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Osteoid cell-derived
chemokines drive bone-
metastatic prostate cancer
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One of the greatest challenges in improving prostate cancer (PCa) survival is in

designing new therapies to effectively target bone metastases. PCa regulation of

the bone environment has been well characterized; however, bone-targeted

therapies have little impact on patient survival, demonstrating a need for

understanding the complexities of the tumor-bone environment. Many factors

contribute to creating a favorable microenvironment for prostate tumors in

bone, including cell signaling proteins produced by osteoid cells. Specifically,

there has been extensive evidence from both past and recent studies that

emphasize the importance of chemokine signaling in promoting PCa

progression in the bone environment. Chemokine-focused strategies present

promising therapeutic options for treating bone metastasis. These signaling

pathways are complex, with many being produced by (and exerting effects on)

a plethora of different cell types, including stromal and tumor cells of the prostate

tumor-bone microenvironment. This review highlights an underappreciated

molecular family that should be interrogated for treatment of bone metastatic

prostate cancer (BM-PCa).

KEYWORDS

bone, prostate, cancer, metastasis, chemokine, therapy
Introduction

PCa is the second most common cancer, is the second leading cause of cancer death in

American men, and over 34,000 men are predicted to die of PCa in 2023 (1). Up to 90% of

advanced prostate cancers metastasize to bone, and there are currently no curative

therapies for BM-PCa (2). Interactions between BM-PCa cells and cells of the bone

microenvironment cooperate to drive tumor growth in bone. Specifically, BM-PCa cells are

known to produce factors that alter the normal bone remodeling cycle (3, 4).

During normal bone remodeling, mononuclear cells fuse to form multinuclear

osteoclasts which secrete hydrogen ions and hydrolytic enzymes, including proteases

such as collagenase and cathepsin k, to induce acid and enzyme-mediated bone resorption

(5, 6). This releases bone-sequestered growth factors, including transforming growth
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factor-beta (TGF-b) and insulin-like growth factor (IGF)-1, and

stimulates the differentiation of mesenchymal stem cells into bone-

forming osteoblasts, which secrete extracellular matrix proteins and

deposit hydroxyapatite mineral to generate new bone matrix (5, 6).

These processes of osteolysis and osteogenesis are coupled, with

bone resorption promoting the differentiation of MSCs into

osteoblasts and osteoblast-derived factors, specifically receptor

activator of nuclear factor-kappa B ligand (RANKL), driving

osteoclastogenesis. This coupling allows these two processes to

balance each other and the net bone mass to remain constant (5, 6).

PCa cells in the bone microenvironment disrupt this balance by:

1) over-stimulating osteoblasts to produce new bone, resulting in

the production of a weaker woven type of newly formed bone, and

2) by promoting osteoclastogenesis, which leads to excessive

osteolysis and the release of large amounts of bone-sequestered

growth factors, such as TGF-b, which promote BM-PCa disease

progression (3, 4, 7, 8). This hijacking of the normal bone

remodeling process not only drives tumor growth in bone, but

also leads to skeletal related adverse events such as pain, spinal cord

compression and increased risk of fractures from the excessive bone

resorption and increased frailty of cancer-induced bone (2, 9, 10).

Approved therapies, such as bisphosphonates and Denosumab

(a monoclonal antibody to RANKL), target osteoclasts either by

inducing of osteoclast cell death or by inhibiting osteoclastogenesis,

respectively (11, 12). While multiple targeted therapies, including

osteoclast-targeted therapies have been designed to block this

process of tumor-induced bone remodeling, these have failed to

extend patient survival (13). Thus, a greater understanding of the

crosstalk between BM-PCa cells and other osteoid cells is necessaru

to design effective new therapies.

A unique feature of PCa, in contrast to other types of bone

metastasis, excessive osteosclerosis regulated by interations with

osteoid cells, such as mesenchymal stromal cells, osteoblasts, and

osteocytes. Mesenchymal stromal cells (MSCs) were originally

isolated from bone marrow by Friedenstein and characterized as

an adherent fibroblast-like cell type capable of maturing into bone-

forming cells (14). MSCs have been classified as multipotent adult

stem cells capable of differentiating along three mesodermal

lineages into adipocytes, osteocytes, and chondrocytes and are

therefore also known as mesenchymal stem cells (15–17). Studies

have observed significant heterogeneity in populations of MSCs,

including differences in growth rates, gene expression, and

differentiation potential with variability attributed to donor age,

tissue source, culture conditions, and other still unidentified genetic

and environmental factors (16, 18). In the bone microenvironment,

MSCs are important in the process of osteogenesis by differentiating

into osteoblasts. Osteoblasts are active bone matrix-secreting cells.

Osteoblasts sit on nonmineralized surfaces in bone and secrete

extracellular matrix proteins, hydroxyapatite for matrix

mineralization, and growth factors and cytokines that stimulate

new bone formation. Eventually, osteoblasts become either bone

lining cells or mature osteocytes embedded in the bone matrix they

have produced, where they coordinate responses to mechanical

stress by stimulating bone resorption and replacement (19).

BM-PCa cells are known to interact with all three of these types

of osteoid cells, and many different factors derived from these bone
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cells have been characterized to drive BM-PCa progression (20–26).

While these include a variety of growth factors and cytokines, this

review will specifically highlight the impact of a subtype of

cytokines known as chemokines, found in abundance in the

tumor microenvironment.

