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Leibler divergence-based
similarity method: A study based
on 18F-fluorodeoxyglucose
positron emission tomography

Jie Yu1†, Lin Hua2,3†, Xiaoling Cao1, Qingling Chen1,
Xinglin Zeng2, Zhen Yuan2,3* and Ying Wang1*
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Background: Lung cancer has one of the highest mortality rates of all cancers,

and non-small cell lung cancer (NSCLC) accounts for the vast majority (about

85%) of lung cancers. Psychological and cognitive abnormalities are common in

cancer patients, and cancer information can affect brain function and structure

through various pathways. To observe abnormal brain function in NSCLC

patients, the main purpose of this study was to construct an individualized

metabolic brain network of patients with advanced NSCLC using the Kullback-

Leibler divergence-based similarity (KLS) method.

Methods: This study included 78 patients with pathologically proven advanced

NSCLC and 60 healthy individuals, brain 18F-FDG PET images of these individuals

were collected and all patients with advanced NSCLC were followed up (>1 year)

to confirm their overall survival. FDG-PET images were subjected to individual

KLS metabolic network construction and Graph theoretical analysis. According

to the analysis results, a predictive model was constructed by machine learning

to predict the overall survival of NSLCL patients, and the correlation with the real

survival was calculated.

Results: Significant differences in the degree and betweenness distributions of

brain network nodes between the NSCLC and control groups (p<0.05) were

found. Compared to the normal group, patients with advanced NSCLC showed

abnormal brain network connections and nodes in the temporal lobe, frontal

lobe, and limbic system. The prediction model constructed using the abnormal
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brain network as a feature predicted the overall survival time and the actual

survival time fitting with statistical significance (r=0.42, p=0.012).

Conclusions: An individualized brain metabolic network of patients with NSCLC

was constructed using the KLS method, thereby providing more clinical

information to guide further clinical treatment.
KEYWORDS

non-small cell lung cancer, fluorodeoxyglucose, positron emission tomography, brain
metabolic network, Kullback-Leibler divergence-based similarity
Introduction

Lung cancer is the leading cause of cancer-related death

worldwide, with non-small cell lung cancer (NSCLC) accounting for

the majority (approximately 85%) of all lung cancers (1–3). The

nervous system, via neural and humoral pathways, substantially

modulates processes related to cancer at the level of the tumor’s

micro-and macro environments (4, 5). The nervous system also

mediates the effects of psychosocial and noetic factors on cancer

development (6, 7). Neurobiological perspectives on cancer

pathogenesis suggest that cancer messages are transmitted to

specialized brain structures through neural and humoral pathways

(7–9); thus, the brain may modulate the neuroendocrine-immune

system in response to tumor growth (10). Previous studies have

described the potential mechanisms underlying the neuromodulation

of abnormal brain activation patterns associated with lung cancer.

Metabolic imaging techniques, such as magnetic resonance (MR)

spectroscopy and positron emission tomography/computed

tomography (PET/CT), have recorded significant changes in

metabolic and functional status in the resting-state brain of patients

with NSCLC (10–12).

Although numerous structural MR-based studies have used the

Kullback-Leibler divergence-based similarity (KLS) method for

individualized analysis, few studies have used KLS to construct

individual metabolic brain networks by employing fluorodeoxyglucose

(FDG)-PET imaging (13–16). In previous studies, brain MR and brain

PET were used to predict NSCLC brain metastases and overall survival

bymachine learning and other methods (17, 18). In medicine, machine-

learning techniques are widely used for the prognostic prediction of

cancer (19–21).

