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Tumor senescence leads
to poor survival and
therapeutic resistance in
human breast cancer

Jingtong Zhai1†, Jiashu Han1,2†, Cong Li1, Dan Lv1, Fei Ma1*

and Binghe Xu1*

1Department of Medical Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China, 24 + 4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking
Union Medical College, Beijing, China
Background: Breast cancer (BRCA) is the most common malignant tumor that

seriously threatens the health of women worldwide. Senescence has been

suggested as a pivotal player in the onset and progression of tumors as well as

the process of treatment resistance. However, the role of senescence in BRCA

remains unelucidated.

Methods: The clinical and transcriptomic data of 2994 patients with BRCA were

obtained from The Cancer Genome Atlas and the METABRIC databases.

Consensus clustering revealed senescence-associated subtypes of BRCA

patients. Functional enrichment analysis explored biological effect of

senescence. We then applied weighted gene co-expression network analysis

(WGCNA) and LASSO regression to construct a senescence scoring model,

Sindex. Survival analysis validated the effectiveness of Sindex to predict the

overall survival (OS) of patients with BRCA. A nomogram was constructed by

multivariate Cox regression. We used Oncopredict algorithm and real-world data

from clinical trials to explore the value of Sindex in predicting response to cancer

therapy.

Results: We identified two distinct senescence-associated subtypes, noted low

senescence CC1 and high senescence CC2. Survival analysis revealed worse OS

associated with high senescence, which was also validated with patient samples

from the National Cancer Center in China. Further analysis revealed extensively

cell division and suppression of extracellular matrix process, along with lower

stromal and immune scores in the high senescence CC2. We then constructed a

37 signature gene scoring model, Sindex, with robust predictive capability in

patients with BRCA, especially for long time OS beyond 10 years. We

demonstrated that the Sene-high subtype was resistant to CDK inhibitors but

sensitive to proteosome inhibitors, and there was no significant difference in

paclitaxel chemotherapy and immunotherapy between patients with different

senescence statuses.
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Conclusions: We reported senescence as a previously uncharacterized hallmark

of BRCA that impacts patient outcomes and therapeutic response. Our analysis

demonstrated that the Sindex can be used to identify not only patients at different

risk levels for the OS but also patients who would benefit from some cancer

therapeutic drugs.
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Introduction

Breast cancer (BRCA) is the most common malignant tumor and

the leading cause of cancer-related death in women, making it a

serious threat to human health (1). Due to the multifaceted nature of

this complex disease, patients with BRCA are often classified into

luminal A, luminal B, human epidermal growth factor receptor 2

(HER2)-enriched, and basal-like subtypes based on molecular

expression by pathology (2, 3). Moreover, the Tumor, Nodes,

Metastases (TNM) staging system, based on anatomical

abnormalities including tumor size, lymph node involvement, and

distant metastatic status, is the most frequently used tool for outcome

prediction (4). However, there is still considerable heterogeneity in

the treatment responses and the clinical outcomes among patients

with similar clinical and pathologic backgrounds (5), highlighting the

need for novel predictive markers other than clinical stages and

pathohistological classifications.

As next-generation sequencing technologies can provide more

information at a now acceptable cost, classification of patients with

BRCA based on transcriptomic profiles has come to use, including the

Prediction Analysis of Microarray 50 (PAM50), the 21-gene assay

(OncotypeDX) and the 70-gene signature (MammaPrint) (6–8). Beside

these classification systems based on the whole expression profile, there

are also several signatures based on key biological features of the tumor,

such as autophagy-related signatures (9, 10), N6-methyladenosine (11,

12), immune cell infiltration (13, 14), etc. These feature-specific

signatures bring forth the hope for precision medicine, but many

important biological processes remain uninvestigated.

Cellular senescence is the growth arrest of cells that have been

intrinsically and/or extrinsically damaged by factors including

oncogenic activation, mitochondrial dysfunction, radiation damage,

oxidative and genotoxic stress, and chemotherapeutic agent-induced

damage (15). Accumulating evidence suggests that cellular senescence

is a double-edged sword in human cancer. On one hand, cellular

senescence is considered tumor-suppressive by inhibition of cell

division and tumor expansion (16–18). On the other hand,

senescence-associated cellular plasticity and stemness

reprogramming may be critical for treatment-resistance in many

cancer types, including BRCA (19–21). Moreover, secretion of

senescent cells (inflammatory cytokines, chemokines, growth

factors), known as the senescence-associated secretory phenotype

(SASP), influences cancerous, stromal, and immune cells in the

tumor microenvironment (TME) (22–24). Despite numerous
02
preclinical studies in cellular and animal models, our understanding

on the variable effects of senescence in different cancers is still

rudimentary, and the characteristics of senescence in patients with

BRCA are particularly complex (25–27). Therefore, it is essential to

elucidate the value of tumor senescence as a biomarker to guide clinical

prognosis and treatment for better cancer prevention and therapy.

In this study, we comprehensively analyzed the senescent

features in multiple BRCA cohorts and classified BRCA patients

into two subtypes with distinct senescent status, microenvironment

composition, mutation frequency, and signaling pathway

activation. We also constructed the Senescence Index (Sindex)

model, a tumor senescence scoring system that not only predicted

the survival outcome of patients with BRCA, but also suggested

potentially effective treatment strategies for the high-risk, high-

senescence group of patients (Figure 1).
Materials and methods

Data collection and processing

We acquired publicly available datasets and information of

patients with BRCA from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/) and the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) databases

(cBioPortal, https://www.cbioportal.org/). For the TCGA dataset,

raw count expression data was downloaded from the TCGA Data

Portal with the TCGAbiolinks R package (28), and then the raw

counts were transformed into normalized count with the VST

function from the Deseq2 R package for subsequent analysis (29).