Studies show that MSCs, osteoblasts, and osteocytes produce

many different types of chemokines, and their expression of several

chemokines is altered following exposure to BM-PCa cells (20, 27–

29). Despite substantial evidence of the importance of chemokines,

the complexity of their functions has made clinical translation

difficult. Nonetheless, this review aims to re-introduce the

possibility of targeting these chemokines and their receptors in

the treatment of BM-PCa patients.
Osteoid-derived chemokines
in BM-PCa

Chemokines are small cytokine proteins classically

characterized by their ability to induce leukocyte migration via G

protein coupled receptor signaling. This large family of signaling

ligands currently consists of 50 known ligands and is divided into

four families (XC, CXC, CC, CX3C) based on the position of

conserved cysteine residues (27, 30, 31). Although initially

classified as chemokines based on their chemotactic functions,

many of these signaling ligands have roles in several cellular

processes, including bone remodeling, angiogenesis, as well as

tumor cell proliferation, survival, invasion, migration, stemness,

chemoresistance, and immune evasion (32–37). The chemokines

discussed in below have been shown to play important roles in

driving BM-PCa growth, survival, migration & invasion,

chemoresistance, and tumor-induced osteolysis (summarized

in Figure 1).

CXCL8: CXCL8 (also known as interleukin-8), is a pro-

inflammatory chemokine originally identified as a neutrophil

chemotactic factor that signals through CXCR1 and CXCR2 to

induce neutrophil migration out of the bone marrow and toward

sites of injury and inflammation (38, 39). In the context of BM-PCa,

CXCL8 was shown to be upregulated in MSCs in response to BM-

PCa cells (28). Likewise, CXCL8 also directly promotes

osteoclastogenesis (40, 41) in support of extensive evidence that it

is important in PCa-induced bone remodeling. Further, in PCa

patients, high serum levels of CXCL8 positively correlated with

higher Gleason score and disease progression (42, 43). Additionally,

one study found high serum CXCL8 correlated with the presence of

bone metastases in patients (44). Higher PCa patient serum CXCL8

levels were also associated with an increase in T-cell suppressive

myeloid-derived suppressor cells (MDSCs) (45).

Preclinical studies in BM-PCa revealed that CXCL8 promotes in

vivo tumor growth and angiogenesis of PC3, an osteolytic PCa cell

line derived from a human bone metastasis (46, 47). In vitro studies

showed CXCL8 to promote BM-PCa cell migration and PCa-

induced osteoclastogenesis (48–50). Another group looking at

factors overexpressed by an osteogenic PCa xenograft identified

CXCL8, which suggests a role for CXCL8 in osteogenesis in
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addition to its previously found role in promoting osteolysis (51). In

another study, CXCL8 upregulated PCa cell expression of bone

sialoprotein (BSP), an extracellular bone matrix protein, and

increased PCa invasion and adhesion to bone chips in vitro,

showing PCa cells can contribute to bone remodeling by

producing bone matrix proteins and that CXCL8 has a role in

this process as well as in the process of PCa metastasis to bone (52).

The role of CXCL8 in bone remodeling and tumor progression

makes it ideal for therapeutic targeting.

CXCL12: CXCL12 (or Stromal Derived Factor-1a (SDF-1a)) is
best known for signaling the retention of hematopoietic stem cells

and innate immune cells in the bone marrow niche through its

receptor CXCR4 (53, 54). Multiple studies have also shown

recruitment of osteoclast pre-cursors by CXCL12, which

upregulated the secretion of osteolytic enzymes and led to

increased bone resorption (55–57). In addition to its role in

osteolysis, CXCL12/CXCR4 signaling is important in the

differentiation of MSCs into osteoblasts, with targeted genetic

deletion of either the receptor CXCR4 or its ligand CXCL12

resulting in impaired osteoblast differentiation and decreased

bone formation in mouse models (58–61).

CXCL12 may also have an indirect impact on PCa migration,

invasion, and angiogenesis through altered gene expression of

matrix metalloproteinases, including of MMP-1, MMP-3, MMP-

9, and MMP-14 in PCa cells (62, 63). Overexpression of MMP-1/

collagenase-1 in PCa cells has been shown to increase migration in

vitro and incidence of metastasis in mouse models (64–66). Genetic

silencing of MMP-3, also referred to as stromelysin-1, reduced

tumor progression and angiogenesis in mouse models of BM-PCa,

and MMP-3 has been shown to play a role in migration in other

cancer types, including breast cancer and osteosarcoma (67–69).

Inhibition of MMP-9/gelatinase B reduced PCa invasion in vitro

and tumor growth, invasion, and angiogenesis in vivo (70–72).

MMP-14 is reported to be important in the migration of multiple
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types of cancer, with mutations in MMP-14 leading to a decrease in

PCa migration in vitro and peptide inhibitors of MMP-14

decreasing breast cancer invasion in vitro and metastasis in vivo

(73, 74). These studies suggest CXCL12 promotes PCa migration,

invasion, and angiogenesis via altered MMP gene expression, in

addition to the direct chemotactic effect of CXCL12 on PCa cells.

