, 95% CI 0.37-

1.48] was observed among the 72 PTCL, NOS patients randomized

(81). Consistent with prior studies (82), CD30 expression among these

patients was highly variable (ranging from 10-100%, with a median of

25%) and no correlation with response was observed when using a

median cut-point for CD30 expression (81), consistent with prior

observations (83).

Consolidation with high-dose therapy followed by autologous

stem cell transplantation (HDT-ASCT) in first remission following

frontline therapy is associated with ≈40-50% event-free survival at 24

months in single-arm and registry studies (10, 84–86). In contrast, a

retrospective study (LYSA) failed to demonstrate a significant benefit

associated with HDT-ASCT in an intention-to-treat analysis, but it is

notable that 16% within the transplantation arm never proceeded to

transplant, often due to primary refractory disease (87).

Consequently, anthracycline-based regimens (commonly CHOP or

CHOEP), despite uncertainty and a paucity of high-level evidence,

and consolidation with high-dose therapy and autologous stem cell

transplantation in first remission, remain the cornerstone of

treatment for many patients, and is an approach consistent with

current treatment guidelines. While this approach may be a “standard

of care”, it is not curative for most patients, and primary refractory

disease remains a significant challenge (38, 39). Therefore, studies

investigating combinatorial and rationally designed strategies using

novel and immunomodulatory agents with significant single-agent

and/or synergistic activity are most certainly needed (1). The

transcriptional and genetic heterogeneity increasingly appreciated

across the PTCL, NOS spectrum suggests that the identification of

relevant biomarkers in future studies ought to facilitate a more

personalized approach, and one that will hopefully improve our

ability to pair the “right” – and rationally designed – treatment

with the “right” patient.
Treatment of relapsed and refractory
PTCL, NOS

Outcomes for patients with relapsed/refractory PTCL, NOS are

dismal, as a median event-free and overall survival <6 months is

reasonably anticipated (88, 89), and salvage therapies, short of HDT-

ASCT or allogeneic stem-cell transplantation, are largely palliative.

Analogous to the approach adopted in the frontline setting,
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traditional salvage regimens used in the setting of relapsed aggressive

B-cell lymphomas (e.g. ICE, DHAP) were often utilized in the setting

of relapsed/refractory PTCL, NOS prior to the advent of the novel

agents (belinostat, brentuximab vedotin, pralatrexate) currently

approved in the United States. The British Columbia Cancer

Agency reported their experience in relapsed/refractory PTCL, 52%

of which were PTCL, NOS, who did not undergo transplant at relapse

(82). Among these patients, 58% (n=89) received either combination

regimens or single-agent chemotherapy, including GDP (n=19), non-

gemcitabine containing multiagent regimens (e.g. ICE, n=22), and

various single agents (e.g. etoposide, gemcitabine, n=48). The median

overall survival in the entire cohort was 3.7 months, and was only

marginally improved for those receiving chemotherapy, at 6.5

months. As this retrospective study included patients treated prior

to the widespread availability of novel agents, including pralatrexate

and romidepsin, the median progression-free survival (PFS) following

salvage chemotherapy was compared to that observed in phase II

studies with pralatrexate or romidepsin (90, 91), and median PFS of

3.7, 3.5, and 4 months were observed, respectively (88). Furthermore,

exceptional, durable responses may be achieved with novel agents,

particularly HDAC inhibitors. Among 130 PTCL patients treated

with romidepsin, 10 patients (5 with PTCL, NOS) achieved a durable

(>12 months) and complete response, 6 of whom (3 with PTCL, NOS)

remained on treatment >2 years (92). Given the favorable toxicity

profile associated with novel agents, many patients are exposed to

these agents in a sequential manner. The exceptional responses
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in a sequential manner for many others, may explain the improved

overall survival observed with single, novel agents when compared

with more toxic, multiagent regimens in retrospective studies (9, 89,

93). For transplant eligible patients who did not undergo

consolidation with HDT-ASCT in first remission, HDT-ASCT

among those responding to salvage therapies is potentially curative,

with 3-year OS ≈50% (94, 95). Allogeneic stem cell transplantation,

while associated with significant transplant related-mortality, is also a

potentially curative approach for eligible patients (94, 95). Autologous

and “off-the-shelf” allogeneic cellular therapies, including CAR-T

products specific for T-cell specific antigens, are an active area of

ongoing investigation [reviewed in (96)].

Given the advances achieved over the past decade, the PTCL are

anything but an “unexplored frontier”. In fact, the dramatic

expansion in the development of targeted agents, and the sheer

number of possible doublet (and triplet) combinations

incorporating them, has seemingly outstripped the capacity for

their methodical interrogation in a rare disease. This significant

challenge is only exacerbated by recognition of the divergent

genetic landscape and disease ontogeny between GATA-3 and the

more heterogeneous non-GATA-3 subsets, and should be accounted

for in future clinical trials using novel agents. While a systematic

review of those agents currently under investigation is beyond the

scope of the present review, a summary is provided in Table 1.

However, it is notable that approximately one-third of the trials
TABLE 1 Novel agents utilized in PTCL, NOS.