Microarray gene-expression data was downloaded from the

METABRIC database (https://www.cbioportal.org/study/

summary?id=brca_metabric). The resources used in this study

were summarized in Supplementary Table 4. All the R packages

used in this study run in the R software (version 4.1.2, https://

www.r-project.org). Data from the clinical trial I-SPY2 and IMvigor

210 was deposited under GSE196096 and GSE145281 (30, 31).
Patient population and clinical information

In this study, we retrospectively collected 2994 patients with

BRCA for subsequent analysis: the METABRIC cohort and TCGA
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cohort each included 1904 and 1090 patients with detailed clinical

information, survival follow-up, and complete genomic data,

respectively (Supplementary Table 5). In addition, we collected

pathological tissue sections and clinical data of patients with BRCA

from the National Cancer Center of China. This study was approved

by the ethics committee of the Chinese Academy of Medical Sciences

and Peking Union Medical College (Ref. 19/327-2111).
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Identification of differentially expressed
genes and GSEA analysis

The DEGs between BRCA and normal breast tissues were

identified with the “Deseq2” R package based on raw count data

from the TCGA dataset (29). Genes with a false discovery rate <

0.05 and the |fold change| > 1 were defined as significant DEGs.
FIGURE 1

The flow chart describing the number of cases and workflow included in the study cohort.
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Gene set enrichment analysis (GSEA) was applied to elucidate

biological differences between BRCA and normal adjacent tissue

(NAT) (32).
Consensus clustering for the
senescence subtypes

Based on BRCA-senescence related genes, patients with BRCA

were clustered with “ConsensusClustering Plus” R package (33).

Single-sample GSEA (ssGSEA) was performed for senescence

related Reactome gene sets using “GSVA” R package (34), and

the results were visualized with the R package “ComplexHeatmap”

(35). Principal component analysis (PCA) plot was visualized using

“PlotPCA” function of the Deseq2 R package (29).
Characterize biological effects of
senescence

We first used GSEA to compare difference in biological pathway

activities between CC1 and CC2; then calculated the activity of

hallmark pathways with ssGSEA, and investigated each pathway’s

correlation with senescence. The tumor purity scores, immune

infiltration levels, and stromal contents in different samples

were evaluated via the “ESTIMATE” algorithm (36). To evaluate

stromal and immune cell infiltration characteristics of BRCA,

we used the “Xcell” R package (37) to quantitatively analyze

the infiltration levels of different immune cells and fibroblasts.

The ssGSEA algorithm was used to quantify the activity of

immunogenic cell death, apoptosis, TGF-b, extracellular matrix

(ECM) assembly, and angiogenesis, all gene sets retrieved from

GO-BP. For WES data, the R package “Maftools” was utilized to

calculate tumor mutation burden (TMB) and compare mutation

differences between patients with high and low senescent

statuses (38).
Multiplex immunofluorescence
immunohistochemistry and imaging

A tissue microarray (TMA) spotted with tumor samples from

74 BRCA patients (HBreD090PG01) was purchased from Shanghai

Outdo Biotech Co. Ltd. A total of 90 cores on the slide consisted of

74 cases of BRCA tissue and paired normal breast tissue. All tissues

were collected in accordance with the ethical standards with the

donor being informed completely and with their consent, from

National Human Genetic Resources Sharing Service Platform:

2005DKA21300. For multiplex immunofluorescence staining, the

manual multiplex immunofluorescence immunohistochemistry kit

was used according to the manufacturer’s instructions, and the

molecules panel, which consisted of five antibodies including anti-

PANCK, anti-a-SMA, anti-CD8, anti-CD68, anti-P16, was

conducted on the same slide.
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WGCNA and Sindex construction
and validation

All model construction work was first established in the

METABRIC dataset, and then tested in TCGA as external

validation. We first used the “WGCNA” package in R (with

default parameters) to identify gene modules associated with high

senescence, defining the module with the highest absolute module

significance as the key module (red). To develop a senescence-based

signature of individual tumor with better clinical utility and

practicability, we first used the “Ezcox” R package to apply

univariate proportional hazards (Cox) regression analysis to

preliminarily screen overall survival (OS)-related genes in the

module. Then, to remove the multicollinearity among these genes,

we applied least absolute shrinkage and selection operator (LASSO)

regression with the optimal penalty parameter and a minimum 10-

fold cross-validation to identify the most valuable prognostic genes

(39). The final 37 genes were used to establish a final model with

Cox regression, and the linear predictor values were defined as the

Sindex, based on which survival probabilities were calculated with

the equation from Cox regression. Time-dependent receiver

operating characteristic (ROC) curves were made using

survivalROC R package, conducting calibration at different

timepoints to determine the robustness of the model. Moreover,

the Sindex of patients were used to divided patients into high and

low subgroups according to an optimal cutoff value selected by the

R package “maxstat” (40), and generated survival curves via the

Kaplan-Meier (K-M) method and log-rank test with the R packages

“survival” and “survminer” (41). Collectively, area under the curve

(AUC) of the ROC curve and K-M survival analysis were

considered when evaluating the predictive ability of the model.

For nomogram construction, we first used univariant Cox

regression to identify survival-related clinical characteristics

(including Sindex). The independent predictive characteristics were

screened out with multivariable Cox regression model, and visualized

with a forest plot drawn by the survminer R package. The stepwise

multivariate Cox regression was used to construct the final nomogram,

which included lymph nodes, tumor size, Nottingham prognostic

index, inferred menopausal state, age and Sindex. The nomogram

was further evaluated for predictive probability of 5-, 10-, and 15-year

survival in patients with BRCA using the “survival” R package (41).
Exploration of the significance of
senescore in response to cancer therapy

To evaluate the potential value of Sindex in therapeutic suggestion

for patients with BRCA, we calculated the half-maximal inhibitory

concentration (IC50) of common therapeutic drugs based on the

Genomics of Drug Sensitivity in Cancer (GDSC) databases through

the Oncopredict algorithm (42). The IC50 of these chemotherapeutic

drugs in high and low Sindex subgroups were compared by Wilcoxon

test with the results exhibited in box diagrams using the “ggpubr” R

package (43). I-SPY2 is an ongoing multicenter, phase II neoadjuvant

platform trial for patients with BRCA that used a variety of treatments
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and combinations (30). Based on the clinical response and

transcriptomic data, we calculated Sindex for each patient, and

compared the average Sindex between pathologic complete response

(pCR) and non-pCR patients treated with each treatment schedule.