CXCL12 also plays an important role in PCa in the bone with

increased expression of CXCR4 observed in bone-metastatic PCa

cell lines and patient samples. Further, in patients with metastatic

PCa, high CXCR4 expression correlated with decreased survival

(75). Pertinent to BM-PCa, CXCR4 is upregulated in PCa cells

cultured with bone stromal cells (76). Additionally, CXCL12 is

expressed by osteoblasts and may mediate the increased homing of

PCa cells to osteoblast-rich regions of the bone, such as the lateral

endocortical surfaces (77, 78). Inhibition of CXCR4 blocked the

increase in number of BM-PCa cells found in osteoblast-dense

niches in mouse tibia following intracardiac injection, suggesting

that CXCL12/CXCR4 signaling may play an important role in PCa

metastasis to bone (78). Likewise, in vivo treatment with CXCR4

antagonists reduced intratibial growth and tumor-induced

osteolysis of PC3 cells, whereas overexpression of CXCR4

increased PC3 tumor growth in bone and osteolysis (76, 79, 80).

MSCs also produce CXCL12, which can induce PCa cell

migration in vitro (62, 63, 77, 81, 82). A previous study suggested

a role for CXCL12 in the creation of a pre-metastatic niche in bone

through the upregulation of CXCL12 expression in MSCs by PCa

exosome-derived pyruvate kinase M2 (PKM2) and demonstrated a

CXCR4-dependent increase in metastatic seeding and growth of

PC3 cells in mice treated with PCa exosomes (83). Collectively,

these findings demonstrate the CXCL12/CXCR4 signaling axis to be

a viable target for treating PCa growth in bone.

CCL2: One of the most studied chemokines, CCL2 (or

Monocyte Chemoattractant Protein 1 (MCP-1)), was named for

its ability to recruit monocytes to sites of injury or infection;
FIGURE 1

Osteoid cell-derived chemokines and their roles in bone-metastatic prostate cancer. Many chemokines produced by osteoid cells in the bone
promote bone-metastatic prostate cancer progression. Specifically, mesenchymal stem cells produce CXCL8, CXCL12, CCL5, and CX3CL1;
osteoblasts produce CXCL12, CXCL13, CCL2, and CX3CL1, and osteocytes produce CXCL16 and CCL5. Among these, CXCL8 and CXCL16 have been
found to promote chemoresistance. CXCL8, CXCL12, CXCL13, CCL2, CCL5 and CX3CL1 enhance tumor cell proliferation. CXCL8, CXCL16, and
CCL2 contribute tumor-induced angiogenesis. CXCL8, CXCL12, CXCL13, CXCL16, CCL2, CCL5, and CX3CL1 induce tumor cell migration and
invasion. CXCL8 drives a pro-tumoral immune response, often involving myeloid cell suppression of anti-tumor effector cells. CXCL8, CXCL12, and
CCL2 induce osteoclastogenesis and tumor-induced osteolysis. CCL5 increases the population of cancer stem cells. Created by Biorender.com.
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however, dendritic cells, memory T cells, basophils, and NK cells

can be recruited by this pro-inflammatory chemokine through

signaling via its receptor CCR2 (84–90). Several different cell

types produce CCL2, including monocytes, endothelial cells,

epithelial cells, smooth muscle cells, fibroblasts, and osteoblasts

(91–95).

In addition to its role in inflammation, CCL2 also has an

important role in bone remodeling. Given that monocytes are

precursors for osteoclasts and that CCL2 is important for

monocyte recruitment, it is not surprising that CCL2 and CCR2

KO mice have decreased numbers of osteoclasts, which resulted in

decreased bone resorption and increased bone mass (96–99).

However, other studies suggest the role of CCL2 in bone

remodeling may be more complex. One study found that

mechanical stress upregulated CCL2 expression in osteoblasts via

ERK1/2 signaling and led to increased bone formation in mice,

suggesting CCL2 may also be involved in osteogenesis in addition to

osteoclastogenesis (95). Osteoblast expression of CCL2 was

discovered to be induced by a number of different factors

including growth differentiation factor-15 (GDF15), a member of

the TGF-b family of ligands that is highly expressed by PCa cells.

High serum GDF15 levels are associated with bone metastasis,

suggesting that GDF15 may contribute to high levels of CCL2

production by osteoblasts in BM-PCa (29, 100). Another factor

produced by PCa cells that can upregulate CCL2 is parathyroid

hormone-related protein (PTHrP), which increases CCL2

expression in osteoblasts via the transcription factors C/EBPb and

NFkB (101). These studies suggest that PCa cells in the bone

microenvironment manipulate osteoblast expression of CCL2 to

drive tumor-induced bone remodeling.

Multiple studies show CCL2 recruits monocytes to BM-PCa

tumors and increases the number of tumor-associated osteoclasts,

such that CCL2 inhibition decreases tumor-induced bone

resorption in mice (102, 103). Recruited monocytes were also

found to mature into tumor-associated macrophages (TAMs),

which promote cancer progression through multiple mechanisms

(102, 104–106), including promotion of tumor proliferation, cancer

cell stemness, metastasis, and therapy resistance, while also

suppressing anti-tumor immune responses (107–111).

In patients, CCR2 expression levels positively correlate with

increasing PCa stage, and CCL2 expression is associated with

reduced survival (101, 112). Additionally, serum CCL2 levels were

increased in those with bone metastases compared to localized PCa

(101). These findings demonstrate that CCL2 may play a

particularly key role in PCa bone metastases, where it can

contribute to tumor growth, invasion, angiogenesis, bone

remodeling, and recruitment of pro-tumoral immune cells.

