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Background: Precise breast cancer–related mortality forecasts are required for

public health program and healthcare service planning. A number of stochastic

model–based approaches for predicting mortality have been developed. The

trends shown by mortality data from various diseases and countries are critical

to the effectiveness of these models. This study illustrates the unconventional

statistical method for estimating and predicting the mortality risk between the

early-onset and screen-age/late-onset breast cancer population in China and

Pakistan using the Lee–Carter model.

Methods: Longitudinal death data for female breast cancer from 1990 to 2019

obtained from the Global Burden of Disease study database were used to compare

statistical approach between early-onset (age group, 25–49 years) and screen-

age/late-onset (age group, 50–84 years) population. We evaluated the model

performance both within (training period, 1990–2010) and outside (test period,

2011–2019) data forecast accuracy using the different error measures and

graphical analysis. Finally, using the Lee–Carter model, we predicted the general

index for the time period (2011 to 2030) and derived corresponding life expectancy

at birth for the female breast cancer population using life tables.

Results: Study findings revealed that the Lee–Carter approach to predict breast

cancer mortality rate outperformed in the screen-age/late-onset compared with

that in the early-onset population in terms of goodness of fit and within and

outside forecast accuracy check. Moreover, the trend in forecast error was

decreasing gradually in the screen-age/late-onset compared with that in the

early-onset breast cancer population in China and Pakistan. Furthermore, we

observed that this approach had provided almost comparable results between

the early-onset and screen-age/late-onset population in forecast accuracy for

more varyingmortality behavior over time like in Pakistan. Both the early-onset and

screen-age/late-onset populations in Pakistan were expected to have an increase

in breast cancer mortality by 2030. whereas, for China, it was expected to decrease

in the early-onset population.

Conclusion: The Lee–Carter model can be used to estimate breast cancer

mortality and so to project future life expectancy at birth, especially in the

screen-age/late-onset population. As a result, it is suggested that this approach

may be useful and convenient for predicting cancer-related mortality even when
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of diseases; DR, death rates; PV, percentage of variation; A
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epidemiological and demographic disease data sets are limited. According to

model predictions for breast cancer mortality, improved health facilities for

disease diagnosis, control, and prevention are required to reduce the disease’s

future burden, particularly in less developed countries.
KEYWORDS
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Introduction

Cancer is one of the leading causes of death and disability

worldwide. Breast cancer (BC) is the most common cancer

diagnosed in women and is the first leading cause of cancer-related

mortality in women (1, 2). It develops from a single cell that divides

and multiplies into a lump that can be detected clinically. Its severe

form from cancer’s prolonged development is the metastasis phase

that is the more challenging treated phase (3, 4). The most common

clinical manifestations of BC are a tumorous mass in the breast,

enlarged lymph nodes in the armpits, and distant metastases. Recent

studies have found that chronic inflammation plays a role in the

development and progression of BC, in addition to genetics and the

environment (5–7). Stage at diagnosis has been confirmed as a key

prognostic factor for BC, and the previous study revealed that the

advanced (III) and metastatic stage (IV) are highly associated with

lower survival rates (8). Consequently, addressing healthcare policies

for early diagnosis may reduce the morbidity and mortality of BC.

The burden of BC has been rising faster in low- and middle-

income countries (LMICs) compared with high-income countries in

last three decades due to the lack of healthcare policies. Drafting

public health policy and devising interventions against cancer require

accurate data in LMICs. However, because of insufficient and

demographic and disease registration data in LMICs, statisticians

are unable to evaluate disease consequences. Among the previous

studies on BC mortality predictive models, some studies used simple

models such as the joinpoint model or single-population model (9),

and some have used machine learning algorithms to predict specific

mortality for BC based on specific populations (10), but the

application of dynamic predictions and models for whole

population or age-specific mortality is still lacking. The

introduction of stochastic mortality models provides us an

opportunity to forecast cancer-specific mortality in LMICs. A

number of suitable statistical approaches for mortality prediction

have been proposed, and the performance of these models differs in

various diseases and countries (11–13).

Several efforts have been directed toward finding an appropriate

model for the accurate prediction of age-specific death patterns. In

this regard, various parametric curves (14, 15) were considered to
SVD, singular value

s; GBD, global burden

SMR, age-standardized

average; MAPE, mean

02
predict the mortality rate by year. Following these concepts, different

approaches are established to predict mortality rates using stochastic

models (16–19). As part of stochastic mortality models, the Lee–

Carter (LC) method of mortality forecasting has become one of the

most useful tools for forecasting age-specific mortality rates, and it has

been previously employed for this purpose in several works (20–22).