IMvigor210 is a phase III clinical trial of atezolizumab in urothelial

cancer patients. We calculated the Sindex for each patient and

compared the average Sindex between responders (R) [complete

response (CR), partial response (PR)] and non-responders (NR)

[stable disease (SD), progressive disease (PD)] to elucidate the effect

of senescence on immunotherapy response.
Cell lines and reagents

In this study, we used the breast cancer cell line MDA-MB-436

obtained from ATCC and pancreatic cancer cell line SW1990 with

P53 knockout kindly provided by Prof Ziwen Liu. Both cell lines

were grown in the growth medium recommended by ATCC,

Leibovitz’s L-15 medium (Thermo Fisher, 11415064) with1%

penicillin and streptomycin (Thermo Fisher, 15070063), and

10% and 20% fetal bovine serum (Thermo Fisher, 10099),

respectively. Cell cultures are regularly tested for mycoplasma

infection with MycoAlert mycoplasma detection kits (Lonza, LT07).
Cloning of TP53 vectors

Wildtype and mutant TP53 vectors were amplified from SW1990

(TP53WT) and PANC1 (TP53MUT, c.818G>A, p.R273H) cells,

respectively, as previously described by Y Liu and W Bodmer

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1327731/). The

TP53 vectors are then cloned into pInducer20 (Addgene) through

the Gateway method: briefly, 50 ng of pCR8 TP53 and 150 ng of

pInducer20 plasmids (Addgene) were mixed with LR Clonase II

(Invitrogen, 11791) and incubated at 25 °C for 1 hour before

reaction termination by Proteinase K. The reaction products were

then used to transform DH5a bacteria and positive clones were

selected on ampicillin agar plate.
P53 re-expression

Cell lines with stable overexpression of p53 WT or MUT were

generated with lentivirus transduction. Lentiviruses were produced

by transfecting Lenti-HEK-293 cells with 2 mg of p53 construct,

1.5 mg of viral protein R (VPR), and 0.5 mg of vesicular stomatitis

Indiana virus G protein (VSVG), using Lipofectamine 3000

transfection reagent (Thermo Fisher, L3000015). Viral particles

were collected from the medium supernatant after centrifuging at

4000 rpm for 30 min. 48 h after infection with 1ml of lentivirus and

10 mg of Polybrene, puromycin was added to select and generate cell

lines with stable expression. Stable cells were tested for expression of

P53 WT or MUT through sequencing. Transient re-expression was

achieved simply through Lipofectamine 3000 aided plasmid

transfection according to the manufacturer’s instruction.
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Quantification of mRNA expression

Total RNA was obtained with RNeasy kit (Qiagene 74004)

following manufacturer’s instruction. cDNA was synthesized

with the M-MLV reverse transcriptase kit (Thermo Fisher,

28025013). RT-qPCR reaction was performed in a final volume

of 20 m containing 12 ml TaqMan® Universal PCR Master Mix, 5

ml H2O, 1 ml of forward and reverse primers, and 1 ml cDNA

(approximately 10ng/ml). The reaction was put in an ABI

PRISM® 96-Well Optical Reaction Plate under the standard

thermal cycling conditions by ABI PRISM® 7000 Sequence

Detection System (TaqMan®): initial 50°C for 2 min and 95°C

for 10 min followed by 40 cycles at 95°C for 15 sec and 60°C for

1 min were used. All reactions were performed in three

duplicates. The primers used for qPCR reactions are shown

in Table 1.
mIHC staining

Microarray tissue samples collected from breast cancer patients

were used as experimental samples and tonsil tissues were used as

controls (both as FFPE samples). All the tissues were cut and made

as section slides with 2-mm thicknesses. The slides were

deparaffinized in xylene for 10 mins and repeat three times, and

rehydrated in absolute ethyl alcohol for 5 mins and repeat twice,

95% ethyl alcohol for 5 mins, 75% ethyl alcohol for 2 mins,

sequentially. Then the slides were washed with distilled water 3

times. A microwave-oven is used for heat-induced epitope retrieval;

during epitope retrieval, the slides were immersed in boiling EDTA

buffer (Alpha X Bio, Beijing, China) for 15mins. Antibody Diluent/

Block (Alpha X Bio, Beijing, China) was used for blocking. The

mIHC staining part was performed and analyzed according to a 6-

plex-7-color panel, and specifications (with primary antibodies
TABLE 1 The primers used for qPCR reactions.

Gene Forward sequence Reverse sequence

P53 CCTCAGCATCTTATC
CGAGTGG

TGGATGGTGGTACAGT
CAGAGC

p16INK4A CTCGTGCTGATGCTAC
TGAGGA

GGTCGGCGCAGTTGG
GCTCC

P21 AGGTGGACCTGGAGAC
TCTCAG

TCCTCTTGGAGAAGATC
AGCCG

Rb1 CAGAAGGTCTGCCAAC
ACCAAC

TTGAGCACACGGTCGCT
GTTAC

IL-1a TGTATGTGACTGCCCAA
GATGAAG

AGAGGAGGTTGGTCTCA
CTACC

IL-6 AGACAGCCACTCACCT
CTTCAG

TTCTGCCAGTGCCTCTT
TGCTG

TGFb TACCTGAACCCGTGTT
GCTCTC

GTTGCTGAGGTATCGCCA
GGAAA

ICAM1 AGCGGCTGACGTGTGC
AGTAAT

TCTGAGACCTCTGGCTT
CGTCA
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used) are as the following: CD8 (ZA0508, ZSGB-BIO, CHINA),

CD68 (ZM0060, ZSGB-BIO,CHINA), PANCK (ZM0069, ZSGB-

BIO,CHINA), P16 (ab51243, Abcam, Cambridge, UK), a-SMA

(ab7817, Abcam, Cambridge, UK) and CD31 (ab76533, Abcam,

Cambridge, UK). All the primary antibodies were incubated for 1 hr

at 37°C. Then slides were incubated with Alpha X Ploymer HRPMs

+Rb (Alpha X Bio, Beijing, China) for 10 mins at 37°C. Alpha X 7-

Color IHC Kit (Alpha X Bio, Beijing, China) was used for

visualization. The correspondences between primary antibodies

and fluorophores are listed in below:

