
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Olivier Gires,
Ludwig-Maximilians-University, Germany

REVIEWED BY

Kristian Unger,
Helmholtz Association of German
Research Centres (HZ), Germany
Palash Ghosal,
Sikkim Manipal University, India

*CORRESPONDENCE

Zijian Zhao

zhaozijian@sdu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Head and Neck Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 15 November 2022

ACCEPTED 10 January 2023
PUBLISHED 26 January 2023

CITATION

Wang T, Yan D, Liu Z, Xiao L, Liang C,
Xin H, Feng M, Zhao Z and Wang Y (2023)
Diagnosis of cervical lymph node
metastasis with thyroid carcinoma by deep
learning application to CT images.
Front. Oncol. 13:1099104.
doi: 10.3389/fonc.2023.1099104

COPYRIGHT

© 2023 Wang, Yan, Liu, Xiao, Liang, Xin,
Feng, Zhao and Wang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 26 January 2023

DOI 10.3389/fonc.2023.1099104
Diagnosis of cervical lymph
node metastasis with thyroid
carcinoma by deep learning
application to CT images

Tiantian Wang1†, Ding Yan2†, Zhaodi Liu3, Lianxiang Xiao4,
Changhu Liang5, Haotian Xin6, Mengmeng Feng6, Zijian Zhao2*

and Yong Wang1

1Department of Thyroid Surgery, the Second Affiliated Hospital of Zhejiang University College of
Medicine, Hangzhou, China, 2School of Control Science and Engineering, Shandong University,
Jinan, China, 3School of Medicine, Zhejiang University, Hangzhou, China, 4Shandong Provincial Maternal
and Child Health Care Hospital, Shandong University, Jinan, China, 5Department of Radiology,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China, 6Department
of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
Introduction: The incidence of thyroid diseases has increased in recent years, and

cervical lymph node metastasis (LNM) is considered an important risk factor for

locoregional recurrence. This study aims to develop a deep learning-based

computer-aided diagnosis (CAD) method to diagnose cervical LNM with thyroid

carcinoma on computed tomography (CT) images.

Methods: A new deep learning framework guided by the analysis of CT data for

automated detection and classification of LNs on CT images is proposed. The

presented CAD system consists of two stages. First, an improved region-based

detection network is designed to learn pyramidal features for detecting small

nodes at different feature scales. The region proposals are constrained by the prior

knowledge of the size and shape distributions of real nodes. Then, a residual

network with an attention module is proposed to perform the classification of LNs.

The attention module helps to classify LNs in the fine-grained domain, improving

the whole classification network performance.

Results: A total of 574 axial CT images (including 676 lymph nodes: 103 benign and

573 malignant lymph nodes) were retrieved from 196 patients who underwent CT

for surgical planning. For detection, the data set was randomly subdivided into a

training set (70%) and a testing set (30%), where each CT image was expanded to

20 images by rotation, mirror image, changing brightness, and Gaussian noise. The

extended data set included 11,480 CT images. The proposed detection method

outperformed three other detection architectures (average precision of 80.3%).

For classification, ROI of lymph node metastasis labeled by radiologists were used

to train the classification network. The 676 lymph nodes were randomly divided

into 70% of the training set (73 benign and 401 malignant lymph nodes) and 30% of

the test set (30 benign and 172 malignant lymph nodes). The classification method

showed superior performance over other state-of-the-art methods with an

accuracy of 96%, true positive and negative rates of 98.8 and 80%, respectively.

It outperformed radiologists with an area under the curve of 0.894.
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Discussion: The extensive experiments verify the high efficiency of the proposed

method. It is considered instrumental in a clinical setting to diagnose cervical LNM

with thyroid carcinoma using preoperative CT images. The future research can

consider adding radiologists' experience and domain knowledge into the deep-

learning based CAD method to make it more clinically significant.