CCL5: The pro-inflammatory chemokine CCL5, initially named

Regulated on Activation, Normal T cell Expressed and Secreted

(RANTES), was first identified as a T cell chemoattractant (113). It

was later found to recruit monocytes, dendritic cells, NK cells,

basophils, eosinophils, and mast cells as well (114–119). CCL5 can

bind and signal through many receptors, including CCR1, CCR3,

CCR4, and CCR5 (with highest affinity) (120, 121). In addition to its

role in inflammation, CCL5 also has a role in bone remodeling and

is known to recruit osteoblasts (122). Specifically, total KO of CCL5
Frontiers in Oncology 04
in mice results in decreased bone mass, although this phenotype

disappears as these mice age, likely through compensatory signaling

through other chemokines not identified in this study (99).

Surprisingly, there is little to no evidence of CCL5 in osteoblast

function. However, in osteocytes, mechanical pressure was found to

upregulate expression of CCL5, which was partially responsible for

an increase in BM-PCa in vitro growth and invasion by osteocyte-

derived factors (123).

In PCa, multiple cell types have been found to increase tumor

cell proliferation, migration, invasion, chemoresistance, and cancer

stem cell populations via secretion of CCL5 (124). In vivo, CCR5

inhibitor treatment reduced bone metastasis following intracardiac

injection of PCa cells in mice, suggesting CCR5 may be a potential

therapeutic target to reduce bone metastasis in PCa patients (125).

Further support for the clinical relevance of CCL5 in PCa patients

comes from research showing that CCL5 expression is increased in

tissue samples from PCa patients compared to healthy controls and

that increasing serum CCL5 levels correlate with increasing Gleason

score in PCa patients (110). A separate study comparing gene

expression from PCa tissue to BPH tissue found increased

expression of both CCL5 and CCR5 in PCa samples (126). These

findings demonstrate the impact of CCL5 on many processes

essential for PCa progression.

CXCL13: CXCL13, also called B Cell Attracting Chemokine 1

(BCA-1), was discovered as a B-cell chemotactic factor important

for the homing of B cells to lymphoid organs (127). While CXCL13

was originally found to be derived from dendritic cells and T

follicular helper cells, it was later also found to be produced by

osteoblasts and human bone marrow endothelial (HBME) cells and

to promote MSC osteoblastic differentiation (127–129).

Since its identification, CXCL13 has been revealed to induce

PCa proliferation, migration, and invasion (128, 130, 131).

Mechanistically, in vitro assays showed that CXCL13 promotes

PCa proliferation through c-Jun N-terminal kinase (JNK) signaling

and invasion via protein kinase B (Akt) and extracellular signal-

regulated kinase (ERK)-1/2 signaling (130). CXCL13 also promoted

BM-PCa adhesion to HBME cells in vitro, suggesting a role for

CXCL13 in the extravasation of PCa cells during metastasis

(127, 128).

Serum CXCL13 levels are increased in patients with PCa

compared to healthy controls and patients with benign prostatic

hyperplasia (BPH) or high-grade prostatic intraepithelial neoplasia

(HGPIN). Notably, CXCL13 is the only ligand for the receptor

CXCR5, and CXCR5 expression has been shown to positively

correlate with PCa grade (128). CXCL13 expression has also been

reported to be upregulated by interleukin 6 (IL-6) through an

unknown mechanism, which may be significant in BM-PCa, as

IL-6 levels are observed to be higher in PCa patients with bone

metastases (128, 132, 133). These studies provide support for an

important role for CXCL13 in PCa bone metastases.

CXCL16: CXCL16 is a pro-inflammatory chemokine that can

be upregulated by the cytokines interferon-gamma (IFN-g) and

tumor necrosis factor-alpha (TNF-a) and has been shown to recruit

CXCR6 expressing T helper 1 (Th1) cells, cytotoxic CD8+ T effector

cells, plasma cells, NK cells, and NKT cells (134–140). CXCL16 is

produced as a transmembrane protein that is cleaved by a
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disintegrin and metalloproteinase domain-containing protein 10

(ADAM10) to release the soluble chemokine (135, 141). Its receptor

CXCR6, whose only ligand is CXCL16, was previously found to be a

co-receptor for HIV infection (142). In some cancers, such as

colorectal and renal cancer, CXCL16 is associated with tumor-

infiltrating lymphocytes and good prognosis (143–145). However,

in PCa, CXCL16 has been linked to cancer progression and

metastasis (146). In patients, increased expression of the CXCL16

and CXCR6 were observed in tissue samples of tumors with higher

Gleason scores and in metastatic PCa cell lines (147–149).

Several bone stromal cells, including MSCs, monocytes,

fibroblasts, and osteocytes have all been shown to express

CXCL16 (135, 142, 150–153). In primary tumors, PCa-derived

CXCL16 recruits CXCR6-expressing MSCs which upregulate PCa

CXCR4 expression, induce EMT markers via CXCL12 secretion,

and promote tumor growth in vivo in a subcutaneous model (154).

Intracardiac injection of mouse PCa cells into CXCR6 knockout

(KO) mice resulted in reduced bone metastasis compared to

wildtype mice, suggesting that CXCR6 has a role in the homing

of PCa to bone (154). CXCL16 was also found to induce the

expression of pro-angiogenic factors such as vascular endothelial

growth factor (VEGF) in BM-PCa cells and to promote

chemoresistance to docetaxel (147, 155). BM-PCa cell invasion

and VEGF secretion was found to be dependent on AKT/

Mammalian Target of Rapamycin (mTOR) signaling (154). These

studies bring to light the importance of CXCL6/CXCR6 signaling in

driving PCa progression by promoting metastasis, angiogenesis,

and chemoresistance.