AlphaTSA 480 (CD8), AlphaTSA 520 (CD68), AlphaTSA 570

(PANCK), AlphaTSA 620 (P16), AlphaTSA 690 (CD31)

AlphaTSA 780 (a-SMA). After each cycle of staining, heat-

induced epitope retrieval was performed to remove all the

antibodies including primary antibodies and secondary

antibodies. The slides were counter-stained with DAPI for 5

mins and enclosed in Antifade Mounting Medium (I0052;

NobleRyder, Beijing, China). Axioscan7 (ZEISS, Germany) was

used for imaging the visual capturing. Data analysis was

performed with Halo (3.4, Indica Labs, United States).
Statistics

Statistical analysis was performed based on R software v4.1.2

(https://www.r-project.org/) and GraphPad Prism v9.3.0 (https://

www.graphpad.com/). Categorical variables were analyzed using c2
test or Fisher’s exact test. Continuous variables for paired samples

were analyzed using Student’s t test. Multiple groups of continuous

variables were analyzed using one-way ANOVA. Survival analysis

was performed based on the univariate and multivariate Cox

regression. Pearson coefficient of correlation was calculated to

measure the correlation between two variables. Unless stated

otherwise, two-tailed p < 0.05 was regarded as statistically significant.
Results

Senescence-based subtyping of BRCA

We first compared the transcriptomic data of BRCA and paired

NAT from the TCGA dataset. GSEA showed extensive cellular

senescence in BRCA but not NAT, in terms of biological pathways

including cellular senescence (NES = 2.1709, P < 0.001), DNA

damage/telomere stress induced senescence (NES = 2.42879,

P < 0.001), formation of senescence associated heterochromatin

foci (NES = 1.759044, P < 0.001), oxidative stress induced

senescence (NES = 2.244097, P < 0.001), senescence associated

secretory phenotype (NES = 2.274088, P < 0.001) and senescence

TP53 targets DN (NES = 2.123696, P < 0.001) (Figure 2A).

To further investigate the role of senescence in breast cancer, we

reviewed available literatures and databases for senescence-related

genes (SRGs) published in the Kyoto Encyclopedia of Genes and

Genomes database, the Gene Ontology database, the Reactome

database, the Molecular Signatures Database and the Csgene

database. Collectively, we found 28 gene sets and 957 SRGs
Frontiers in Oncology 06
(Supplementary Table 1). We then used Deseq2 to obtain 6236

DEGs between BRCA and NAT, among which 3729 were

upregulated and 2505 were downregulated (Figure 2B). To identify

SRGs with key biological roles in breast cancer, we overlapped the

DEGs and the SRGs to get 187 upregulated and 96 downregulated

genes, making up the list of 283 BRCA-SRGs (Figure 2C).

We then investigated the value of senescence in breast cancer

subtyping. Consensus clustering of the TCGA dataset based on the

expression of BRCA-SRGs classified patients into two distinct

senescence-associated clusters, noted CC1 and CC2 respectively

(Figure 2D). ssGSEA analysis of widely used Reactome senescence-

related gene sets suggested that senescence is activated in CC2 but

suppressed in CC1, except for SASP (Figure 2E). We further

investigated the role of other patient parameters in the above

subtyping scheme, and found no differential distribution of age,

menopausal stage, tumor stage, and pathological subtype between

the two subtypes. Since senescence is often considered an age-

related process, we further confirmed that there was no correlation

between senescence and patient age (Supplementary Figure 1A).

However, the PAM50 subtypes were unevenly distributed, with

more Luminal B, HER2-enriched, and triple-negative subtypes in

CC2, and predominantly Luminal A in CC1 (Figure 2E,

Supplementary Figure 1B). Similar results were obtained from the

METABRIC dataset (Supplementary Figures 1C–F).

Survival analysis between CC1 and CC2 revealed worse OS

associated with CC2 in both TCGA and METABRIC (Figures 2F,

G). Moreover, PCA based on transcriptomic data revealed clear

separation, suggesting distinct molecular characteristics and

biological behaviors between the two subtypes (Figure 2H,

Supplementary Figure 1G).
Biological effect of senescence

We next elucidated the impact of senescence on the behaviors of

BRCA, through which high senescence mediated poor survival. We

performed GSEA enrichment analysis between CC1 and CC2 in

both METABRIC (Figure 3A) and TCGA (Supplementary

Figure 2A), revealing extensively cell division and suppression of

ECM process in CC2. As to the hallmark characteristics of tumor,

correlation analysis between senescence and hallmark pathways in

both METABRIC (Figure 3B) and TCGA (Figure 3C) revealed

positive correlation with cell division and replication, in line with

previous results. Surprisingly, senescence was negatively correlated

with estrogen response and UV response DN.

We next explored how senescence influence the tumor

microenvironment (TME), employing ESTIMATE analysis for

stromal and immune score, Xcell analysis for fibroblasts and

immune cells, and ssGSEA analysis for ECM pathway activation,

TGF-b signaling activation, angiogenesis score, immunogenic cell

death and apoptosis. For the stromal compartment, CC2 had

significantly suppressed stromal development in both TCGA

(Figure 3D) and METABRIC (Supplementary Figure 2B). For the

immune compartment, CC2 had lower immune score and lower

infiltration of CD8+T cells and macrophage (Figure 3E,

Supplementary Figure 2C). CC1 and CC2 had comparable TMB
frontiersin.org

https://www.r-project.org/
https://www.graphpad.com/
https://www.graphpad.com/
https://doi.org/10.3389/fonc.2023.1097513
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhai et al. 10.3389/fonc.2023.1097513
(Supplementary Figures 2D, E). As different forms of cell death have

profound effects on the surrounding microenvironment, we

determined that CC2 underwent less immunogenic cell death and

apoptosis, potentially causing the dissimilar TME (Figure 3E,
Frontiers in Oncology 07
Supplementary Figure 2C). Interestingly, further analysis of paired

whole-exon sequencing (WES) from TCGA and METABRIC revealed

high mutation frequency of TP53 in CC2 (48%) but not CC1 (11%)