Herein, patients diagnosed with advanced NSCLC during 2019–

2021 were selected. The main objective of this study was to construct

a metabolic network for each patient with NSCLC and elaborate on

the possible applications of the brain metabolic network.
Materials and methods

Participants

The retrospective research design of this study was in line with

the principles of the Declaration of Helsinki. This prospective study
02
was approved by the Fifth Affiliated Hospital of Sun Yat-Sen

University. Patients with histologically proven advanced NSCLC

were enrolled from September 2017 to October 2020 and followed

up until March 2022. Patients with brain tumors (primary brain

tumor or metastasis), prior surgery, chemotherapy, stroke, and head

trauma were excluded. The control group (n = 60) comprised those

who underwent a whole-body PET/CT scan for the first time to

screen for tumors and showed no evidence of malignancy in the

examination. Control individuals who have a history of various

types of cancer, those who do not have complete information on

chemotherapy, those with primary or metastatic brain tumors

detected through MRI, those who have had a stroke, head

trauma, neurological diseases (such as epilepsy or dementia), or

drug dependency (including alcohol, opioids, hypnotics/sedatives,

cannabis, hallucinogens, or cocaine), as well as those with a history

of major affective disorders (such as major depressive disorder and

bipolar disorder) and psychotic spectrum disorders (including

schizophrenia, delusional disorder, paranoid disorder, schizotypal

disorder, and schizoaffective disorder) were excluded from the

study. All control participants were further confirmed by follow-

up visits for at least 12 months after PET/CT examination. The

same exclusion criteria as the lung cancer group were applied to the

control group.
FDG-PET image acquisition and processing

18F-FDGwas supplied by Guangzhou HTA Pharmaceutical Co.,

Ltd. Imaging was performed approximately 60 min after

administration using an integrated PET/CT scanner (uMI780,

United Imaging, China) from the top of the head to the upper

thighs using the following parameters: 120 kV, 240mAs, and

thickness of 2 mm. PET images were acquired at 2 min per

bed position.

Individual FDG-PET images were processed using MATLAB

(MathWorks, Natick, MA, United States) platform-based

Statistical Parametric Mapping version 12 (SPM12) (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/). The images were

spatially normalized to a standard stereotactic template in the

Montreal Neurological Institute space with linear and nonlinear

3D transformations; then, a 6 mm full-width half-maximum
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smoothing kernel was applied to the normalized FDG-PET images

to increase the signal-to-noise ratio. To facilitate comparison across

all participants, the intensity of the images was further normalized

to the average whole-brain uptake. Subsequently, normalized

glucose uptake values in each voxel were extracted from 90

regions of interest (ROIs; 45 for each hemisphere without the

cerebellum) using an automated anatomical labelling-based

atlas (22).
Individual KLS metabolic
network construction

To construct interregional network connections, we utilized the

KLS method, which has been successfully used to quantify

morphological connectivity between two regions (14, 15).

Notably, from the perspective of information theory, KL

divergence is an index that measures the difference between two

probability distributions or the information lost when a probability

distribution P is used to approximate another probability

distribution Q (23). Therefore, the high KLS value between the

two brain regions may indicate metabolic connections subserving

high inter-regional information transfer.

For each participant, glucose uptake values within each ROI

were first estimated using the probability density function using

kernel density estimation (24, 25) with bandwidths chosen

automatically (26). This analysis was implemented using

the public MATLAB code (http://www.mathworks.com/

matlabcentral-/fileexchange/14034-kernel-density-estimator). The

probability distribution function (PDF) was obtained from the

probability density function. Subsequently, KL divergence was

employed to calculate the intensity of the metabolic connection

between any pair of ROIs. Formally, the KL divergence from

distribution Q to P was defined as (27):

KL(P jj Q) =o
n

i=1
P(i)   log

P(i)
Q(i)

where P andQ represent the two PDFs of the voxel intensities in

a pair of ROIs. However, KL(P Q) is not equivalent to KL(Q P) .

Therefore, we converted KL divergence into a symmetric

measurement using the following equation:

KL(P,Q) =o
n

i=1
P(i)   log

P(i)
Q(i)

+ Q(i)   log
Q(i)
P(i)

� �

Finally, the intensity of pairwise metabolic connectivity between

the two ROIs was calculated as follows:

KLS(P,Q) = e−KL(P,Q)

where e is a natural exponential function. Furthermore, KLS

ranges from 0 to 1, where 1 represents two identical distributions.