CX3CL1: CX3CL1 (fractalkine), the only identified member of

the CX3C family of chemokines, is produced as a membrane bound

protein which, and like CXCL16, can undergo proteolytic cleavage

to release a soluble chemotactic domain. It is upregulated by IFN-g
and TNF-a and functions as a chemoattractant for Th1 cells, NK

cells, and monocytes that express the receptor CX3CR1 (156–159).

In the bone, membrane-bound CX3CL1 is detected on BM-MSCs,

osteoblasts, and bone marrow endothelial cells, and the soluble

form of cleaved CX3CL1 is detected in bone marrow (160).

CX3CL1 has been shown to have an important role in bone

resorption as a chemokine that recruits monocyte osteoclast

precursors and promotes osteoclastogenesis (157, 161–165).

Treatment of mice with CX3CR1 neutralizing antibody decreased

bone resorption in vivo, and CX3CR1-deficient pre-osteoclasts

failed to differentiate in vitro. Osteoblasts also express the

receptor CX3CR1, and CX3CL1 has been shown to have an

impact on osteoblast differentiation. CX3CR1-deficient osteoblasts

have delayed induction of a key osteoblastic transcription factor

runt-related transcription factor 2 (RUNX2), but upregulation of a

late osteoblastic transcription factor osterix (OSX), as well as

decreased calcium deposition in vitro, suggesting CX3CL1/

CX3CR1 signaling regulates the temporal expression of

transcr ipt ion factors required for normal osteoblast

differentiation. CX3CR1-deficient osteoblasts also have reduced

expression of osteoclastogenic factor RANKL. Treatment of

wildtype osteoblasts with recombinant CX3CL1 induces both

RUNX2 and OSX but decreases expression of several bone matrix

proteins, including osteonectin, osteocalcin, and osteopontin (161).
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Thus, the impact of CX3CL1/CX3CR1 signaling in osteoblasts is

complex, but it clear that this chemokine plays an important role in

bone remodeling.

CX3CR1 is also expressed in prostate epithelial cells. CX3CR1

expression is detected in both normal prostate epithelium and PCa

tumors, with higher expression observed in PCa cells compared to

healthy prostate epithelial cells (160, 166). Levels of soluble CX3CL1

in the bone marrow were found to be androgen regulated, with the

potent androgen dihydrotestosterone upregulating cleavage of

CX3CL1 from the plasma membrane of bone cells (160). This may

be through upregulation of a disintegrin and metalloproteases

(ADAM) enzymes, which have been shown to cleave CX3CL1 and

to be upregulated by dihydrotestosterone (167–170). CX3CL1 is

suggested to play a role in the extravasation of circulating PCa cells

during metastasis to bone. It is expressed on the luminal side of bone

marrow endothelial cells, and PC3 cells have been found to adhere to

HBME cells in vitro under flow conditions recapitulating the shear

force measured in microvessels in vivo, with this adhesion blocked by

CX3CL1 neutralizing antibody (171). CX3CL1 also induces BM-PCa

expression of EMTmarkers and migration and invasion in vitro (166,

171, 172). Overexpression of CX3CR1 in BM-PCa cells increased

proliferation and decreased apoptosis (166). In mice, intracardiac

injection of BM-PCa cells overexpressing CX3CR1 led to increased

incidence of spinal metastases compared to mice injected with

control BM-PCa cells (166). In PCa patients, serum CX3CL1 levels

show a positive correlation with the presence of spinal metastases,

suggesting a role for CX3CL1 in the process of PCametastasis to bone

(166, 173).
Chemokine regulation of bone
cancers and bone metastasis

Although we are aware that PCa can progress to development of

visceral and soft tissue metastases, bone is the most frequent site of

PCa metastasis. Chemokines have are involved in other bone and

bone-metastatic cancers as well, suggesting that they may be key for

understanding how to target cancer growth specifically in bone. For

example, CXCL8 is involved in tumor-induced osteolysis in bone-

metastatic breast cancer, and breast cancer cells upregulated

osteoblast expression of CXCL8 (41, 174–177). CXCL8 was also

increased in serum samples from lung cancer patients with bone

metastases and was involved in lung cancer-induced

osteoclastogenesis in vitro (178, 179). In osteosarcoma, CXCL8

promotes migration and activates Akt signaling to promote survival

in vitro, and CXCL8 inhibition or knock down (KD) of the receptor

CXCR1 decreases lung metastases in vivo (180–182). CXCL8 serum

levels in patients with multiple myeloma, a cancer originating in

bone marrow plasma cells, were elevated compared to healthy

controls, and multiple myeloma cells upregulated CXCL8

expression in bone stromal cells (183–186). In vitro, CXCL8

promoted multiple myeloma cell survival and tumor-induced

osteoclastogenesis (185).

CXCL12 has been reported to recruit multiple types of cancer to

bone (187–189). In breast cancer cells, angiopoietin-like protein 2
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(ANGPTL2) was found to upregulate CXCR4 and promote bone

metastasis in an intracardiac bone metastasis mouse model (190).