(Figure 3F, Supplementary Figure 2F). Previous studies reported that
A B

D E
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FIGURE 2

Unsupervised consensus clustering based on senescence-related genes reveals distinct breast cancer subtypes. (A) GSEA analysis showed that
senescence-related pathways were significantly activated in breast cancer tissues compared to normal tissues in the TCGA-BRCA cohort. (B)
Volcano plot showing up- and down-regulated differentially expressed genes (DEGs) between breast cancer and normal breast tissue in the TCGA-
BRCA cohort. Genes marked in red were up-regulated in breast cancer tissues, and genes marked in blue were down-regulated. (C) The Venn
diagram showed that the differentially expressed senescence-related genes (SRGs) in breast cancer were obtained by intersecting the results of
differential gene analysis of breast cancer with the SRGs gene set. (D) Consensus clustering matrix based on differentially expressed SRGs with k=2 in
the TGGA-BRCA cohort. (E) GSVA enrichment analysis revealed distinct senescence signatures between CC1 and CC2 subtypes in the TCGA-BRCA
cohort. Heatmap showing differences in ssGSEA scores for each aging-related gene set between CC1 and CC2 subtypes. (F, G) Survival analysis of
the two subtypes in the TCGA-BRCA cohort (F) and the METABRIC cohort (G). Kaplan-Meier curves showed significant survival differences between
CC1 and CC2 subtypes in both cohorts. P-values were calculated by log-rank test. (H) Principal component analysis of expression profiles to
differentiate the two subtypes in the TCGA-BRCA cohort. CC1 was marked in red and CC2 was marked in green.
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the activated p53 modulates senescence with a dual effect of promoting

or, in some cases, inhibiting the senescence program. Re-expression of

P53WT in the TP53 truncated cell line MDA-MB-436 breast cancer cell

line significantly inhibited senescence, while P53R175H slightly increased
Frontiers in Oncology 08
senescence compared to P53null (Figure 3G, Supplementary Figure 2G).

The results have been verified by transient re-expression of P53WT

versus P53R273H in the P53KO SW1990 cell line derived from human

pancreatic cancer (Supplementary Figure 2H).
A B

D

E

F G

C

FIGURE 3

Elucidation of the biological impacts of senescence on the tumor biological process and the tumor microenvironment. (A) GSEA enrichment
showing upregulated pathways in CC2 versus CC1. (B, C) The correlation between senescence and hallmark pathways of cancer in (B) TCGA-BRCA
dataset and (C) the Metabric adtaset. (D) Comparison of stromal condition between CC1 and CC2, including stromal score calculated by Estimate,
fibroblast cell number calculated by X cell, extracellular matrix assembly, TGF beta signaling, angiogenesis score calculated by ssGSEA. (E)
Comparison of immune compartment between CC1 and CC2, including immune score calculated by Estimate, numbers of CD8+ T cells and
macrophages calculated by Xcell, immunogenic cell death and apoptosis calculated by ssGSEA. (F) Comparison of mutation frequencies between
CC1 and CC2 in the TCGA-BRCA dataset. (G) The effect of wildtype P53 (P53WT) and mutant P53 (P53MUT) re-expression on senescence in terms
of p16 mRNA content measure by RT-qPCR in the P53 truncated cell line MDA-MB-436 **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no
significance.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1097513
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhai et al. 10.3389/fonc.2023.1097513
Validation of senescence at the protein
level

To further validate the relationship between senescence and

TME at translational level, a sophisticated method of multiplex

immunofluorescence histochemistry, which allows simultaneous

detection of multiple target proteins, was employed to analyze the

protein expression of the five genes, PANCK, a-SMA, CD8, CD68,

P16, identified above on a BRCA tissue microarray. The five

proteins were the marker of epithelial cell, fibroblast, CD8+T cell,

macrophage and senescence, respectively. High expression of P16

corresponds to low expression of PANCK, a-SMA, CD8, and

CD68, suggesting low stromal development and low infiltration of

immunocyte (Figures 4A–C).

To better understand the status of senescence and prognosis for

BRCA patients, we included 30 BRCA patients in the National

Cancer Center in China who have pathological tissue. According to

the expression level of P16 determined by immunofluorescence, we

divided the patients into high and low senescence groups by midline

expression. Survival analysis showed higher OS in low senescence

group (log-rank test, P = 0.029; median OS 87.0 months versus 36.9

months, Figure 4D).
Construction of a senescence scoring
model

On a population-based view, senescence markedly affected

the prognosis of BRCA patients. Therefore, we constructed a

subtyping method, Sindex that allowed characterization of

senescence status and subsequent outcome prediction for each

patient. We first applied weighted gene co-expression network

analysis (WGCNA) to all genes in the METABRIC dataset.

After adjustments of WGCNA parameters, the starting genes

were divided into 17 modules by average linkage hierarchical

clustering (Figures 5A, B). The magenta module (506 genes)

exhibited the highest correlation with CC2 (Pearson’s correlation

coefficient = 0.71, P < 0.001) (Figures 5B, C), collectively termed

CC2 or senescence-high related genes (SHRGs). Next, the 506

SHRGs were primarily screened by univariate Cox regression,

leaving 278 OS-correlated SHRGs for further analysis

(Supplementary Table 5). Enrichment analysis of the SHRGs

demonstrated significant correlation with cellular senescence and

cell division (Figure 5D). Finally, the LASSO regression algorithm

screened out 37 genes for Sindex calculation (Figures 5E, F,

Supplementary Table 2).
Validation of Sindex to effectively predict
patient outcomes based on senescence

Sindex was first internally validated with the METABRIC

dataset, yielding an impressive predicting ability for OS (5-year

AUC = 0.680, 10-year AUC = 0.675, 15-year AUC = 0.680, 20-year

AUC = 0.726, 25-year AUC = 0.789) as indicated by the time-
Frontiers in Oncology 09
dependent ROC curve analysis (Figure 6A). External validation in

the TCGA dataset further confirmed the robustness of Sindex in

predicting OS for breast cancer patients (5-year AUC = 0.651, 10-

year AUC = 0.632) (Figure 6D). The best range of OS prediction

was 5-25 years, suggesting that Sindex was especially good for long-

term prognosis, making it useful for BRCA, which is a

chronic disease.