The model posits that variations in mortality trends over time are

governed solely by a single parameter ( kt. )the mortality index. The

mortality forecast is created using this index by selecting an

appropriate time series model (23). LC-based modeling frameworks

are one of the most efficient and transparent methods of modeling

and projecting mortality dynamics (13, 16, 20, 24–29). Moreover, this

model has also been suggested for predicting cause-specific mortality

rate, for instance, BC causes mortality, which follows a smooth

curvilinear and rapid change pattern over time (24).

Most Asian countries are facing an increased BC burden and do

not have sufficient health-related facilities like proper diagnosis,

screening, and treatment. Moreover, because of population aging

and increasing life expectancy, the disease burden has been shifting

from communicable to non-communicable diseases in these

countries. These countries are having similar circumstances related

to population expansion and aging (13). Furthermore, because of the

shortcomings in these countries’ statistical registry systems,

researchers are constantly confronted with the challenge of

insufficient and unsatisfactory demographic and disease registration

data sets to undertake suitable statistical analysis. Given the scarcity of

data and its poor quality, advanced statistical approaches may be

useful in modeling and predicting the mortality patterns in

developing countries, and the LC model is one of the good options

(11, 12).

Age-specific BC incidence curves have been shown to

superimpose two distinct rate curves, one for early-onset BC with a

median age of diagnosis below 50 years and another for late-onset BC

with a median age of diagnosis above 70 years, disproving the long-

held belief that the inflection point in the overall curve occurs around

menopause (30, 31). Therefore, this study investigates the application

of the LC model for BC mortality prediction between early-onset and

age-screen/late-screen female populations in China and Pakistan. In

our study, two age groups of 25–49 years and 50–84 years are

stratified to assess the model applicability, and the early-onset

population was defined as BC occurring in women under the age of

50, whereas the late-onset population was recognized as BC occurring

in women aged 50–84 years. It is proved that early-onset BC has more

aggressive clinicopathological characteristic and worse prognosis

(32), so more specific studies are needed to compare the disparities
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of BC mortality trends between the early-onset and screen-age/late-

onset female population. To the best our knowledge, this is the first

study using advanced statistical methods in evaluating and predicting

the BC-related mortality trends between the early-onset and screen-

age/late-onset population for two developing countries.
Data and methods

The annual mortality rates of the two Asian countries due to BC

from 1990 to 2019 at the early-onset (age category of 25–49 years) and

screen-age/late-onset (age category of 50–84 years) population were

selected to run the application of the LC model. The Institute for

Health Metrics and Evaluation (http://ghdx.healthdata.org/gbd-

results-tool) provided BC mortality data for two Asian countries:

China and Pakistan (33, 34). The availability of data and the sources

are both included in the “Data and materials availability” declaration

at the end of this study. BC mortality rates were calculated using the

ratio of “number of deaths” to “exposure to risk”, which was grouped

in a matrix for the specific age x and time t. We separated the data set

into two parts to study the within-sample and out-of-sample model

performance: training data set (1990–2010) and test data set (2011–

2019). We fitted the) model on the training data set and evaluated the

model performance using within and outside forecast accuracy.

The LC model (16) estimates mortality index kt. utilizing age-

specific death rates. This assessment is made for the early-onset and

screen-age/late-onset female population for China and Pakistan. The

estimated model is evaluated for both goodness of fit and accuracy of

forecast ability. Using the mortality index ( kt. )stimation, BC death

rates and life expectancy may be predicted.
Statistical analysis

Lee–Carter model

The LC model considers a statistical and demographic model that

predicts mortality rates to derive life tables (16). The fundamental

assumption of the model is that there is a linear connection between

the age-specific death rates on logarithm scale ( mx,t). age interval x

and time t. This relationship is described as follows:

mx,t = exp(ax + bxkt + ext),         t = 1, 2,…, n     x = 1, 2,…,w (1)

Equation (1) can be expressed by taking natural logarithm on

both sides as follows:

fx,t = ln (mx,t) = ax + bxkt + ext ,         t = 1, 2,…, n     x = 1, 2,…,w (2)

In Equation (2), mx,t. represents age-specific death rate for the x

age interval and year t, ax. notes the average age-specific mortality, kt
represents the mortality index in the year t, bx. a mortality deviation

caused by changes in the kt. index, ext is the random error, and w. the
start of the last age interval (35).