Among breast cancer cell lines, CXCR4 was more highly expressed

by bone metastatic cells (191). In multiple myeloma, CXCL12/

CXCR4 signaling has been shown to promote proliferation,

migration, invasion, metastasis, chemoresistance, and tumor-

induced osteoclastogenesis (192–196). In mice, treatment with

CXCR4 antagonist mobilized multiple myeloma cells from the

bone marrow and induced cancer cell death (197). In

osteosarcoma, CXCL12/CXCR4 signaling promotes cancer

progression and metastasis, and CXCR4 expression is associated

with poor prognosis in patients (198–204).

CXCL13 and CXCR5 are also overexpressed in breast cancer

and associated with increasing stage and metastasis (205, 206).

CXCL13/CXCR5 signaling promotes osteosarcoma migration and

invasion in vitro (207). CXCR5 is also expressed on bone marrow-

metastatic neuroblastoma cells, which migrate toward CXCL13 in

vitro, suggesting CXCL13/CXCR5 signaling may be involved in

neuroblastoma metastasis to bone marrow (208).

As seen in PCa, primary breast cancer tumors recruit CXCR6

expressing MSCs via CXCL16, and the tumor-associated MSCs

then secrete other chemokines, such as CCL5 and CXCL10, that

promote invasion and metastasis (209). Lung cancer cells also

highly express CXCL16/CXCR6, which promote lung cancer cell

migration and invasion in vitro and bone metastasis in vivo (210–

212). In osteosarcoma, CXCL16 was found to be upregulated and to

induce EMT markers and promote growth and invasion in vitro

(213, 214).

CCL2 is associated with increased tumor grade and decreased

relapse-free survival in breast cancer patients and promotes bone

metastasis and osteolysis in mice (215, 216). Breast cancer cells were

also found to upregulate osteoblast expression of CCL2, suggesting

that breast cancer cells manipulate osteoid cells in the bone

microenvironment to promote osteolysis and tumor progression

(177, 217). Lung cancer patients with bone metastases have

increased serum CCL2, and shRNA KD of CCL2 in non-small

cell lung cancer cells reduced intratibial tumor growth and bone

resorption in SCID mice (179). CCL2 also promotes osteosarcoma

progression, metastasis, and bone resorption (218–221). In multiple

myeloma, CCL2 recruits and polarized macrophages to promote

chemoresistance through upregulation of MCP-1-induced protein

(MCPIP1) (222, 223).

Last, CX3CL1/CX3CR1 play a role in bone metastasis of other

cancers, including breast cancer. Specifically, CX3CR1 can be

detected on both healthy and malignant breast epithelial cells,

with a greater percentage of cells expressing high levels of

CX3CR1 in breast cancer tissues and even higher expression in

bone metastases (224–226). Breast cancer cells intracardially

injected in total CX3CR1 KO mice had reduced bone metastases

compared to wildtype mice, and bone metastases in wildtype mice

were reduced with CX3CR1 antagonist treatment (224, 225). Spinal

metastases in hepatocellular carcinoma patients also have high

CX3CL1 and CX3CR1 expression, and CX3CL1 promoted

hepatocellular carcinoma cell migration in vitro and spinal

metastasis in vivo (227). Additionally, CX3CL1 is associated with

spinal metastasis in lung cancer patients and correlates with poor
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overall survival (228, 229) and CX3CL1 is also involved in

metastasis of cancers originating in the bone (230). One study

observed that osteosarcoma cells have increased expression of

CX3CL1 compared to healthy osteoblasts (231). These studies

confirm the importance of these chemokines in the tumor bone

microenvironment, not just in BM-PCa, but also in other bone and

bone-metastatic cancers.
Chemokine-focused therapy for
treating BM-PCa

Chemokines also represent promising new options as PCa

biomarkers. Serum CCL2 and CXCL12 were significantly elevated

in patients with localized PCa compared to healthy donors, which

suggests they may be valuable for diagnosing PCa but not

specifically for identifying high grade or metastatic PCa (232,

233). CCL5 has been found to be elevated in the blood of PCa

patients and, unlike CCL2, it is associated with higher Gleason

grade and metastases (110). CXCL8 was elevated in PCa patients

with bone metastases and associated with higher grade tumors and

AR loss (44, 234). Serum CXCL13 levels have been found to be

elevated in PCa patients and discovered to be a better predictor of

PCa than PSA levels (128, 131).

Since the prostate tumor-bone microenvironment is rich in

chemokines, blocking pro-tumorigenic signals from chemokines

may be an effective treatment for patients with bone metastases.

Currently, the only chemokine receptor inhibitors approved for use

in patients are a CCR5 antagonist (Maraviroc) to treat HIV, a CCR4

antagonist (Mogamulizumab) to treat mycosis fungoides, and a

small molecule CXCR4 antagonist (Plerixafor) (235–237).

Plerixafor is currently approved for use in patients with Non-

Hodgkin Lymphoma and Multiple Myeloma to mobilize

hematopoietic stem cells in preparation for autologous transplant

(237). However, both Maraviroc and Plerixafor are currently being

tested in clinical trials for multiple types of solid tumors.

A phase 1 clinical trial (NCT01736813) of Maraviroc in

colorectal cancer showed it was well tolerated and induced partial

responses, including decreased proliferation markers in biopsies

and partial remission of lung metastases in previously refractory

tumors (238). Another phase 1 clinical trial (NCT03274804) of

Maraviroc combined with the immunotherapy Pembrolizumab also

reported a safe toxicity profile and prolonged disease stabilization in

metastatic colorectal cancer patients (239, 240). This suggests CCR5

antagonist treatment may be a promising approach to reduce tumor

growth in other solid tumors in which CCL5 plays a pro-tumoral

role, such as PCa, where Maraviroc was shown to reduce bone

metastasis of intracardially injected PCa cells in mice (125).