Looking at the Sindex of individual patients, an optimal cutoff

value was selected with the maximally selected rank statistics from

the ‘maxstat’ R package to define high senescence and low

senescence subtypes, termed Sene-high and Sene-low respectively

(Figures 6B, E). Kaplan-Meier survival analysis demonstrated clear

separation of the two survival curves and shorter OS of the Sene-

high subtype in METABRIC (log-rank test, P < 0.0001; median OS

19.6 months versus 56.2 months, Figure 6C) as well as TCGA (log-

rank test, P < 0.001; median OS 19.6 months versus 56.2

months, Figure 6F).

Furthermore, we used univariant Cox regression to identify all

OS-related characteristics with significant regression coefficients

and p-values (Supplementary Table 3), and then used

multivariate Cox regression to determine that Sindex is an

independent and robust prognostic factor (HR, 2.097; 95% CI,

1.751–2.511; P < 0.001; Figure 7A). Based OS-related

characteristics, we constructed a nomogram (Figure 7B) that

could accurately predict the probability of 5-, 10-, and 15-year

survival for BRCA patients (Figures 7C–E). The Sindex, lymph

nodes positivity, tumor size, Nottingham prognostic index, inferred

menopausal state, and age were incorporated into the nomogram as

related predictors of breast cancer patient survival.
Senescence and drug resistance

Using the Oncopredict algorithm for drug response prediction,

we demonstrated that the Sene-high(subtype were resistant to CDK

inhibitors (CDK9i-AZ5576 and Dinaciclib) (Figures 8A, B) and

Epirubicine (Figure 8C), but there was no significant difference in

sensitivity to proteasome inhibitors (MG132 and Bortezomib)

between Sene-low and Sene-high (Figures 8D, E). Further analysis

revealed that Bortezomib had the lowest IC50 and the most negative

correlation with Sindex (Figure 8F), suggesting that Bortezomib

may be the most effective drug for the group of high-senescence and

high-risk BRCA patients. Interestingly, the Sene-high subtype was

resistant to some anti-microtubule chemotherapeutic drugs

(Supplementary Figures 3A, B), but there was no significant

difference in paclitaxel sensitivity between the two groups,

suggesting more complex effect-response-resistance mechanisms

of these drugs (Figure 8G).

We further explored the real-world effect of senescence on drug

response in transcriptomic data from I-SPY2, a clinical research of

neoadjuvant treatment for BRCA patients. There was no significant

difference in Sindex bewtween pCR and non-pCR patients receiving

paclitaxel, in line with previous result (Figures 8G, H). However, the

significantly higher Sindex in non-pCR patients receiving veliparib

and carboplatin suggested resistance to this treatment strategy
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conferred by senescence (Figure 8I). Therapeutic response to

Neratinib (TKI), MK2206 (AKT inhibitor), Ganitumab (anti-

IGF1R-mAb), and Trebananib (neutralizing peptide against

Ang1/2) are not significantly affected by senescence, but non pCR

patients to the Hsp90 inhibitor Ganetespib have significantly higher

Sindex (Supplementary Figures 4A, B, D–F). As to patients

receiving TDM1 and pertuzumab, pCR patients had significantly

higher Sindex (Figure 8J), but patients with pCR and non-pCR to
Frontiers in Oncology 10
pertuzumab had comparable Sindex (Supplementary Figure 4C),

suggesting that the high-senescence and high-risk group of patients

may benefit from T-DM1 treatment. We noted that high-

senescence patients may not benefit from Pembrolizumab

immunotherapy (Figure 8K), consistent with previous results

suggesting lower immune infiltration into senescent tumors. This

was further confirmed by data from urothelial cancer patients

treated with Atezolizumab in IMvigor 210 (Figure 8L).
A

B DC

FIGURE 4

Visualized validation of the biological and clinical prognostic effects of senescence. (A) Representative multiplex immunohistochemistry (mIHC)
images of patient samples with low-senescence (top panel) and high-senescence (bottom panel), and each color panel on the side. Markers were
visualized by colors, with P16 in red, CD8 in turquoise, CD68 in green, a-SMA in pink, KI-67 in white and Pan-CK in orange (single color panels for a-
SMA and KI-67 in supplementary), and DAPI counterstained. (B, C) Comparison of immune and stromal content from mIHC images between the
high- and low-senescence groups, (B) defining immune status stromal status from the fluorescent intensity of CD8 in tumor region (annotated
based on Pan-CK expression), and (C) similarily for stromal status and a-SMA fluorescence. (D) P16-based stratification of patients into senescence-
high and senescence-low groups and comparison of overall survival by Kaplan-Meier curve. **p < 0.01.
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Discussion

In 2020, the incidence of BRCA reached 11.7%, surpassing lung

cancer for the first time to become the most diagnosed cancer in the

world (1). Despite widely used classification system by molecular

markers, the heterogeneous nature of BRCA poses difficulty onto

prognosis and therapeutic decision (2, 44). Therefore, exploring

new methods of BRCA subtyping has become the most urgent task

in bringing precision medicine into reality (45). In this study, we

identified senescence as a hallmark of BRCA that is associated with

distinctive TME and genomic alterations. Based on the senescent

characteristics of BRCA, we developed a subtyping scheme Sindex

that provides an insightful perspective on the biological property of

tumors from a new perspective.

We detected that high senescence is associated with

significantly worse survival outcome in BRCA patients, suggesting

that the activation of cellular senescence pathways may promote
Frontiers in Oncology 11
malignancy and therapeutic resistance. Although senescence

is often considered a defense mechanism against cancer due

to its cell cycle arresting properties (46), senescence is a

potentially reversible process of epigenetic and transcriptional

changes, and senescent dormancy may offer protection by

immune-evasion, drug resistance, and resistance to apoptosis or

other forms of cell death (47). Sun et al. reported that senescence is

associated with good survival in gastric cancer (48), suggesting

multimodal function and different mechanisms of senescence in

different cancers.