There are various issues with parameter estimation when the

bilinear term bxkt is present. Lee and Carter used a technique known

as the singular value decomposition (SVD) to partially alleviate these

issues. This method necessitates the assumption that the random
Frontiers in Oncology 03
component is homoscedastic. According to research, the sample’s

variance is not distributed uniformly (36, 37). For instance, when

contrasting the variance between the age ranges of 25–50 years and 50

+ years, this phenomena is very obvious. The greatest likelihood

method is an alternative to the SVD approach. We assume that the

number of deaths is a random variable with a Poisson distribution

while using this estimation technique.

The earlier research demonstrates that mortality modeling can be

done successfully using the LC models. To estimate structural

parameters, one can utilize the greatest likelihood technique.

However, when simulating the number of deaths, additional

distributions in addition to the Poisson distribution should be

utilized. Previous studies have demonstrated that using the negative

binomial distribution can produce positive outcomes when dealing

with heterogeneous populations. In that instance, the LC model

offered better results in terms of goodness of fit (36).

To get an estimate for the values of ax, bx and kt, a system of

simultaneous equations is needed to be solved, which is called the

system’s solutions. Therefore, death rates for various age groups (r)

observed at different points in time (n) produces a system of equations

containing 2r+n unknown variables that correspond to the total of the

r values of ax, r values of bx, n values of kt, and the total number of

equations is r×n. The matrix form of such system of equations can be

represented as below:

D = A + b : k (3)

D is an matrix of the order r×n, and an element Di, j represents the

age-specific death rate (on natural logarithm scale) in the age group i

in year j. A denotes a matrix with of order r×n. For the same year j, the

elements that belong to the same categories are identical: aij=a2j=...arj,

while b represents a vector of order r×1 and k is a vector of order 1×n

A unique solution of equation (3) can be arrived by imposing

following two restrictions: o
w

x=1
bx = 1;              o

n

t=1
kt = 0.

When such restrictions are applied, the ax coefficient represents

mean mortality rate over time. Therefore, the parameter bx and kt are

calculated individually. The coefficients of ax are obtained from the

following equation.

ax =
on

t=1 ln (mx,t)

n
(4)

When the matrix A is computed, the system (3) may be recast as

follows:

D* = D − A = b : k (5)

The aforementioned system offers a unique solution when these

restrictions are met. The SVD technique is used to estimate the b and

k parameters. This technique is used to get the best fit of least squares.

D* can be expressed as the product of two matrices using SVD. The

element (i, j) in D* shows the product of the ith row of B and the jth

row of K, resulting in the following:

mi,j =o
r

l=1

Bi,lK
T
  j,l (6)

As a result, the decomposition yields r terms that exactly match

the D* matrix element. Lee and Carter (16) proposed D* as the

product of the b and k vectors. When employing SVD, these were
frontiersin.org
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regarded first-order approximations, i.e., D′ can be represented as

follows:

D0 ≈ B1K
T
  1 (7)

Finally, B1=B and K1=K are computed, implying an initial

estimate of the model’s parameters in equation (14).
Re-estimation of kt parameter

In general, the results produced from the model’s initial estimates

do not offer an acceptable match to the observed data. Lee and Carter

(16) and Bell (38) point out that there may be deviations from the

predictions. Therefore, a second step is required to estimate the

parameters. This step utilizes the ax and bx values from

the previous step to get a new estimate of kt reflecting that a total

number of deaths for the given year must be observed. The goal is to

determine kt values, which satisfy the following condition:

Dt = o
w

x=0
Nx,  t  exp(ax + bxkt + ex,  t) (8)

In Equation (8), Dt is the total number of deaths during the

calendar year t. The population in the x age interval in the year t is

denoted by Nx, t and w is the age of the final observed group in

mortality tables (16). The model estimation is carried out using the ilc

package in R programming language (Development Core

Team, 2008).
Age-specific death rate prediction

After obtaining the time series for the kt index as described in

section (2, 3), autoregressive integrated moving average (ARIMA)

model may be used to forecast such an index; then, it is possible to

obtain the death rates for the anticipated years. In the equation, the

predicted values of kn+h e substituted.

m̂ x,  n+h = m̂ x,  n   exp b̂ x(k̂ n+h − k̂ n)
n o

,   h = 1, 2,…   x = 1, 2,…,  w (9)

In Equation (9), n represents the most recent year for which data

are available, h represents the prediction horizon, and x represents the

age group. Equation (9) is used to forecast death rates based on the

most recent death rate. To anticipate death rates, the LC model offered

an approximate prediction interval (16). The interval is calculated using

estimates of bx pameters and standard errors of the kt projections.