Here, the adjacency matrix of metabolic connectivity was

constructed using KLS. Thus, the adjacency matrix defines

pairwise metabolic connectivity, where the intensity of the

connection between regions i and j is represented by the

corresponding element in the adjacency matrix.
Frontiers in Oncology 03
Graph theoretical analysis

To exclude noisy elements before calculating the topological

characterization, a sparsity threshold of S was applied to convert

each matrix Cij=|cij| into a weighted network:

Wij = ½wij� =
cij
�� ��,   if   cij�� �� > gthreshold

0,   others

(

where gthreshold is the connectivity strength threshold (28). To

avoid the specific selection of a threshold and address the

differences in the number of edges within participants, a range

sparsity threshold of S (0.02 ≤ S ≤ 0.50, interval=0.01) was applied

to all metabolic network matrices.

Topological characterizations of the metabolic network were

analyzed using the GRETNA toolbox (https://www.nitrc.org/

projects/gretna/). For the resultant networks at each sparsity

threshold, we included both global (assortativity, Ar; modularity,

Q; hierarchy, Hr; global efficiency, Eglobal; local efficiency, Elocal;

clustering coefficient, Cp; shortest path length, Lp; synchronization,

Sr; normalized Lp, l; normalized Cp, g; small-worldness, s) and

nodal (nodal degree, Dc; nodal betweenness, Bc) metrics commonly

used to describe the organization of metabolic networks in healthy

participants and patients. To determine whether the metabolic

networks were not randomly organized, the network topology

was compared to 100 matched random networks that preserved

the same number of nodes and edges and the same degree

distribution as real metabolic networks (29, 30).
Predicting patients’ overall survival using
individual KLS metabolic network

Based on the individual metabolic connections between ROIs, a

support vector machine for the regression algorithm (L2-

regularized L2-loss SVR model) from the LIBLINEAR toolbox

(https://www.csie.ntu.edu.tw/~cjlin/liblinear/) was trained to

predict each patient’s overall survival. SVR has recently emerged

as a preferred method for using imaging features to predict multiple

patients’ symptoms in Alzheimer’s disease (31) and psychotic

illness (32). In our study, the leave-one-out cross-validation

(LOOCV) method was used with SVR model, in which individual

metabolic connections’data from N-1 patients with their overall

survival values were used to train the model (33). The model was

then applied to the metabolic network data of the remaining

patients to assess the overall survival. In current study, we

constructed the predictive model based on the following steps:

features selection, training and testing the SVR model with LOOCV

method. Before feature selection, covariates, including age and sex,

were regressed from the features and overall survival. The

regression weights were applied to the remaining dataset. For

features selection, to avoid over-fitting and examine whether the

connections that exhibited significant difference between patients

and healthy participants can track the patients’ overall survival, we

firstly conducted a network connection analysis (see below:

statistical analysis) between healthy participants and patients.
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Subsequently, for training the SVR model, significant connections

in patients were chosen as features to train the model in each

LOOCV. To calculate the predicted overall survival, the de-

confounded features from the testing data were fed into the

trained model for testing the SVR model. To assess the overall

survival of all patients, the procedure was repeated N times (N=78).

The estimated and observed overall rates were then compared to

determine the correlation.
Statistical analysis

A two-sample t-test was performed to compare the area under

the curve of each network metric, including global (Ar, Q, Hr, Eglobal,

Elocal, Cp, Lp, Sr, l, g, s) and nodal (Dc, Bc) metrics, between healthy

participants and patients. Network connection statistics were also

conducted using a two-sample t-test between the connection

matrices of healthy participants and patients. Age and sex

were considered as control covariates. The significance criterion

was p< 0.05, and the false discovery rate was applied for

multiple comparisons.

Significant prediction of the correlation between observed and

estimated overall survival was assessed using permutation testing

(10,000 permutations). The percentage of permutation correlations,

which was higher than the observation-prediction correlation based

on the real data, was used to estimate the p-value of the

permutation. The contributions (connection weight) of the

metabolic connections were then averaged across all LOOCV

folds. Finally, the connections were classified into six brain
Frontiers in Oncology 04
regions (frontal lobe, temporal lobe, parietal lobe, occipital lobe,

central structures, insula, and cingulate gyri) (25). The weight of

each brain region in overall survival estimation was calculated by

adding the absolute weights of the predicted connections of the

involved region.
Visualization

The entire data processing procedure is shown in Figure 1.