Conclusion: The extensive experiments verify the high efficiency of the proposed

method. It is considered instrumental in a clinical setting to diagnose cervical LNM

with thyroid carcinoma using preoperative CT images.
KEYWORDS

computer-aided diagnosis, deep learning, lymph node metastasis, computed
tomography, neural network
1 Introduction

The incidence of functional thyroid diseases has increased in

recent years, and such diseases have become the second most

common endocrine disorders (1). Although differentiated thyroid

cancers have a good prognosis and low mortality rate, cervical lymph

node metastasis (LNM) has been reported in 60–70% of patients and

is considered an important risk factor for locoregional recurrence (2–

7). Therefore, accurate preoperative diagnosis of cervical LNM in

thyroid carcinoma is crucial for the proper selection of clinical

treatment regimens and the prognosis of patients (8).

Although ultrasonography is considered the first choice for

evaluating cervical LNM in thyroid cancer patients (9–12), it has

not shown sufficient accuracy in the diagnosis of LNM in previous

studies (13–15). Ultrasonography can only detect 20-31% of patients

with central cervical LNM, whereas the detection rate for lateral

cervical LNM is 70-93.8% (14, 15). Computed tomography (CT) is

recommended for preoperative examinations of cervical LNM as an

adjunct to ultrasonography in recent research and treatment

guidelines (16–19). However, CT scans’ spatial resolution and

contrast resolution are not high enough for cervical lymph nodes

(LNs) to be accurately detected, as these LNs are not obvious and

cannot be easily distinguished from accompanying blood vessels.

Therefore, the diagnostic accuracies using CT depends on the level of

radiologists, which puts less experienced radiologists at a greater risk

of misdiagnosis or missed diagnosis. Especially for determining the

surgical extent with cervical LNs on CT, undertreatment of metastatic

neck nodes during primary surgery due to underdiagnosis will cause

local recurrence, overtreatment with prophylactic lateral

compartment dissection will increase surgical morbidity (10, 11).

Recently, deep learning techniques, especially convolutional

neural networks (CNNs) (20), have successfully solved different

classification tasks using CT images in the computer-aided

diagnosis (CAD) domain (21–24). Following this trend, Lee et al.

evaluated the performance of eight CNNs (ResNet50 performed best)

in diagnosing cervical LNM on CT images (7) and compared the

diagnostic performance with that of radiologists using an external

validation set (25), which only proved the effectiveness of deep

learning in diagnosing cervical LNM using CT images, but ignored
02
an important clinic question of CAD: how to find LNs on the CT

images by deep learning.

This study attempts to make the CAD process more consistent

with radiologists’ diagnostic considerations by introducing a novel

deep learning framework guided by the analysis of CT data for

automated detection and classification of LNs in CT images. The

proposed CAD framework consists of two main steps: (1) detecting

the LN locations by an improved Faster R-CNN network; (2)

classifying detected LNs with a residual network with an attention

module. In the first step, an improved faster region-based

convolutional neural network (Faster R-CNN) (26) is constructed

to detect LNs at several scales, where lower-level feature maps are

considered for small LN detection. Also, to further improve detection

performance, the real distributions of LN size and shape are applied to

design reliable anchors of each feature scale in the proposed detection

network, leading to better detection. In the second step, the network

integrating a residual network with an attention module is

constructed to classify LNs. The attention module helps to classify

LNs in the fine-grained domain, which leads to better performance of

the whole classification network. The experimental results

demonstrate that the proposed approach effectively diagnoses LNM

with superior diagnostic performance than those of the three existing

CAD methods and experienced radiologists.
2 Materials

The protocol of this retrospective study was approved by the Ethics

Committee of the Institutional Review Committee of the Second

Affiliated Hospital of the Zhejiang University, China. The patients

who underwent CT examinations for surgical planning between

January 2019 and June 2020 were prospectively recruited from a

single institution, namely the Second Affiliated Hospital of Zhejiang

University, China. All LNs included in the dataset were confirmed by

fine-needle aspiration (FNA) and/or surgical pathology. A total of 574

axial CT images (including 676 lymph nodes: 103 benign and 573

malignant lymph nodes) were retrieved from 196 patients who

underwent CT for the assessment as “suspicious” malignancy in the

earlier examinations. Typical LNM CT images are shown in Figure 1.
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Compared with the whole CT image, the features in ROI area are more

conducive to the judgment in the deep learning classification network.