PI : mx,t   exp(2bx   sekt)
� �

;   mx,t   exp( − 2bx   sekt)
� �

(10)
Life expectancy at birth

Age-specific life expectancy estimates the average number of years

left in a person’s life, assuming that current mortality rates remain

unchanged. It is computed by considering age-specific death rates

(39). The standard technique of Chiang (40) is used to calculate life

expectancy at birth using projected death rates. The life expectancy at

x, ex., is stated as follows:
Frontiers in Oncology 04
ex =
Tx

lx
(11)

Tx presents the total number of years that the cohort has lived

during the age interval and subsequent age intervals, and lx denotes

number of individuals alive at the start of the x age interval from

a population of l0 newborn infants. This is generally expressed as

l0 =100,000 (23).
Error measure

The predictive ability of the model was evaluated by mean

absolute percent error (MAPE), using the following formula:

MAPE = (
1
H o

H

h=1

et+hj j)� 100  

where et+h =
actul   value−predicted   value

actual   value , and H denotes the number of

predicted sample size.

To assess the forecast ability of the model, both within-sample

and out-of-sample forecast accuracy were tested. A model is deemed

to be well-fit if it delivers a strong fit within-sample to the historical

data and good out-of-sample forecasts. As a result, out-of-sample

predictive accuracy was investigated to confirm the model’s predictive

accuracy with consistency. The following steps were taken into

account when evaluating forecast accuracy. To begin, we must

select the metric of interest, which includes the anticipated variable.

Forecasted variable measurements could include death rates, life

expectancy, or future survival rates. As this study aims to examine

the feasibility of stochastic mortality model on BC mortality data,

therefore, we focused on BC mortality rates. We forecasted BC

mortality rates from 2011 to 2019 using the fitted model and

calculated life expectancy by comparing forecasts with the

actual values.
Results

Breast cancer mortality behavior

We found that BC mortality has gradually grown with time when

we examined the variations in BC mortality rates related to both age x

and period t. Figure 1 depicts the general patterns in BC mortality

rates from 1990 to 2019 for two countries to investigate this process.

We may also see that death trends are not consistent between ages and

throughout time. In both countries, there is an increasing disparity

among older age groups (>50 years), particularly around the age of

84 years.
Model estimation

To assess the model’s within-sample and out-of-sample

performance, we modified the model by removing the last 9 years

of data from both countries’ data sets. Fitting the stochastic mortality

model (LC) for both the early-onset and screen-age/late-onset

population is the initial stage in the analytical process. Figure 2
frontiersin.org
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shows the estimated parameters of the LC model for China and

Pakistan for both the early-onset and screen-age/late-onset

population. The model’s percentage of variation (PV) was around

86% and 89% between the early-onset and screen-age/late-onset

population for the China, and 98% for both the early-onset and

screen-age/late-onset population for Pakistan. The variation in PV

between two countries’ data sets is caused by BC mortality patterns

and various data features, as shown in Figure 1. We could show that

the BC mortality rates at older ages were less consistent in Pakistani

data than in China; as a result, the LC model fit the Pakistan data

better and explained the higher PV in the screen-age/late-onset

population than in China.

We can observe that the variance trend ( bx) among screen-age/

late-onset population is gradually increasing with age for both China

and Pakistan, whereas, over time (kt), these mortality differences are

steadily growing after 2000; particularly, these differences were higher

for Pakistan than that for China (Figure 2). Moreover, the fitted BC
Frontiers in Oncology 05
mortality rates by age and year through the LC model for both the

early-onset and screen-age/late-onset population for China and

Pakistan are depicted in Figure 3.
Model evaluation and forecasting

When the residuals are independent and identically distributed, a

matching fit is seen. To validate this condition, the fitted model’s

residual death rates by age and year were calculated (Figure 4). In the

screen-age/late-onset population, residual death rates by age and years

were predicted to be more consistent. In Pakistan, these errors were

lower than in China. Furthermore, error estimates were produced to

confirm the error disparities across different population models, as

shown in Table 1. By evaluating the error between the early-onset and

screen-age/late-onset population, we noticed that the error measures

for screen-age/late-onset model are smaller than the early-onset model.
FIGURE 2

Model estimation between the early-onset and screen-age/late-onset population for China and Pakistan.
FIGURE 1

Death rates (per 100,000) due to female breast cancer in China and Pakistan, 1990–2019.
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Between China and Pakistan, these errors were lower in the Pakistan’s

data set compared with that in China (Table 1).