The connectograms in Figure 2 depicting significant connections

between healthy participants and patients were constructed using

CircularGraph, which is shared by Paul Kassebaumb (http://

www.mathworks.com-/matlabcentral/fileexchange/48576-

circulargraph). The connection results in Figure 3 for estimating overall

survival in patients were mapped onto the International Consortium

for Brain Mapping 152 template using the BrainNet Viewer software

package (https://www.nitrc.org/projects/bnv).
Results

Clinical characteristics

In total, 78 patients and 60 healthy individuals were included in

the study. There were no significant differences between the groups

in terms of age and sex (p > 0.05), as shown in Table 1. The patients

were followed up until March 1, 2022, during the median follow-up

of 15.4 (range, 1-48) months.
FIGURE 1

Procedure of constructing individualized brain metabolic network and predicting the overall survival in patients. Individual FDG-PET images were
preprocessed using spatial normalized and smoothing. Normalized glucose uptake values in each voxel were extracted from AAL 90 regions. Then,
individualized brain metabolic network was constructed using the KLS method. SVR model was trained to estimate each patient’s overall survival
based on significant brain metabolic connections between healthy and patients’ groups. Data from N-1 patients were used to train the model and
then the resulting model was applied to the data of the remaining patient to estimate the overall survival. This procedure was repeated N times to
predict the overall survival of all patients. The correlation between the estimated and observed overall survival was then evaluated. Furthermore,
brain metabolic networks between healthy and patients’ group were also systematically compared by the network’s global and local properties using
the graph theoretical approach.
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Global and local graph metrics of the
metabolic brain connectome

The global graph metrics of the patients are listed in Table 2.

Ar, Q, Eglobal, Elocal, and s increased, whereas Sr, Cp, g, l, Hr,

and Lp decreased in the NSCLC group. Statistical analyses

revealed no significant differences between the NSCLC and

control groups.
Degree analysis of the metabolic
brain connectome

To investigate the degree distribution of the estimated

metabolic brain connectome, we analyzed the mean degree of

each node in the NSCLC and control groups. The degree in the

Frontal.Sup.R, Frontal.Mid., Rolandic.Oper., Cingulum.Post.L,

Amygdala.R, Angular., Precuneus, and Temporal.Pole.Sup.R

tended to increase in the NCSLC group, whereas the degree in

the Frontal.Sup.Medial.L, Frontal.Mid.Orb., Rectus.R, Insula.,

Cingulum.Ant.L Cuneus.R, and Temporal.Inf.L tended to

decrease. The 15 significant nodes with average degrees in the

NSCLC and control groups are listed in Table 3.
B

CA

FIGURE 3

The results of estimating the overall survival in patients using individualized brain metabolic network. (A) The scatterplot demonstrates the significant
correlation (r = 0.42, p = 0.012) between the overall survival of patients predicted by brain metabolic connectome and the actually observed overall
survival. (B) The weight of each significant connection contributing to predicting the overall survival were mapped on the ICBM 152 template. Color
bar denotes the value of connection weight. (C) The respective contributions of 6 brain regions.
FIGURE 2

The significant metabolic connections between healthy and
advanced NSCLC groups. 90 AAL ROIs derived from the 6 brain
regions are presented by the colored circles under the
corresponding brain regions (external colored wedge). A total of 19
significant metabolic connections are showed by the black lines.
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Betweenness analysis of the metabolic
brain connectome

We also investigated the betweenness distribution of the

estimated metabolic brain connectome in the NSCLC and HC

groups. The results showed that betweenness in Frontal.Inf.Orb.R,

Rolandic.Oper.R, ParaHippocampal.R, Amygdala.R, Fusiform.R,

Precuneus.R, Thalamus.L, and Temporal.Pole.Sup.R. tended to

increase in the NSCLC group, whereas betweenness in Rectus.R

tended to decrease. The significant nodes with average

betweenness in the healthy and advanced NSCLC groups are

shown in Table 4.
Significant connections and
prediction results

To explore the connections exhibited significant difference

between patients and healthy participants, we reported the

statistical connection analysis results. A total of 19 metabolic
Frontiers in Oncology 06
connections reached a significant level, as shown in Figure 2.