For each image, experienced radiologists draw the ground-truth region

of interest (ROI) for LN detection, such as the red box in Figure 1. The

dataset analysis shows that LNs (both benign and malignant) do not

have a wide variety of sizes and shapes. The size is defined as the ratio of

the LN area of the entire CT image; the width-to-height aspect ratio

describes the shape. Figure 2A depicts the size and shape distributions

of the LNs included in the adopted dataset. One can observe that most

LNs are very small (size<0.5%) and fall into the aspect ratio domain of

(0.5~2). The joint distribution map of the size and shape of LNs in the

dataset is shown in Figure 2B, reflecting that benign and malignant LNs

have a great overlap in size and shape. Therefore, it is difficult for

radiologists to judge the benign and malignant LNs based on the size

and shape information, so the image texture information of LNs in ROI

is also required to simplify this task.

All CT images were obtained using 64 to 128 channel multi-

detector CT scanners (SOMATOM Definition Flash, Siemens

Healthineers; Brilliance, Philips Healthcare). Contrast-enhanced CT

scanning was performed 40s after the intravenous injection of a 90-

mL bolus of iodinated nonionic contrast material (300–350 mgI/mL)

into the right arm, with a subsequent injection of a 20–30-mL saline

flush at 3 mL/s using an automated injector. CT images were obtained

with0.5–0.75 mm collimation and reconstructed into axial images

every 2.0 mm on a 512×512 matrix using iterative reconstruction

algorithms associated with each vendor’s CT scanner.

For detection, the 676 lymph nodes were randomly divided into

70% of the training set (73 benign and 401 malignant lymph nodes)

and 30% of the testing set (30 benign and 172 malignant lymph

nodes). Each CT image in the training and testing sets was expanded

to 20 images by rotation, mirror image, changing brightness, and

Gaussian noise. The extended data set included 11,480 CT images.

For classification, ROI of lymph node metastasis labeled by

radiologists were used to train the classification network. The

training and testing sets for classification were set as same as

the detection.
Frontiers in Oncology 03
3 Methods

3.1 The combined detection and
classification approach

The proposed method combined two deep convolutional

networks to detect and diagnose LNs accurately. Figure 3 shows the

pipeline of the proposed method, where an improved Faster R-CNN

was first designed to automatically locate LNs in CT images. Then, a

residual network with an attention module was built to extract fine

features for the LN classification.

3.1.1 Detection network
According to Figure 2, the LN detection belongs to the category of

small object detection. The Faster R-CNN has shown exciting

performance in various object detection tasks (27–29). It comprises

three modules: feature extraction layer, region proposal network

(RPN), and classification layer. The Faster R-CNN is used to detect

LNs, and the detection flowchart is shown in Figure 4. For a better

adaptation of the system to the small-target detection task, the Faster

R-CNN network was improved as follows: ResNet50+FPN (Feature

Pyramid Network) was used to replace Visual Geometry Group

(VGG) network as the extracted feature network; the region of

interest (ROI) pooling (26) was replaced by the ROI align (30); the

appropriate anchors were designed.

A) Backbone network. Although ResNet50 (31) alleviates the

problems of difficult network training and reduced performance

caused by the deepening of the network, making its high-level

features rich in semantic information, their low resolution is not

conducive to detecting small-target objects. To solve this problem, the

FPN proposed by Lin et al. (32) was adopted to fuse the feature from

low to high levels and improve the detection precision of the model.

The architecture of the backbone network (ResNet50+ FPN) in Faster

R-CNN is shown in Figure 5. A 1×1 convolutional layer was attached

to C2, C3, C4, and C5 (the feature activation of conv2, conv3, conv4,

and conv5 outputs of ResNet50), and then the spatial resolution was
FIGURE 1

Illustration of typical LNMs: Benign case (left), malignant case (right).
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upsampled by a factor of 2 using the nearest neighbor upsampling.