Forecasts were calculated in our study on the basis of the

evolution of time parameter ( kt); and errors in age parameters (ax
and bx) were not considered because, according to the literature, the

standard errors of (ax) and (bx) become less significant over forecast

time in comparison to the standard error of parameter ( kt) (16). The

model predicting ability for both the early-onset and screen-age/late-

onset population for China and Pakistan is shown in Figure 5.

Overall, we observe that the prediction error for the screen-age/

late-onset model was lower than that for the early-onset model for

both China and Pakistan. Furthermore, we observed that the LC

approach has provided almost comparable results between the early-

onset and screen-age/late-onset populations in forecasting accuracy

for less invariant mortality behavior over time like in Pakistan

(Figure 5). Moreover, the trend in forecast error (test data set) was
Frontiers in Oncology 06
gradually decreased in the screen-age/late-onset BC population than

early-onset for both China and Pakistan (Figure 6).

To confirm the out-of-sample forecast accuracy, we also looked at

the mean and variance of life expectancy forecast errors over the

projected period. Table 2 demonstrates the minimum variance of life

expectancy forecast error for both countries’ screen-age/late-onset

populations. Finally, according to the model prediction, the BC

mortality was predicted to increase by 2030 for both the early-onset

and screen-age/late-onset population in Pakistan, whereas, for China,

it was expected to decrease in early-onset population (Figure 7).
Discussion

This study presented the application and evaluation of the LC

model on age-specific BC death rates between the early-onset and
FIGURE 3

Fitted breast cancer mortality rate (log-scale) between the early-onset and screen-age/late-onset population for China and Pakistan.
A B

FIGURE 4

Residuals mortality rates by age and year from the LC model between the early-onset and screen-age/late-onset population in (A) China and (B)
Pakistan.
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screen-age/late-onset female populations in China and Pakistan for

the period 1990–2019. We separated the data set into two parts to

study the within-sample and out-of-sample model performance:

training data set (1990–2010) and test data set (2011–2019). We

test the model on the training data set and assessed its performance

using within and outside forecast accuracy. The index of the level of

BC mortality between the early-onset and screen-age/late-onset

population as well as and shape and sensitivity coefficient by age

were found through this approach. The mortality rates for the period

2020 to 2030 were predicted using the ARIMA model between the

early-onset and screen-age/late-onset in the female population for

each country under study, and it is necessary to highlight that the

period under this study represents the maximum period of data

availability. The LC approach presented in this study provides the

adequate fit on BC mortality data between the early-onset and screen-

age/late-onset female populations for China and Pakistan. However,

there were some differences in forecast accuracy measure between the

early-onset and screen-age/late-onset population, where we have

observed the most accurate fit and strong predictive ability of
Frontiers in Oncology 07
model for screen-age/late-onset population for both countries. The

reason might be the more smoothing mortality behavior in this

population as compared to the early-onset. In some the previous

studies, the LC approach has been suggested for mortality prediction

among older populations (13).

According to the recent estimation of Global Burden of Disease

GBD, among women, BC caused the most disability-adjusted life

years, deaths, and years lived with disability (41). The differences in

age-specific BC mortality between the early-onset and screen-age/

late-onset female population in China and Pakistan followed a

smooth function with minor observational error. Our findings

showed that BC has a high variance in older age groups, where the

population is lesser, and, among younger age group too, the mortality

rates were low. These findings are consistent with the previous

studies, which revealed considerable variability in rates based on

geography and age group, notably for mortality rates (42, 43). A

related study found a similar pattern in US mortality statistics, where

statisticians discovered that age-specific mortality was higher than

1.0/100,000 for very small populations (44). Stochastic mortality
TABLE 1 Error measures from fitted Lee–Carter model of the early-onset and screen-age/late-onset breast cancer population for China and Pakistan.

China Pakistan

Early-onset Screen-age/late-onset Early-onset Screen-age/late-onset

Averages across ages

MPE 0.01416 0.00135 0.00039 0.00029

MAPE 0.10212 0.02437 0.01891 0.01371

Averages across years

IPE 0.34702 0.02743 0.01139 0.0063

IAPE 2.49338 0.51237 0.54902 0.30285
MPE, mean percent error; MAPE, mean absolute percent error; IPE, integrated percent error; IAPE, integrated absolute percent error.
FIGURE 5

Lee–Carter model predicting ability between the early-onset and screen-age/late-onset population in China and Pakistan.
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models represent forecasting mortality trend based on such data

pattern, and these approaches have been applied in various studies in

different countries for all-cause and cause-specific mortality

prediction (28, 44–46).