Then, to evaluate whether individualized brain metabolic

connectome can track patients’ overall survival, SVR model was

trained to predict the overall survival for each patient. The predicted

and observed overall survival in patients showed a significant

correlation (r = 0.42, p = 0.012, Figure 3A). The raw predicted

weights of each connection are shown in Figure 3B and listed in

Table 5. Furthermore, grouping the connections’ predicted weights

into the 6 brain regions, the connections that contributed to the

overall survival prediction were predominantly located in temporal

and frontal regions, as shown in Figure 3C.
Discussion

We present an individualized metabolic network using FDG-

PET imaging in patients with advanced NSCLC. These images were

feeded to a machine learning model, which was then used to predict

patients’ overall survival. Nervous system-cancer crosstalk is

bidirectional and is called “cancer neuroscience” (4, 34). Evidence

has demonstrated that diverse cancers may elicit specific functional

networks of interconnected brain regions, resulting in specific

structural and metabolic changes in the brain (10, 35, 36). Studies

have shown that metabolism in the brain is coupled to synaptic

activity in a putative association; therefore, metabolic changes in the

brain reflect changes in synaptic activity to a certain extent (37, 38).

The characteristics of the metabolic brain network obtained by the

KLS method may be related to synapses and neural activities as well

as the psychology of patients and cancer. We further used the

machine learning model obtained by the brain metabolic network as

a feature to predict the overall survival and actual survival of

patients with NSCLC to achieve a good fit. The lung-brain axis is

a cutting-edge area of research (39), as studies have shown that the

microbial community in the lungs can impact metabolic and

structural changes in the brain, leading to brain-related immune
TABLE 2 Global and local graph metrics of the metabolic brain connectome.

Global graph metrics NSCLCs,mean(SD) controls, mean(SD) t p Description

Ar 7.30(0.95) 7.24(0.79) 0.39 0.70 zscore

Q 14.21(1.36) 14.28(1.13) -0.34 0.73 rawdata

Hr -0.68(0.35) -0.68(0.32) -0.02 0.99 zscore

Eglobal 0.18(0.01) 0.17(0.01) 0.93 0.36 rawdata

Elocal 0.28(0.01) 0.28(0.01) 0.17 0.87 rawdata

Cp 0.24(0.01) 0.24(0.01) -0.10 0.92 rawdata

g 0.88(0.09) 0.87(0.07) 0.44 0.66 rawdata

l 0.60(0.01) 0.60(0.02) -0.35 0.73 rawdata

s 0.67(0.07) 0.66(0.06) 0.41 0.68 rawdata

Lp 1.51(0.06) 1.52(0.08) -0.56 0.57 rawdata

Sr -0.96(0.59) -0.83(0.54) -1.32 0.19 zscore
Ar, assortativity; Q, modularity score; Hr, hierarchy; Eglobal, global efficiency; Elocal, local efficiency; Cp, clustering coefficient; g, normalized clustering coefficient; l, normalized characteristic
path length; s, small-world;Lp, characteristic path length; Q, modularity score; Sr, synchronization.
TABLE 1 Clinical information of patients with advanced NSCLC group
and control group.

Clinical information of NSCLCgroup and NCgroup

Patient Healthy control p

Age, mean(SD),y 63.9(10.05) 61.33(10.28) 0.12

male, No.(%) 65 66 0.87

Histologic subtype

Adenocarcinoma 23 NA

Squamous carcinoma 53 NA

Other 3 NA
NA, not applicable.
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diseases (40, 41). Our research aims to construct a model by

collecting FDG PET metabolic information from a small sample

of late-stage non-small cell lung cancer patients and linking it to the

patients’ overall survival. We hope that this model will eventually

provide a potential biomarker for clinical decision-making in

regards to a patient’s overall survival, but this still requires further

support from additional samples.

We found that the NSCLC group had no statistical difference in

global and local graph metrics than that of the normal group;

however, Ar, Q, Eglobal, Elocal, Cp, g, l, s, and Sr increased,

whereas Sr,Cp, g, l, Hr, and Lp decreased in the NSCLC group. This

result is interesting and differs from those of previous research.

