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Background: Tumor invasiveness plays a key role in determining surgical strategy

and patient prognosis in clinical practice. The study aimed to explore artificial-

intelligence-based computed tomography (CT) histogram indicators significantly

related to the invasion status of lung adenocarcinoma appearing as part-solid

nodules (PSNs), and to construct radiomics models for prediction of tumor

invasiveness.

Methods: We identified surgically resected lung adenocarcinomas manifesting

as PSNs in Peking University People’s Hospital from January 2014 to October

2019. Tumors were categorized as adenocarcinoma in situ (AIS), minimally

invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) by

comprehensive pathological assessment. The whole cohort was randomly

assigned into a training (70%, n=832) and a validation cohort (30%, n=356) to

establish and validate the prediction model. An artificial-intelligence-based

algorithm (InferRead CT Lung) was applied to extract CT histogram parameters

for each pulmonary nodule. For feature selection, multivariate regression models

were built to identify factors associated with tumor invasiveness. Logistic

regression classifier was used for radiomics model building. The predictive

performance of the model was then evaluated by ROC and calibration curves.

Results: In total, 299 AIS/MIAs and 889 IACs were included. In the training

cohort, multivariate logistic regression analysis demonstrated that age [odds

ratio (OR), 1.020; 95% CI, 1.004–1.037; p=0.017], smoking history (OR, 1.846;

95% CI, 1.058–3.221; p=0.031), solid mean density (OR, 1.014; 95% CI, 1.004–

1.024; p=0.008], solid volume (OR, 5.858; 95% CI, 1.259–27.247; p = 0.037),
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1096453/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1096453/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1096453/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1096453/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1096453/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1096453/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1096453&domain=pdf&date_stamp=2023-02-23
mailto:dr.lixiao@163.com
mailto:surgeonli@hotmail.com
mailto:yangfeng1007@sina.com
https://doi.org/10.3389/fonc.2023.1096453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1096453
https://www.frontiersin.org/journals/oncology


Gao et al. 10.3389/fonc.2023.1096453

Frontiers in Oncology
pleural retraction sign (OR, 3.179; 95% CI, 1.057–9.559; p = 0.039), variance (OR,

0.570; 95% CI, 0.399–0.813; p=0.002), and entropy (OR, 4.606; 95% CI, 2.750–

7.717; p<0.001) were independent predictors for IAC. The areas under the curve

(AUCs) in the training and validation cohorts indicated a better discriminative

ability of the histogram model (AUC=0.892) compared with the clinical model

(AUC=0.852) and integrated model (AUC=0.886).

Conclusion: We developed an AI-based histogram model, which could reliably

predict tumor invasiveness in lung adenocarcinoma manifesting as PSNs. This

finding would provide promising value in guiding the precision management of

PSNs in the daily practice.
KEYWORDS

lung adenocarcinoma, CT histogram, part-solid nodule, tumor invasiveness, three-
dimensional index
Introduction

As the low-dose chest computed tomography (CT) is becoming

more popular for lung cancer screening, subsolid nodules (SSNs)

are increasingly being detected as an important part of the clinical

work of thoracic surgeons (1, 2). SSNs are classified into pure GGN

(pGGN) and part-solid nodule (PSN) depending on the presence of

solid components (3). Pathologically, adenocarcinoma in situ (AIS),

minimally invasive adenocarcinoma (MIA), and invasive

adenocarcinoma (IAC) can appear on CT images as persistent

PSNs (4). The 5-year recurrent-free survival (RFS) after complete

resection of AIS and MIA is close to 100%, while the 5-year RFS of

stage I IAC is only 74.1% (5). In terms of the extent of surgical

resection, sublobar resection, including pulmonary wedge resection

and segmentectomy, is mainly recommended for AIS/MIA (6),

which can preserve the pulmonary parenchyma and effectively

reduce surgery-related complications. Lobectomy and lymph node

dissection are required for IAC to pursue a lower tumor recurrence

rate with a higher rate of surgical complications. Therefore, the

accurate preoperative imaging evaluation of PSN to predict IAC is

important to guide clinical treatment decisions, especially for the

extent of surgical resection.

In recent years, radiomics had made remarkable progress in

identifying the degree of invasiveness in pulmonary lesions

suspicious of lung cancer (7, 8). Radiomic parameters only or

combined radiomics parameters and clinical features had been

utilized to construct prediction models of IAC among SSNs with

good diagnostic performance (area under curves, 0.72–0.98) (9–13).

Only three studies focused on the assessment of invasiveness among

PSN group with a relatively small sample (9, 12, 13). Moreover,

most of the above studies used manually time-consuming

segmentation, which was difficult to be applied in a real-

world setting.