Drug MOA ORR (PTCL, NOS) ORR (non-PTCL,
NOS)

Bendamustine (97) Alkylating agent 30/60 (50%)** AITL 22/32 (69%)

Gemcitabine (98) Nucleoside analog 11/20 (55%) MF 9/19 (48%)

5-azacytidine (99) Nucleoside analog N/A (not eligible) AITL 9/12 (75%)

Guadecitabine (100) Hypomethylating agent 0/2 (0%)
8/20 (40%)***

TFH 7/16 (44%)

Pralatrexate (90) Dihydrofolate reductase inhibitor 19/59 (32%) AITL 1/13 (8%)
ALCL 6/17(35%)

Fenretinide (101) Synthetic retinoid 0/1 (0%) AITL 2/3 (66%)
CTCL 2/6 (33%)
Gamma-Delta TCLs 0/
1 (0%)

Belinostat (102) Histone deacetylase (HDAC) inhibitor 18/77 (23%) AITL 10/22 (46%)
ALK- ALCL 2/13
(15%)
ALK+ ALCL 0/2 (0%)

Romidepsin (91) Histone deacetylase (HDAC) inhibitor 20/69 (29%) AITL 8/27 (30%)
ALK- ALCL 5/21
(24%)

Tucidinostat (103) Histone deacetylase (HDAC) inhibitor 12/34 (35%) AITL 7/8 (87%)
ALK- ALCL 1/3 (33%)
EATL 1/1 (100%)

(Continued)
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TABLE 1 Continued

Drug MOA ORR (PTCL, NOS) ORR (non-PTCL,
NOS)

Chidamide (104) Histone deacetylase (HDAC) inhibitor 6/27 (22%) ENKL 3/16 (18%)
ALK- ALCL 5/11
(45%)
ALK+ ALCL 2/6 (33%)
AITL 5/10 (50%)

Duvelisib (105) PI3K inhibitor 8/16 (50%)*** CTCL 6/19 (31.6%)

Linperlisib (106) PI3K inhibitor 6/12 (50%) AITL 8/10 (80%)

Tenalisib (107) PI3K inhibitor 7/15 (46%) *** CTCL 9/20 (45%)

Copanlisib (108) PI3K inhibitor 5/10 (50%)***

Enzastaurin (109) Serine/threonine kinase inhibitor 0/13 (0%)*** CTCL 1/11 (9%)

Alisertib (110) Aurora A kinase inhibitor 34/102 (33%)**

Everolimus (111) mTORC1 inhibitor 3/4 (75%) CTCL 3/7 (43%)

Ruxolitinib (112) Janus Kinase (JAK) inhibitor 2/11 (18%) TPLL 3/8 (37%)
TFH 3/9 (33%)
T-LGL 2/5 (40%)
ALCL 1/4 (25%)
MF 1/7 (14%)
Gamma-Delta TCLs 1/
4 (25%)

Golidocitinib (113) Janus Kinase (JAK) inhibitor 5/19 (26%) AITL 13/20 (65%)
ALK- ALCL 2/4 (50%)
NKTCL 1/4 (25%)

Cerdulatinib (114) SYK/JAK inhibitor 9/38 (35%) * AITL 12/22 (55%)

Cpi-818 (115) Interleukin-2-Inducible T-cell Kinase (ITK) inhibitor 1/4 (25%) CTCL 1/7 (14%)

Bortezomib (116) Proteasome inhibitor 1/2 (50%) MF 7/10 (70%)

Ixazomib (117) Proteasome inhibitor 1/2 (50%) CTCL 0/5 (0%)
ALK- ALCL 0/2 (0%)
TFH 0/3 (0%)

Tolinapant (118) Antagonist of the cellular and X-linked inhibitor of apoptosis
proteins (cIAP1/2 and XIAP)

21/98 (21%) *** CTCL 13/50 (26%)

Forodesine (119) Purine nucleoside phosphorylase inhibitor 5/22 (23%) AITL 6/18 (33%)

Ibrutinib (120) Bruton Tyrosine Kinase (BTK) inhibitor 0/3 (0%) MF 1/6 (16%)

Valemetostat (121) EZH1/EZH2 inhibitor 24/44 (55%) *** ATLL 8/14 (57%)

Imatinib mesylate (122) Platelet derived growth factor inhibitor 0/12 (0%)

Tipifarnib (123) Farnesyltransferase inhibitor 4/10 (40%) Note: PTCL CXCL12
chemokine receptor +

AITL 18/32 (56%)

Alemtuzumab (124) CD52 monoclonal antibody 3/6 (50%) CTCL 3/4 (75%)

Brentuximab vedotin for
CD30+ (83)

CD30 monoclonal antibody-drug conjugate 7/21 (33%) Note: CD30+ PTCL NOS CD30+ AITL 7/13
(54%)

Camidanlumab tesirine
(125)

CD25 monoclonal antibody-drug conjugate 2/6 (33.3%) ATLL 3/7 (43%)

Mogamulizumab (126) CCR4 monoclonal antibody 3/16 (19%) AITL 6/12 (50%),
ALK- ALCL 1/1
(100%)
CTCL 3/8 (38%)

Pembrolizumab (127) PD-1 monoclonal antibody 1/5 (20%) ALCL 1/1(100%)
MF 1/3 (33%)
FTCL 2/4 (50%)
HSTCL 0/1(0%)
MEITL 0/1 (0%)

(Continued)
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reviewed failed to discriminate between PTCL, NOS and other PTCL

subtypes. Similarly, among the almost 500 PTCL, NOS patients

reported in the remaining clinical trials, the distinction between

GATA-3 and non-GATA-3 (T-bet) PTCL is unknown. Given the

stark – and therapeutically significant – differences between these

PTCL subtypes, this obvious gap in knowledge must be addressed in

future studies. In contrast to the road previously travelled, the path

forward will increasingly rely on an improved understanding of

PTCL, NOS pathogenesis, and clinical trial participation – perhaps

like never before – will remain a critically important consideration in

the management of these patients, as we believe targeted agents and

novel combinations targeting both malignant T cells and constituents

of their TME are particularly promising.
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