The general mortality index (kt) is a time series analysis

representing the variability over time. It shows a declining trend in

BC mortality for the early-onset Chinese population and increasing

trend for the screen-age/late-onset population in both China and

Pakistan. The plausible reasons for the predicted decline in BC

mortality are not yet clear and demand more research. Proper

health infrastructure and therapies availability might explain some

portion of predicted reductions in China among the young

population. This method increases early detection while also

providing efficient treatment. Most women under the age of 50 who

work in cities have access to employer-sponsored services such as

medical exams and free breast ultrasounds once or twice a year.

Previous research has demonstrated that an ultrasound is performed

before to Chinese women’s mammography to prevent and control BC

(47). Mubarik et al. (2020) analyzed the trends and forecasts in BC

mortality and predicted greater BC mortality rates among older

populations in numerous Asian countries, including Pakistan, in

2030 (13). The rising behaviors in the patterns of BC mortality

might be due to lack of BC early screening, diagnosis, and

treatment regime, as compared with developed countries (13). The

proposed model for risk factors and their roles in triggering BC

therapy may be used in future studies to improve healthcare tactics

targeting this disease.
Frontiers in Oncology 08
This study presents the application and evaluation of the Lee and

Carter’s approach for BC mortality prediction. As the LC method

appears to be a method with probabilistic support, this strategy

generates many measurements and outcomes that characterize

current and future patterns in BC mortality. As in many other

countries, the use of this strategy in China and Pakistan produced

better outcomes in terms of least forecast error and diagnostic

measures. It is important to note that the study duration is

significantly shorter than those of Sweden, the United States, and

Chile (16, 35, 48). These three investigations covered time spans of

more than 100 years. The amount of projections that can be generated

is affected by the time period under consideration. Because the LC

model is entirely reliant on historical mortality and population

statistics, it is critical to have solid data over a long period of time.

This demonstrates the significance of obtaining data efficiently and

keeping records up to date in a certain region, country, or sub-

national level.

This study has some strengths. First of all, our study examined the

applicability of the multi-population random mortality models, the LC

dynamic mortality assessment model, in the prediction of BC mortality

in China and Pakistan. The LC model is considered as one of the most

representative dynamic models in the random prediction methods, but,

as far as we know, this is the first time to verify the statistical model of

BC mortality prediction in two developing countries. In addition, we

further compared the differences in mortality trends of BC between the

early-onset and screen-age/late-onset population and verified that the

model was more accurate in predicting age/late onset group, filling the
FIGURE 6

Forecast error over ages between the early-onset and screen-age/late-onset population in China and Pakistan.
TABLE 2 Mean and variance of forecast error in life expectancy derived from the Lee–Carter model.

Country
Early-onset Screen-age/late-onset

Mean Variance Mean Variance

China 0.034 0.006 0.020 0.0012

Pakistan 0.033 0.004 0.013 0.0010
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gap in this regard. Similarly, this study has some limitations. First, we

conducted our analysis based on secondary data; therefore, the accuracy

of the model simulation is limited by the accuracy of GBD estimates.

Second, we did not consider other covariates that may affect the risk of

death from BC in the two countries in the model evaluation, such as

health policies and treatment conditions. Third, our model was trained

and tested for different parts of the same data set, and the actual effect

may not be as good as the alternative, which is to train on one data set

and validated on the other data set, so that the external validation is

more able to demonstrate the generality of the model. As, for validation,

our work made use of a comparable data set. If screening, diagnostic,

and treatment methods change between different centers and over time,

further analysis using an independent data set would be helpful to

assure adaptability.
Conclusion

The LC model can be considered to forecast BC mortality to

project the future life expectancy at birth, particularly among the

screen-age/late-onset population. By model prediction, BC mortality

is expected to increase to 2030 for both the early-onset and screen-

age/late-onset population in Pakistan. In China, it is likely to decrease
Frontiers in Oncology 09
for the early-onset population. Hence, this approach may be helpful

and convenient to predict the cancer related mortality even for

insufficient epidemiological and demographic disease data set.

According to model prediction to BC mortality, better health

facilities in terms of disease diagnosis, control, and prevention are

needed to minimize this disease’s future burden, particularly in less

developing countries.
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