Preclinical studies also show promise for CCL5 antagonists in

pancreatic cancer and bone-metastatic breast cancer, and a

current phase 1 clinical trial (NCT04721301) is investigating the

combination of Maraviroc with other immunotherapies in

metastatic colorectal and pancreatic cancer patients (241, 242).

Inhibition of CXCR4 also showed promise, with pre-clinical

testing of Plerixafor reducing the establishment of bone metastases
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in bone-metastatic prostate cancer mouse models, yet it failed to

impact the growth of pre-established bone metastases (243). This

suggests CXCR4 may be particularly important in the process of

metastasis to bone, and inhibition may be effective in preventing

bone metastasis but ineffective in patients who already have bone

metastases. Another pre-clinical study showed Plerixafor sensitized

BM-PCa cells to docetaxel, suggesting possible benefits of including

CXCR4 inhibitors in combination treatment approaches (244).

Pre-clinical testing of CCL2 inhibition also decreased bone

metastatic prostate tumor growth, both alone and in combination

with docetaxel (245, 246). Unfortunately, when tested in a clinical

trial (NCT00992186), the monoclonal antibody used to target CCL2

failed to induce long-term suppression of serum CCL2, resulting in

no effect on tumor growth (247, 248). Therefore, more work needs

to be done to develop and test inhibitors of chemokine signaling

before these treatments can be moved into the clinic.

Androgen-targeted therapies and chemokines. The current

standard-of-care therapies for BM-PCa are androgen-targeted

interventions. Several chemokines may be uniquely important in

PCa due to roles of androgen signaling in the mechanism of their

effect on cancer cells. For example, the pro-migratory effect of CCL5

on PCa cells occurs via suppression of androgen receptor (AR) by

inhibition of AR nuclear translocation and is thus an AR-dependent

mechanism (249). Some effects of CXCL12 signaling are also AR-

dependent. CXCL12 induces PCa cell proliferation by increasing

nuclear accumulation of both AR and its co-regulator steroid

receptor coactivator 1 (SRC-1) and upregulating AR/SCR-1-

responsive genes (250).

There is also evidence of chemokines acting through suppression

of androgen signaling. One study reported that coculture of BM-

MSCs with PCa cells upregulated their expression of CCL5, which

was shown to block AR nuclear translocation and a resultant

increase in cancer stem cells and PCa cell invasiveness (251, 252).

In a separate study, suppression of AR signaling was determined to

mediate CCL5-induced PCa cell migration towards bone stromal

cells derived from a PCa patient bone metastasis (249). Likewise,

endothelial cell derived CCL5 was shown to downregulate AR and

promote PCa cell invasion in vitro and metastasis in vivo (253).

These findings suggest that several pro-tumoral mechanisms of

osteoid cell-derived chemokines are enhanced by anti-androgen

therapies and promote therapy resistance.

Androgen signaling is also involved in the regulation of

chemokine expression. One study found that AR signaling

suppressed CXCL8 expression, with androgen deprivation therapy

leading to upregulation of CXCL8 (254). Another study reported

that AR signaling upregulates expression of CXCL13, with an

androgen responsive element (ARE) identified in its enhancer

region (131). Androgen signaling also upregulates cleavage of

membrane-bound CX3CL1 to increase levels of the soluble

chemokine (160).

Additionally, studies have demonstrated a role for AR in

regulating CCL2 expression, as siRNA targeting of AR in PCa

cells was observed to upregulate CCL2 via STAT3 activation by

downregulating an AR-inducible protein inhibitor of activated

STAT 3 (PIAS3). Another study found AR inhibitors

enzalutamide and bicalutamide upregulated CCL2 via STAT3 in
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PCa cells, leading them to propose the use of CCL2/CCR2 or

STAT3 inhibitors in combination with AR inhibitors to block the

pro-tumoral effects of ADT-induced CCL2 (255). Therefore,

targeting of these androgen-regulated chemokines may be

especially effective in PCa patients.

Bone-focused therapies and chemokine regulation. In addition to

androgen-focused therapy, BM-PCa patients also receive specific

bone-targeted therapies to treat cancer-induced skeletal events that

contribute to poor quality of life. Despite the extensive evidence of

chemokine functions in the tumor-bone space, research is lacking

on the impact of bone-targeted therapies on osteoid cell-derived

chemokines. Since both bisphosphonates and denosumab primarily

target osteoclasts, the greatest effect of bone-targeted therapies may

be a reduction in osteoclast-derived chemokines. Yet, the

contribution of osteoclasts to chemokine production in the BM-

PCa microenvironment remains poorly studied. Osteoclasts are

known to produce large amounts of CCL9 and slightly smaller

amounts of other chemokines, including CCL22, CCL25, and

CXCL13, but it is not reported whether BM-PCa upregulates any

of these in osteoclasts (256). There is also limited research on the

roles of some of these chemokines in BM-PCa. A single study

reported that CCL22 induces BM-PCa cell migration, and one study

observed that CCL25 promotes BM-PCa chemoresistance (257,

258). Further investigation is required to understand both the

roles of osteoclast-derived chemokines in BM-PCa and the impact

of bone-targeted therapies on those chemokines.