The upsampled map was then merged with the corresponding

bottom-up map by the element-wise addition. Finally, a 3×3

convolution was appended on each merged map to generate the

final feature map. Multi-scale feature maps (P2, P3, P4, and P5) need

to be input into the RPN network to generate candidate boxes and

serve as the input part of classification and regression operation in the

second stage. The feature map (P6) generated from the feature map of
Frontiers in Oncology 04
the topmost layer of ResNet50 after the maximum pooling was only

used as the input part of RPN. The function of RPN is to combine the

prior anchors to classify the background and foreground areas. After

classification, a large number of prior anchors are screened out,

making the anchors closer to the real target. In the RPN, the public

Feature Map of Faster RCNN is processed by sliding window, which

can also be regarded as a 3x3 convolution operation on the feature

map, and then two full connection operations are performed on each
A

B

FIGURE 2

(A) The size and shape histograms of LNs (B) Joint distribution map of the size and shape of LNs.
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feature vector, one gets 2 scores, and one gets 4 coordinates, and then

combined with the predefined anchors, the candidate anchors is

obtained after processing.

B) Input of the RPN. The full name of RPN is Region Proposal

Network, which is called region generation network. It is a classless

object detector that calculates regional targets through sliding

windows. The input is an image of any scale, and the output is a

series of rectangular candidate regions.

C) ROI Align. ROI pooling was used in the original Faster R-CNN

network to convert ROI features of different sizes into the same

feature map. In this process, the calculation results of coordinates

were rounded twice: (i) when the region proposal when mapped to

the shared feature map and (ii) when the feature map was fixed to a

unified size. These round operations introduced misalignments

between the ROI and the extracted features, which harmed the

predictive accuracy of the small-target location. To solve this

problem, ROI Align was used instead of ROI Pooling. RoI Pooling

can intercept the feature of each Region of Interest in the feature map,
Frontiers in Oncology 05
and replace it with the feature output of the same size. Each

quantization operation corresponds to a slight misalignment of

regional features, and these quantization operations introduce bias

between RoI and extracted features. The core idea of RoI Align is

bilinear interpolation. The bilinear interpolation algorithm makes full

use of the four real pixel values around the virtual point in the source

image to jointly determine a pixel value in the target image. For a

destination pixel, set the floating point coordinates obtained by

inverse transformation. The coordinates are (i+u,j+v) (where i and j

are the integer parts of floating-point coordinates, and u and v are the

fractional parts of floating-point coordinates, which are floating-point

numbers in the range [0,1)], Then the value of this pixel f(i+u,j+v) can

be obtained from the coordinates in the original image as (i,j), (i+1,j),

(i,j+1), (i+1,j+ 1) The value of the corresponding four surrounding

pixels is determined. If the fixed feature graph had a small size,

bilinear interpolation 33 and floating-point number were used to

record the coordinate results, which improved the accuracy of

locating small targets.
FIGURE 3

The pipeline of the proposed deep learning method for automated LN detection and classification.
FIGURE 4

The pipeline of the improved Faster R-CNN.
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D) Anchor design. Anchor is the core of RPN network, and the

generation of anchor without convolution operation, which is

equivalent to sliding window calculation. After the image is input,

Windows of different sizes are obtained by calculating the proportion

of the sliding window center to the target size, length, width and

multiple, which is called the basic standard window, through several

stride, the map is reduced by many times. When the image is

convolved at the last layer, the pixel will be reduced to the

corresponding multiple, and tens of thousands can be obtained

through the sliding window mapping to the input image based on

the basic standard window of the output image. The preliminary

selection of anchors in the original Faster R-CNN network was

manually performed. The aspect ratio distribution in terms of the

LN size on the dataset was pre-computed with the results shown in

Figure 2. As seen in Figure 2, the LN aspect ratio roughly ranged from

0.5 to 2, and the LN size mainly ranged from 0 to 0.2%. This implies

that the aspect ratio and size of anchors and proposed regions should

also be selected within these ranges. Therefore, the anchors were

assigned the areas of 256, 576, 1282, 1600, 3136 pixels (corresponding
Frontiers in Oncology 06
to the LN size of 0.01, 0.03, 0.06, 0.08, and 0.15%) on feature maps P2,

P3, P4, P5, and P6 respectively. Besides, anchors of multiple aspect

ratios (1:2, 1:1, 2:1) were used at each level. This amounted to the total

number of fifteen 15 anchors in the FPN.