Previous FDG-PET imaging studies involving patients with no-CNS

tumor metabolic networks may have used group-level analyses,

which potentially sacrifice or obscure salient individual differences

within a group; in contrast, our novel KLS approach offers
Frontiers in Oncology 07
construction of an individual’s metabolic brain network, which

varies from most FDG PET and MR studies (42–44).

Based on the novel KLS approach, we were able to parameterize

the balance between short- and long-range functional connections,

we found several abonaml nodes in the degree analysis and

betweenness analysis. We also found that the frontal and temporal

lobes made up a larger portion both in degree and betweenness

analyses. Abnormalmetabolism in the prefrontal cortex is associated

with aggression and impulsivity, which are prevalent in patients with

cancer (45). A previous study on brain metabolism and depression

in no-CNS cancers also found that abnormal frontal lobe

metabolism was correlated with depression (44). Furthermore,

these regions may be related to the severity of depression (46).

Research has shown that temporal brain regions are involved in

emotional processing and declarative memory (47). Similarly, in

previous studies, structural and functional abnormalities were found

in the temporal lobe (10, 35, 48). Based on previous findings,

temporal and frontal lobe abnormalities are often concomitant in

patients with no-CNS tumors, which were also observed in our

study. We speculate that this frontotemporal lobe abnormality is

likely to be associated with the default mode network, leading to

emotional disturbance and cognitive deficits in patients with

advanced NSCLC (49–51).

We also found abnormalities in the limbic system

(parahippocampal gyrus, thalamus, amygdala, and cingulate gyrus)

in the brain metabolic networks. The limbic system is involved in
TABLE 4 Significant nodes with betweenness (NSCLCs vs. Controls).

Betweenness t p Label Index

Frontal.Inf.Orb.R 2.02 0.05 16

Rolandic.Oper.R 2.16 0.03 18

Rectus.R -2.20 0.03 28

ParaHippocampal.R 2.73 0.01 40

Amygdala.R 2.11 0.04 42

Fusiform.R 2.93 0.00 56

Precuneus.R 2.47 0.01 68

Thalamus.L 2.12 0.04 77

Temporal.Pole.Sup.R 4.75 <0.0001 84
TABLE 3 Significant nodes with degree (NSCLCs vs. Controls).

Degree t p Label Index

Frontal.Sup.R 2.58 0.01 4

Frontal.Mid.L 2.42 0.02 7

Rolandic.Oper.R 2.06 0.04 18

Frontal.Sup.Medial.L -3.53 0.00 23

Frontal.Mid.Orb.R -2.65 0.01 26

Rectus.R -2.17 0.03 28

Insula.L -2.05 0.04 29

Cingulum.Ant.L -2.53 0.01 31

Cingulum.Post.L 2.02 0.05 35

Amygdala.R 2.27 0.02 42

Cuneus.R -2.22 0.03 46

Angular.L 2.08 0.04 65

Precuneus.R 2.69 0.01 68

Temporal.Pole.Sup.R 2.22 0.03 84

Temporal.Inf.L -3.45 0.00 89
TABLE 5 Significant connection (NSCLCs vs. Controls) and raw
predicted weight.

Significant connection Raw weight

Frontal.Mid.Orb.R - Frontal.Sup.L 4.60

Frontal.Sup.Medial.R - Frontal.Mid.L -0.94

Frontal.Sup.Medial.L - Frontal.Mid.Orb.R 9.28

Temporal.Inf.L - Frontal.Mid.Orb.R -13.70

Cingulum.Mid.L - Rolandic.Oper.R -10.59

Cingulum.Mid.R - Rolandic.Oper.R 0.08

Cuneus.R - Supp.Motor.Area.L -3.12

Putamen.R - Supp.Motor.Area.L 0.35

Temporal.Mid.R - Frontal.Sup.Medial.L -1.16

Temporal.Inf.L - Occipital.Mid.R 7.17

Temporal.Mid.R - Parietal.Sup.L 2.77

Temporal.Sup.R - Precuneus.R 5.23

Temporal.Mid.R - Precuneus.R -2.50

Temporal.Pole.Sup.R - Caudate.L 2.44

Temporal.Pole.Sup.R - Caudate.R -3.06

Temporal.Pole.Mid.L - Temporal.Sup.R 2.98

Temporal.Inf.L - Temporal.Sup.R -1.50

Temporal.Inf.L - Temporal.Mid.L 15.04

Temporal.Inf.L - Temporal.Mid.R 4.05
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mediating instinctual and affective behaviors, consolidating memories,