The complexity of senescence deserves further investigation on

the potential biological effect of senescence in BRCA. Different

methods of data analysis in two datasets both reached the same

conclusions: (1) senescence is associated with extensive cell

replication and suppression of stroma and immune development;

(2) high senescence suppresses stromal development and immune

infiltration in the TME. SASP is a well-investigated property of
A B

D E FC

FIGURE 5

Identification of gene networks associated with CC1 and CC2 subtypes using WGCNA. (A) Analysis of the scale-free fit index for various soft-
thresholding powers (b). 6 was considered the fittest power value. (B) Heatmap of correlations between gene modules and CC1 and CC2 subtypes.
(C) Scatter plot depicting the correlation between gene significance and gene module membership in the magenta module. (D) Bar plot showing the
significant enrichment results for genes in magenta module on KEGG pathways. (E) Different gene combinations and corresponding LASSO
coefficients. (F) Parameter selection in the LASSO (least absolute shrinkage and selection operator) model. Independent Confidence intervals under
each lambda were shown.
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senescence generally considered to be pro-tumorigenic, as senescent

tumor cells have specific secretory phenotypes marked by increased

secretion of pro-inflammatory (but not anti-tumor immunity),

bioactive molecules including IL-6, IL-1a, chemokines (CXCL8),

VEGF, and proteases (49). However, our result did not reveal a

significant difference in SASP pathway activity between the Sene-

high and the Sene-low groups, suggesting other mechanisms by

which senescence remodels the TME. We further investigated other

key characteristics crucial for anti-tumoral immunity, as cell death

and antigen release are crucial for the initiation of anti-tumoral

immune response, we indeed found out that senescence suppresses

immunogenic cell death, resulting in lower antigen-presenting

cell infiltration.

To increase the clinical application value and create better clinical

practicability, we successfully constructed a novel senescence-related

scoring tool (Sindex) to determine the prognostic risk of BRCA. The

Sindex effectively stratified patients with BRCA into high- and low-
Frontiers in Oncology 12
risk groups. Survival analysis revealed that the Sene-high group had

shorter OS than Sene-low group, and ROC curves exhibited a great

predictive capacity of Sindex for the 5-, 10-, 15-, 20- and 25-year

survival of BRCA. The model is validated in two individual datasets,

METABRIC and TCGA.

Previous studies have demonstrated that cellular senescence

could increase the drug resistance and side effects of the

chemotherapy (50–52). Using the Oncopredict algorithm and I-

SPY2 dataset, we found out that indeed, most drugs have a higher

IC50 value in the Sene-high group, especially CDK inhibitors,

epirubicin, and olaparib. Such resistance is explainable as those

drugs share common mechanisms in inhibition of cell cycle

progression through cell death induced damage. On the other

hand, patients with high senescence may benefit from metabolic

drugs such as proteosome inhibitors and MTORC inhibitors,

consistent with the fact that senescent cells are metabolically

active. Using the I-SPY2 and IMvigor 210 data sets, we noted that
A B

D E F

C

FIGURE 6

Evaluation of the performance of the senescence-based Sindex in METABRIC dataset and external validation in the TCGA-BRCA datasets. (A) Time-
dependent ROC for 5-, 10 -,15-,20- and 25-year predictions of overall survival for the Sindex in the METABRIC dataset. (B) Relationship between the
Sindex (upper), and the survival status of patients in different senescence subtype (bottom) in METABRIC dataset. (C) Kaplan-Meier survival curves of
the Sindex. Patients from the METABRIC dataset are stratified into two groups according to the optimal cut-off values for the Sindex. (D) Time-
dependent ROC for 5-, 10 -,15-,20- and 25-year predictions of overall survival for the Sindex in the TCGA-BRCA dataset. (E) Relationship between
the Sindex (upper), and the survival status of patients in different senescence subtype (bottom) in TCGA-BRCA dataset. (F) Kaplan-Meier survival
curves of the Sindex. Patients from the TCGA-BRCA dataset are stratified into two groups according to the optimal cut-off values for the Sindex.
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high-senescence patients may not benefit from immune checkpoint

therapies, consistent with previous results showing lower immune

infiltration in Sene-high subtype.

Our study has the limitation that the high-throughput

sequencing data sets for initial analysis were relatively insufficient

as it was simply obtained from public databases. The corresponding

results and conclusions remain to be further investigated through

more external congeneric research and should be validated via

functional experiments in vivo and in vitro. Furthermore, several

conclusions of this study require further research to confirm its
Frontiers in Oncology 13
reproducibility, improve the clinical application of senescence-

related clusters, and elaborate on the role of Sindex in predicting

the response to cancer therapy for BRCA.
Conclusions

In conclusion, our study lead to the identification of senescence

subtypes that are associated with significantly different TME and

survival outcomes. Our analysis demonstrated that the Sindex can
A

B

D
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C

FIGURE 7

Identification of independent prognostic predictors and validation of the nomogram in predicting overall survival of breast cancer. (A) Forest plots
show HR and p-values for Sindex and clinicopathological parameters based on multivariate COX regression. (B) A prognostic nomogram
incorporating Sindex and clinical parameters predicting 5-, 10 - and 15-year overall survival of PDAC. (C) Time-dependent ROC for 5-, 10 -,15-,20-
and 25-year predictions of overall survival for the nomogram in the METABRIC dataset. (D). Calibration curves of the nomogram for predicting the
probability of OS at 5-, 10 -,15-,20- and 25-year. (E) Internal validation of the nomogram using bootstrapping method *p < 0.05, **p < 0.01,
***p < 0.001.
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be used to identify not only patients at different risk levels for the OS

but also patients who would benefit from some cancer therapeutic

drugs. Nevertheless, the validation of our findings in a wide

spectrum of patient cohorts, and the findings that the senescence

features reflect biological and clinical characteristics associated with

sensitivity or resistance to the therapy, would pave a way for

developing more rational therapy recommendations and

promoting personalized cancer therapy.
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FIGURE 8