The loss function of Faster R-CNN can be roughly divided into two

parts: multi-task loss of RPN andmulti-task loss of Fast R-CNN.When

training RPN network, the loss function of a picture is defined as:

L pif g, tif gð Þ = 1
Ncls

o
i
Lcls pi, p*i

� �
+ l

1
Nreg

o
i
p*i Lreg ti, t*i

� �

where Lcls is the classification loss, Lreg is the bounding box

regression loss. pi is the probability that the ith anchor is the target

object; pi* is the real label. ti is the boundary box regression parameter

for predicting the ith anchor. ti* is the regression parameter of the real

box corresponding to the ith anchor. Ncls is the number of all samples

in a small batch; Nreg is the number of anchor positions; The default

value of l is 10. The loss function of Fast R-CNN is defined as:

L p, u, tu, vð Þ = Lcls p, uð Þ + l u ≥ 1½ �Lloc tu, vð Þ
FIGURE 5

The architecture of backbone network in Faster R-CNN (ResNet50+ FPN).
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where Lcls is the classification loss, Lloc is the bounding box

regression loss. p is the Softmax probability distribution predicted

by classifier. u is the corresponding target real category tag; [u≥1]

indicates that the value is 1 when u≥1, and 0 in other cases. tu is the

regression parameter of the corresponding category u predicted by

the boundary box regression; v is the bounding box regression

parameter of the real target.

3.1.2 Classification network
After detecting the location of LNMs by the improved Faster R-

CNN network, we feed the detected ROIs into our attention-based

classification network for LNM fine-grained classification.
Frontiers in Oncology 07
ResNet50 was selected as the backbone network for the proposed

model due to its excellent performance in diagnosing cervical LNM

reported in the earlier study (7). The initial ResNet50 introduced by

He et al. (31) consisted of one convolutional layer (Conv1) and four

residual modules (Conv2_x to Conv5_x). A max-pooling layer

followed each of them to downsample the feature maps by a scale

factor of 2. Conv2_x to Conv5_x had 3, 4, 6, and 3 bottleneck

blocks, respectively.

According to Figure 2B, the differentiation of benign and

malignant LNs is not obvious. For better fine-grained classification,

a coordinate attention (CA) module (33) was incorporated in the

proposed model, as shown in Figure 6A. This module made it possible
A B

FIGURE 6

The structure of CA module (A) and the proposed A-ResNet50-W model (B). Here the symbol ⊗ represents multiplicatio.
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to focus on important texture features and suppress unnecessary ones.

The CA encoded both channel relationships and long-range

dependencies with precise positional information in two steps: (i)

coordinate information embedding and (ii) CA generation. Moreover,

wide residual blocks were developed by setting twice the number of

channels of the initial ResNet50 in each bottleneck block to improve

the classification performance, referring to the previous study (34).

The refined model was intuitively named A-ResNet50-W (A standing

for attention module and W for wide residual block). The proposed

model structure is shown in Figure 6B.The convolution layer and

output image size of Resnet50 at each stage are shown in Table 1.
3.2 Performance and statistics

Firstly, the automated detection performance of the proposed

detection network was assessed and compared with that of three state-

of-the-art detection methods. Next, the LN recognition performance

of the proposed classification network was evaluated and subjected to

a comparative analysis against several state-of-the-art classification

methods. Finally, the developed networks trained on the proposed

dataset were used to classify testing images. Their classification results

were compared with the diagnoses of three senior radiologists with six

to ten years of clinical experience on LNM diagnosis. The radiologists

were unaware of the final diagnosis and the deep learning analysis

results. Their “blind reviews” were based on the same image viewer,

with freely scrollable images and adjustable window level/width.