and forming emotions (52, 53). We focused on metabolic

abnormalities in the amygdala because, in addition to affecting

emotional processing, it has recently been implicated in nociceptive

processing (54).We assumed that an abnormalmetabolismnetwork in

the amygdala may have a connection with the cancerous pain

experienced by patients with advanced NSCLC. Further research is

required to confirm this hypothesis.

In addition to betweenness and degree analyses, we explored

abnormal metabolic brain network connections in patients with

NSCLC and used these abnormal connections to develop a prediction

model. Because our present brain connectome approach can measure

local network properties and the global network, it could

powerfully identify salient properties predictive of the overall

survival of patients with advanced NSCLC. We found that our

model had a good fit with the observed overall survival (r=0.42,

p=0.012). The connections with larger contributions are

Tempora l . In f .L - Tempora l .Mid .L , Tempora l . In f .L -

Frontal.Mid.Orb.R, Cingulum.Mid.L - Rolandic.Oper.R, and

Frontal.Sup.Medial.L - Frontal.Mid.Orb.R. We found that the

temporal and frontal lobes play a large role in the prediction, and

fronto-temporal function is a characteristic alteration of the metabolic

brain network in patients with advanced NSCLC, which is associated

with memory, emotion, and cognitive changes. Cingulum.Mid.L -

Rolandic.Oper.R abnormalities were not mentioned in previous

studies, and abnormalities in this connection are associated with

cognition and are frequently observed in schizophrenia (55). Tumors

may affect brain function through a variety of factors and cannot be fully

explained at present. Similarly, the machine learning prediction model

had a good degree offit with the actual survival period; however, further

research is needed for a better understanding and usage of the model.

Presently, functional magnetic resonance imaging (fMRI) is also a

widely adopted method in the study of cerebral glucose metabolism

(56, 57). Presently, functional magnetic resonance imaging (fMRI) is

also a widely adopted method in the study of cerebral

glucose metabolism. This presents new opportunities for future

investigations, and highlights the potential for incorporating multiple

imaging modalities to enhance the study of brain metabolism.

This retrospective study had few limitations. We were unable to

systematically assess various brain functions such as cognition and

memory in patients, which we aim to include in future studies. Our

study had a small sample size; we hope to expand the sample size in

the follow-up studies. In addition, the healthy control group would

have been a good additional reference but would have been difficult

to justify. Despite having divided the pathology data of our NSCLC

patients into groups based on their histologic subtypes, the

insufficient number of patients in each subtype has resulted in

the combination of all subtypes into a single group for this study. In

the future, we plan to continue collecting patient data and analyze it

in detail based on pathology.
Conclusion

In this study, we found that unique changes in the brain

metabolic network may be closely related to patients’ mental
Frontiers in Oncology 08
status and cognition, which is critical to the understanding of the

neurobiological mechanisms associated with depression symptoms

in patients with advanced NCSLC. In addition, since our predictive

model predicts overall survival with higher significance, it would

largely benefit in the clinical practice.
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7. Arranz L, Sánchez-Aguilera A, Martıń-Pérez D, Isern J, Langa X, Tzankov A, et al.
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative
neoplasms. Nature (2014) 512:78–81. doi: 10.1038/nature13383

8. Saloman JL, Cohen JA, Kaplan DH. Intimate neuro-immune interactions:
Breaking barriers between systems to make meaningful progress. Curr Opin
Neurobiol (2020) 62:60–7. doi: 10.1016/j.conb.2019.11.021

9. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, et al. Neuronal
activity promotes glioma growth through neuroligin-3 secretion. Cell (2015) 161:803–
16. doi: 10.1016/j.cell.2015.04.012

10. Zhang W, Ning N, Li X, Niu G, Bai L, Guo Y, et al. Changes of brain glucose
metabolism in the pretreatment patients with non-small cell lung cancer: A retrospective
PET/CT study. PloS One (2016) 11:e0161325. doi: 10.1371/journal.pone.0161325

11. Benveniste H, Zhang S, Reinsel RA, Li H, Lee H, Rebecchi M, et al. Brain
metabolomic profiles of lung cancer patients prior to treatment characterized by proton
magnetic resonance spectroscopy. Int J Clin Exp Med (2012) 5:154–64.