It is also possible that targeting of bone resorption may alter

chemokine expression regulated by bone-sequestered growth

factors. For example, TGFb has been shown to upregulate

osteoclast CXCL16 expression, which recruits osteoblasts (259).

Reducing the amount of tumor-induced osteolysis would likely then

result in fewer osteoblasts in the area, which would consequently

reduce the levels of osteoblast-derived chemokines.

Additionally, a few studies have identified bisphosphonate

treatment specifically to alter chemokine expression in other

cancer types . In bronchoa lveo lar macrophages , the

bisphosphonate zoledronate has been observed to promote

upregulation of pro-inflammatory chemokines such as CCL2 and

CCL5 in response to immune challenge (260). Yet, in osteosarcoma

cells zoledronate downregulated CCL2 (219). However, in

osteosarcoma and bone-metastatic breast and prostate cancer cells

bisphosphonates downregulated CXCR4, which suppressed

CXCL12-CXCR4 signaling-induced invasion though this

phenomenon needs to be tested in vivo (261–263). These findings

suggest bisphosphonates could be targeting BM-PCa by suppressing

pro-tumoral signaling through CXCR4 in addition to blocking

tumor-induced osteolysis. The impact of bisphosphonates on

chemokine production appears to be cell type-specific and

remains to be investigated in osteoid cells of the BM-

PCa microenvironment.

It is likely that Denosumab, the monoclonal antibody of

RANKL, also alters osteoid cell chemokine signaling in BM-PCa;

however, the detailed mechanisms have yet to be discovered.

RANKL downregulates expression of CCR2 and CCR5 on

macrophages and CXCR6 and CX3CR1 on osteoclasts (256, 264,

265). If these receptors on tumor cells are similarly inhibited by
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RANKL, then inhibition of RANKL by denosumab would increase

their expression and enhance pro-tumoral signaling by the osteoid

cell-derived chemokines CCL2, CCL5, CXCL16, and CX3CL1. In

this case, the addition of chemokine targeted treatments to

denosumab treatment may be effective new combination therapies.

Another bone-targeted treatment, radium 223 dichloride,

targets alpha radiation specifically to areas of active bone

remodeling (266, 267) and will significantly impact osteoid cells,

but changes in chemokine signaling have not been characterized. In

the lungs, irradiated MSCs promote metastasis via upregulation of

CCL5 (268). Other studies have observed CCL2 to be upregulated

following radiation (269–271), but this has not been shown in

osteoid cells to date. Therefore, while radium 223 likely suppresses

tumor-induced bone formation by reducing osteoblast numbers

and function, it may also upregulate pro-tumoral chemokines and

osteolysis. Thus, the use of chemokine inhibitors and osteoclast-

targeted therapies may block pro-tumoral responses to radium 223.

There is a major gap in understanding how bone targeted and

standard of care hormonal therapy impacts chemokine signaling in

BM-PCa. Additional research on the impact of bone-targeted

therapies could further highlight potential combination treatment

approaches for BM-PCa patients.
Conclusion

In this review, we have discussed the importance of chemokines

produced by osteoid cells that contribute significantly to PCa

progression in the bone microenvironment. However, chemokine

signaling in the tumor microenvironments is complex, and

production of these chemokines by osteoid cells can also induce

other cell types, including the cancer cells and recruited immune

cells, to produce additional chemokines that can drive PCa

progression. Clearly the research discussed in this review only

covers a small part of the true impact of osteoid cell-derived

chemokines on BM-PCa, as the ripple effect of many of these

chemokines on other cell types and signaling pathways in the tumor

microenvironment has yet to be elucidated.

Another area requiring further investigation is the dependence

of BM-PCa on osteoid cell-derived chemokines since many of these

chemokines can also be produced by the BM-PCa cells themselves

(154, 254, 272–275). While it is likely the tumor cells simply take

advantage of bone cell-produced chemokines to reduce the need to

produce their own, it is also possible osteoid cells may primarily

produce different isoforms of some of these chemokines which

could differ in potency. For example, studies have shown that two

different isoforms of CXCL8 are produced by different cell types and

differ in potency (176, 276). The endothelial cell-derived isoform of

CXCL8 is reported to have reduced potency in recruiting

neutrophils compared to the isoform produced by monocytes and

other cells (276). In breast cancer, two human cell lines were shown

to each produce a different isoform of CXCL8 with a difference in

potency between the two (176). Therefore, it is possible there may a

difference in potency between PCa-derived and osteoid cell-derived
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isoforms of these chemokines. It is also possible that osteoid cells

may produce more of these chemokines than the PCa tumor cells.

In breast cancer, tumor cells were found to produce only picogram

quantities of CCL2, whereas osteoblasts produced nanogram

quantities of CCL2 (177). Additionally, it has been shown in

osteosarcoma, a bone cancer aris ing from malignant

transformation of osteoblasts, that tumor cell-derived CXCL8 can

upregulate MSC expression of CXCL8, which then increases

osteosarcoma cell expression of CXCL8, creating a positive

feedback loop driving tumor progression (180). However, this has

not been shown in PCa to date. Nonetheless, osteoid cell-derived

chemokines play a key role in the progression of BM-PCa.

In summary, chemokines derived from osteoid cells in the bone

microenvironment play key roles in driving PCa metastasis to bone

and the progression of BM-PCa and represent promising new

therapeutic targets and potential biomarkers.
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