Finally, the radiologists identified these CT images as benign or

malignant LNMs.

3.2.1 Detection results
Ablation experiments of Faster R-CNN were conducted with four

structures: (i) ResNet50, (ii) ResNet50 + FPN, (iii) ResNet50 + FPN +
Frontiers in Oncology 08
ROI Align, and (iv) ResNet50 + FPN + ROI Align + Anchor Design.

The latter structure was proposed in this study. The detection

performances are summarized in Table 2. The average precision

(denoted as AP50) was used to quantitatively evaluate the detection

performance, with the Intersection over Union (IoU) threshold of 0.5.

As shown in Table 1, the proposed structure for the Faster R-CNN

achieved the best AP50 and was considered suitable for detecting

small LNs.

Some convolutional neural networks have been successfully

applied to detection tasks, exhibiting a good performance. In this

study, the proposed method was compared with three state-of-the-art

neural networks, namely Faster R-CNN(ResNet50) (26), SSD (35),

and Yolov3 (36). The detection samples of the proposed method are

shown in Figure 7. The AP50 values of detection by the four methods

are listed in Table 3, which indicates that the proposed detection

method outperformed all others in AP50 over the other three methods

by 2-4%.
3.2.2 Classification results
The ablation experiments were performed on the same dataset

with four structures: (i) a reference ResNet50 structure, (ii) the

proposed structure A-ResNet50-W with the CA block (A) and the

wide residual block (W), (iii) the proposed structure without the CA

block (ResNet50-W), and (iv) the proposed structure without the

wide residual block (A-ResNet50). The classification performances

are summarized in Table 3. Quite naturally, the proposed structure

(i.e., A-ResNet50-W) outperformed its “light versions” and the

original ResNet50 network by ACC and TPR parameters. Insofar as

both A-ResNet50 and ResNet50-W also surpassed the ResNet50 in

ACC and TPR values, the CA and wide residual blocks were

instrumental in the classification task execution. Meanwhile, TNR

values of the proposed and ResNet50 networks were the

same (80.0%).

The results obtained by the proposed method were compared

with those predicted by other eight start-of-the-art neural networks,

namely MobileNet_V2 (37), ShuffleNet_V2 (38), DenseNet121 (39),

EfficientNet (40), ResNet34 (31), ResNet50 (31), ResNext50 (41) and

RegNet (42). As shown in Fig 8, the MobileNet_V2, ShuffleNet_V2,

DenseNet121, EfficientNet, ResNet34, ResNet50, ResNext50, RegNet,

and the proposed method provided the following results: ACC of 93.1,

93.1, 93.1, 94.1, 92.6, 95, 94.5, 94.5 and 96%; TPR of 98.3, 97.7, 95.9,

99.4, 97.1, 97.7, 97.7, 99.4, and 98.8%; TNR of 63.3, 66.7, 76.7, 63.3,

66.7, 80.0, 76.7, 66.7, and 80%, respectively. Thus, the proposed

classification network outperformed all eight state-of-the-art ones

in ACC, seven in TNR, and six in TPR. Among the alternative

networks, ResNet50 had the highest TNR value of 80.0%, which

was equal to that of the proposed network, while its ACC and TPR
TABLE 1 Convolution layer and output image size of Resnet50 at each
stage.

Layer name Output size stage

Conv1 112×112 7×7, 64, stride 2

Conv2_x 56×56

3×3 max pool, stride 2 ½

1� 1,   64

3� 3,   64

1� 1,   256

�×3

Conv3_x 28×28

½

1� 1,   64

3� 3,   64

1� 1,   256

�×3

Conv4_x 14×14

½

1� 1,   64

3� 3,   64

1� 1,   256

�×3

Conv5_x 7×7

½

1� 1,   64

3� 3,   64

1� 1,   256

�×3

1×1 Average pool
TABLE 2 Detection performance of different structures.