12. Tashiro M, Kubota K, Itoh M, Yoshioka T, Yoshida M, Nakagawa Y, et al.
Hypometabolism in the limbic system of cancer patients observed by positron emission
tomography. Psychooncology (1999) 8:283–6. doi: 10.1002/(SICI)1099-1611(199907/
08)8:4<283::AID-PON384>3.0.CO;2-A

13. Tijms BM, Seriès P, Willshaw DJ, Lawrie SM. Similarity-based extraction of
individual networks from gray matter MRI scans. Cereb Cortex (2012) 22:1530–41. doi:
10.1093/cercor/bhr221

14. Wang H, Jin X, Zhang Y, Wang J. Single-subject morphological brain networks:
Connectivity mapping, topological characterization and test-retest reliability. Brain
Behav (2016) 6:e00448. doi: 10.1002/brb3.448

15. Kong X-Z, Wang X, Huang L, Pu Y, Yang Z, Dang X, et al. Measuring individual
morphological relationship of cortical regions. J Neurosci Methods (2014) 237:103–7.
doi: 10.1016/j.jneumeth.2014.09.003

16. Wang M, Jiang J, Yan Z, Alberts I, Ge J, Zhang H, et al. Individual brain metabolic
connectome indicator based on kullback-leibler divergence similarity estimation predicts
progression frommild cognitive impairment to alzheimer’s dementia. Eur J Nucl MedMol
Imaging (2020) 47:2753–64. doi: 10.1007/s00259-020-04814-x

17. Ho K-C, Toh C-H, Li S-H, Liu C-Y, Yang C-T, Lu Y-J, et al. Prognostic impact of
combining whole-body PET/CT and brain PET/MR in patients with lung
adenocarcinoma and brain metastases. Eur J Nucl Med Mol Imaging (2019) 46:467–
77. doi: 10.1007/s00259-018-4210-1

18. Yin G, Li C, Chen H, Luo Y, Orlandini LC, Wang P, et al. Predicting brain
metastases for non-small cell lung cancer based on magnetic resonance imaging. Clin
Exp Metastasis (2017) 34:115–24. doi: 10.1007/s10585-016-9833-7

19. Simes RJ. Treatment selection for cancer patients: application of statistical
decision theory to the treatment of advanced ovarian cancer. J Chronic Dis (1985)
38:171–86. doi: 10.1016/0021-9681(85)90090-6

20. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine
learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J
(2015) 13:8–17. doi: 10.1016/j.csbj.2014.11.005

21. She Y, Jin Z, Wu J, Deng J, Zhang L, Su H, et al. Development and validation of a
deep learning model for non-small cell lung cancer survival. JAMA Netw Open (2020)
3:e205842. doi: 10.1001/jamanetworkopen.2020.5842

22. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O,
Delcroix N, et al. Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage (2002) 15:273–89. doi: 10.1006/nimg.2001.0978

23. Lesne A. Shannon Entropy: A rigorous notion at the crossroads between
probability, information theory, dynamical systems and statistical physics. Math
Struct Comput Sci (2014) 24:e240311. doi: 10.1017/S0960129512000783

24. Rosenblatt M. Remarks on some nonparametric estimates of a density function.
Ann Math Stat (1956) 27:832–7. doi: 10.1214/aoms/1177728190
Frontiers in Oncology 09
25. Patestas MA, Gartner LP. A textbook of neuroanatomy. 2nd ed. Hoboken, New
Jersey: Wiley Blackwell (2016).

26. Botev ZI, Grotowski JF, Kroese DP. Kernel density estimation via diffusion. Ann
Stat (2010) 38:2916–57. doi: 10.1214/10-AOS799
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