Exploration of Sindex for therapeutic response prediction. (A–G). oncoPredict prediction of IC50 for different chemotherapeutic drugs in patients
with BRCA from the TCGA dataset.(A–F) Comparison of predicted IC50 for (A) CDK9, (B) Dinaciclib, (C) Epirubicin, (D) MG-132, (E) Bortezomib, (F)
Paclitaxel between sene-high and sene-low. (G) visualization of each drugs’ predicted IC50 and correlation with Sindex. (H–K) comparisons of
Sindex between pCR and non-pCR patients in the ISPY-2 trial to (H) Paclitaxel, (I) Veliparib/carboplatin, (J) TDM1/pertuzumab and (K)
Pembrolizumab. (L) comparison of Sindex between R and NR patients in the IMVigor210 trial to atezolizumab * p < 0.05, **p < 0.01, ****p < 0.0001.
ns, no significance.
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SUPPLEMENTARY FIGURE 1

Characterization of patient features associated with senescence-based

consensus clustering. (A) Correlation analysis between age and ssGSEA of
BRCA-SRGs in TCGA revealed no significant correlation (P = 0.281). (B)
Comparison of PAM50 subtypes between CC1 and CC2 in TCGA revealed
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differential enrichment of PAM50 subtypes associated with senescence
status. (C) Consensus clustering matrix based on BRCA-SRGs with k=2 in

the METABRIC cohort. (D)Heatmap showing differences in ssGSEA scores for

each senescence-related gene set between CC1 and CC2 subtypes, along
with clinicopathological features. (E) Correlation analysis between age and

ssGSEA of BRCA-SRGs in METABRIC revealed no significant correlation
(p=0.129). (F) Comparison of PAM50 subtypes between CC1 and CC2 in

METABRIC revealed differential enrichment of PAM50 subtypes associated
with senescence statuses. (G) Principal component analysis of expression

profiles to differentiate the two subtypes in the METABRIC cohort, with CC1

marked in green and CC2 marked in red.

SUPPLEMENTARY FIGURE 2

Validation of the biological impacts of senescence. (A) GSEA enrichment

showing upregulated pathways in CC2 versus CC1 in METABRIC. (B, C)
Comparison of stromal (B) and immune (C) condition between CC1 and

CC2 in METABRIC. (D, E) Comparison of tumor mutation burden (TMB)

between CC1 and CC2 in TCGA (D) and METABRIC (E). (F) Comparison of
mutation frequencies between CC1 and CC2 in the METABRIC dataset. (G)
The effect of wildtype P53 (P53WT) and mutant P53 (P53MUT) re-expression
on senescence in terms of p16, p21, Rb, IL-6, IL-1a, ICAM-1 and TGF-bmRNA

content measure by RT-qPCR in the P53 truncated cell line MDA-MB-436.
(H) The effect of wildtype P53 (P53WT) and mutant P53 (P53MUT) re-

expression on senescence in terms of p16 and p21 mRNA content measure

by RT-qPCR in the P53 knocked out cell line SW1990.

SUPPLEMENTARY FIGURE 3

OncoPredict prediction of IC50 for different chemotherapeutic drugs in

patients with BRCA from the METABRIC (A) and TCGA (B) dataset.

SUPPLEMENTARY FIGURE 4

Correlation of Sindex with therapeutic responses in real-world data from I-
SPY2 clinical trial by comparision of Sindex between responders and non-

responders to (A) Neratinib, (B) MK2206, (C) Pertuzumab, (D) Ganitumab, (E)
Ganetespid, (F) Trebananib

SUPPLEMENTARY TABLE 1

Summary of senescence related gene sets and genes

SUPPLEMENTARY TABLE 2

278 OS-correlated senescence-high related genes and 37 Sindex genes

SUPPLEMENTARY TABLE 3

OS-related clinical characteristics

SUPPLEMENTARY TABLE 4

Details of the datasets included in this study

SUPPLEMENTARY TABLE 5

Information of patients included in this study
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22. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-
associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic
RAS and the p53 tumor suppressor. PloS Biol (2008) 6:2853–68. doi: 10.1371/
journal.pbio.0060301

23. Jackson JG, Pant V, Li Q, Chang LL, Quintás-Cardama A, Garza D, et al. p53-
mediated senescence impairs the apoptotic response to chemotherapy and clinical
outcome in breast cancer. Cancer Cell (2012) 21:793–806. doi: 10.1016/
j.ccr.2012.04.027

24. Xu C, Xie N, Su Y, Sun Z, Liang Y, Zhang N, et al. HnRNP F/H associate with
hTERC and telomerase holoenzyme to modulate telomerase function and promote cell
proliferation. Cell Death differentiation (2020) 27:1998–2013. doi: 10.1038/s41418-019-
0483-6

25. He S, Sharpless NE. Senescence in health and disease. Cell (2017) 169:1000–11.
doi: 10.1016/j.cell.2017.05.015

26. Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest
(2018) 128:1238–46. doi: 10.1172/jci95148

27. Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, et al.
Senescent cells: an emerging target for diseases of ageing. nature reviews. Drug
Discovery (2017) 16:718–35. doi: 10.1038/nrd.2017.116

28. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res (2016) 44:e71. doi: 10.1093/nar/gkv1507

29. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15:550. doi: 10.1186/
s13059-014-0550-8

30. Wolf DM, Yau C, Wulfkuhle J, Brown-Swigart L, Gallagher RI, Lee PRE, et al.
Redefining breast cancer subtypes to guide treatment prioritization and maximize
response: Predictive biomarkers across 10 cancer therapies. Cancer Cell (2022) 40:609–
623.e606. doi: 10.1016/j.ccell.2022.05.005

31. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J,
et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with
Frontiers in Oncology 16
locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre,
phase 2 trial. Lancet (London England) (2017) 389:67–76. doi: 10.1016/s0140-
6736(16)32455-2

32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

33. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinf (Oxford England) (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

34. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-
14-7

35. Gu Z, Hübschmann D. Make interactive complex heatmaps in r. Bioinf (Oxford
England) (2021) 38:1460–2. doi: 10.1093/bioinformatics/btab806

36. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia
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