Faster R-CNN structure AP50

ResNet50 72.

ResNet50+FPN 74.5

ResNet50+FPN+ROI Align 77.6

ResNet50+FPN+ROI Align+Anchor Design 80.3
frontie
rsin.org

https://doi.org/10.3389/fonc.2023.1099104
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1099104
values (95.0 and 97.7%) did not reach the proposed network’s

ACC=96% and TPR=98.8%. Noteworthy is that EfficientNet and

RegNet had higher TPR values (99.4%) than the proposed network

(98.8%) but lower TNR values (63.3 and 66.7%) versus the proposed

one (80%). Given their worse ACC parameters (93.1 and 94.5% versus

96%), the proposed method had the best integrated predictive

performance among the other eight networks under study.

Besides the comparison with deep learning methods, the

proposed method’s predictions were compared against those of

three radiologists with six to ten years of clinical experience in

LNM diagnosis. Table 4 shows the ACC, TPR, TNR, and AUC

values provided in the testing set by the proposed method and
Frontiers in Oncology 09
three experienced radiologists. The corresponding ROC curves are

plotted in Figure 8. It can be found that the area under the

corresponding curves of A-ResNet50-W (in orange) is larger than

that of the other three radiologists, which intuitively indicates that the

classification method proposed in this paper has better diagnostic

performance for LNMs on CT images than that of radiologists.

As shown in Table 5, the proposed method achieved an AUC of

0.894, which significantly exceeded the estimates of the three

radiologists. Specifically, the averaged AUC value of three

radiologists was 0.731, with the lowest AUC estimate of 0.695 and

the highest of 0.779. By TPR and TNR parameters, the diagnostic

performance of the proposed method surpassed that of three

experienced radiologists. The averaged TNR value of three

radiologists was 68.9% (21/30) versus (80.0%, 24/30) of the

proposed A-ResNet50-W network. The averaged TPR of three

radiologists reached 78.1%, which is much lower than that of A-

ResNet50-W (98.8%). Moreover, compared to the ACC of

radiologists, that of A-ResNet50-W was improved by 19.3% (96.0%

vs. 76.7%). The above findings indicate that proposed method had a

significantly improved diagnostic performance of cervical LNM in CT

images, as compared to that of three experienced radiologists.
FIGURE 7

Detection samples of the proposed method. Red boxes illustrate the ground truth ROIs, while yellow boxes illustrate the successfully detected LNs and
their confidence.
TABLE 3 Detection performance in different networks for the testing set.

Network AP50 Difference in AP50, %

Faster R-CNN (ResNet50) 77.9 2.4

SSD (ResNet50) 72.5 7.8

Yolov3 (DarkNet53) 76.2 4.1

The proposed method 80.3 –
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3.3 Experimental setup

The detection network was trained with a stochastic gradient

descent via an Nvidia Titan XP graphics card with graphic processing

units (GPUs). The maximum learning iteration, learning rate, decay

rate, and gamma were set at 500, 0.001, 0.0005, and 0.33, respectively.

The detection performance was evaluated by average precision

(denoted as AP50) with the threshold of the Intersection over

Union (IoU) of 0.5.

The classification network was trained with stochastic gradient

descent on an Nvidia Titan XP graphics card with graphic processing

units (GPUs). The maximum learning iteration, learning rate, decay

rate, and gamma were set at 1000, 0.001, 0.0005, and 0.1, respectively.

The classification performance was evaluated by accuracy (ACC), true

positive rate (TPR), true negative rate (TNR), the receiver operating

characteristic (ROC) curve, and the area under the curve

(AUC) parameters.

4 Discussion & conclusions

This study presents a deep learning-based model to diagnose

cervical LNM with thyroid carcinoma using preoperative CT images.

To the best of the authors’ knowledge, this was the first attempt to
Frontiers in Oncology 10
apply small object detection to find LNs in CT images. Compared

with the other three state-of-the-art detection networks, the proposed

network achieved the best AP50 parameter, as shown in Table 3.

Besides, this study was the first to apply the attention mechanism to

the classification of cervical LNM in CT images to allow the model to

learn more important texture information. The comparative analysis

of the proposed network’s accuracy with those of several state-of-the-

art classification networks proved that the proposed model

outperformed the available algorithms in the classification of

cervical LNM in CT images, as shown in Figure 9. According to the

model’s visualization results listed in Table 4, its ACC, TPR, TNR, and

AUC parameters in diagnosing cervical LNMs exceeded the

respective averaged values of three experienced radiologists.

Therefore, the proposed method is considered instrumental in a

clinical setting to diagnose cervical LNM with thyroid carcinoma

using preoperative CT images.

The proposed CAD method implementation can mitigate several

clinical problems. Firstly, the CAD method can reduce the

radiologist’s workload by reducing the inherent dependence of the

diagnostic process on radiologists. Secondly, diagnostic results of

different radiologists on the same CT images may be biased by the

human factor, while the application of quantitative criteria in the

CAD method ensures accurate and consistent results, which would

potentially eliminate the obstacle of inter-observer variability (43).

Thirdly, the CAD method has good diagnostic performance and can

be used as an auxiliary tool to help radiologists make clinical diagnosis

for LNM. Finally, the CAD method may potentially reduce the

frequency of unnecessary FNAs for benign LNs. In the future, we

are also going to use the breast cancer dataset for testing our proposed

network. The experimental results would help us to improve the

detection and classification networks we proposed.

However, this study has several limitations. Firstly, relatively few

CT images of LNM were collected in this paper due to the limitation of
FIGURE 8

ROC curves of the proposed model vs. radiologists in the testing set.
TABLE 4 Classification performance of different structures.

ACC, % TPR, % TNR, %

ResNet50 95.0 97.7 80.0

A-ResNet50 95.5 98.8 76.0

ResNet50-W 95.5 97.7 83.3

A-ResNet50-W 96.0 98.8 80.0
frontiersin.org

https://doi.org/10.3389/fonc.2023.1099104
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1099104
time. Secondly, the experiment was only conducted on the CT dataset

from the Second Affiliated Hospital of the Zhejiang University, without

multi-center verification. So the results can be systematically biased.

Thirdly, the ROIs of LNM was labeled by the radiologist, so the results

highly depended on the radiologist’s experience.

In conclusion, a deep-learning-based CAD framework guided by

the CT dataset analysis, consisting of an improved Faster R-CNN and

the A-ResNet50-W classification network, was proposed for lymph

node (LN) detection and classification in CT images in this study. The

proposed method outperformed three state-of-the-art detection and

classification networks and three experienced radiologists in terms of
Frontiers in Oncology 11
both detection and classification accuracy. The proposed CAD

method can be used as a reliable second opinion for radiologists to

help them avoid misdiagnosis due to work overload. Furthermore, it

can give helpful suggestions for junior radiologists with limited

clinical experience. The follow-up studies envision collecting more

CT images of cervical LNM from multiple hospitals to make the CAD

method more robust. Besides, unsupervised or weakly supervised

learning should be suggested for model training to reduce the burden

of data annotation. Finally, future research can consider adding

radiologists’ experience and domain knowledge into the deep-

learning based CAD method to make it more clinically significant.
TABLE 5 Classification performance of the proposed method and three radiologists in the testing set.

ACC, % TPR, % TNR, % AUC

Radiologist1 75.2 (152/202) 76.2 (131/172) 70.0 (21/30) 0.719

Radiologist2 76.2 (154/202) 79.1 (136/172) 60.0 (18/30) 0.695

Radiologist3 78.7 (159/202) 79.1 (136/172) 76.7 (23/30) 0.779

Averaged values of the three radiologists 76.7 (155/202) 78.1 (134/172) 68.9 (21/30) 0.731

A-ResNet50-W 96.0 (194/202) 98.8 (170/172) 80.0 (24/30) 0.894
frontie
FIGURE 9

The classification performance of cervical LNM using CT images for different networks.
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