As a convenient and representative method of radiomics, the

voxel-based CT histogram could provide some key radiological
02
factors beyond human eyes such as skewness and entropy (7, 14,

15). Recently, voxel-based histogram analysis of chest CT has shown

great usefulness in identifying pathological invasiveness, lymph node

status prediction, and early-stage lung adenocarcinoma suitable for

sublobar resection (16–18). However, several above studies included

all radiological types of early-stage lung adenocarcinoma not only

SSNs, and several studies about SSNs were limited by a small sample.

To our knowledge, no published studies had focused on the part-solid

nodule, which needs surgical treatment among SSN subtypes.

Furthermore, as a high-efficiency and promising automatic method,

artificial intelligence (AI) technology has not been integrated in this

diagnostic field to date.

In this study, we proposed to use CT histograms based on novel

deep-learning artificial intelligence technology to explore clinical

and radiomic indicators that effectively distinguish IAC from AIS/

MIA in PSNs with a large sample and to construct a prediction

model for the invasiveness of PSNs, which can help guide clinical

treatment decisions.
Methods

Study population and selection criteria

This study was a cross-sectional retrospective study.

Consecutive patients with chest CT suggestive of PSNs (total

diameter, 5–30 mm) and received surgeries at the Department of

Thoracic Surgery, Peking University People’s Hospital from

January 2014 to October 2019 were included in this study. The

determination of PSNs was performed by two experienced

radiologists (Qingyi Qi and Yaqi Zeng). Postoperative

pathological findings confirmed 1,188 lung nodules as primary

lung adenocarcinoma (Figure 1). The corresponding clinical

information, pathological information, and imaging information

were collected through the electronic medical record system.
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CT image acquisition

All patients’ chest CT images were retrospectively collected with

the same imaging acquisition parameters: scans with the

collimation of 64×0.625 mm, tube voltage of 120 kVp, tube

current modulation, gantry rotation speed of 0.5 s/r, and 1.0/

1.25 mm reconstructed slice thickness with lung window setting

(HU) of (1,600, −600) and mediastinal window (HU) setting of

(400, 40) using a 256-row CT scanner (Revolution CT, GE

Healthcare, America). All thin-layer images were transmitted to

the Lung Nodule Artificial Intelligence Intelligent Assisted

Diagnosis System (InferRead CT Lung, Infervision Medical

Technology Co., Ltd.) for automatic detection of all lung nodules.

The nodules screened by the InferRead system were individually

verified by two experienced radiologists, and the PSNs that needed

to be surgically resected were manually screened.
Frontiers in Oncology 03
Evaluation of voxel-based histogram
features

The lung nodule artificial-intelligence-assisted diagnosis system

is based on a deep learning algorithm to achieve automatic

segmentation of the range of ground glass nodules and

recognition of typical signs (19–21). In the whole calculation

process, the system automatically divides the range of the ground

glass nodules and calculates the number of voxels corresponding to

each CT value in the whole SSN. Each CT value and the

corresponding number of voxels are stored as a LIST, and the

LIST of the whole nodule is stored as a DICTIONARY. The

information obtained is used to calculate the required index by

the corresponding formula. First, the CT value threshold of −300

HU was used to distinguish the solid component from the ground

glass component. The nodule volume, mean density, solid

component volume, percentage of solid component, mass, mass

of solid components, and other three-dimensional metrics were

calculated based on the voxel method and the corresponding

formulas, as follows (Figure 2).

Solid mean density =o2000
i=0 xipi (Only including xi ≥ -300HU).

Percentage of solid components= total number of voxel ≥ −300

HU (solid components)/total number of voxels (all tumor)

Mass= [nodule volume×(mean density +1,000)]/1,000.

Mass of solid components= [solid components volume× (solid

mean density +1,000)]/1,000.

Then, the CT histograms were constructed based on the

number of voxels corresponding to each CT value in the nodule

range. Variance, skewness, kurtosis, entropy, and other density

histogram-related indicators were automatically calculated by

python coding and the corresponding formulae. Meanwhile, the

typical signs detected and identified by the system were confirmed

by two radiologists as morphological indicators, including lobar

signs, spiculation signs, and pleural traction signs.
Construction of the prediction model

The whole cohort was randomly assigned into a training (70%,

n=832) and a validation cohort (30%, n=356) to establish and

validate the prediction model. This ratio (7:3) ensured the maximal

utilization of the data for constructing a predictive model with a

considerable number of sample size for validation (Figure 1).

Logistical regression analysis based on the training cohort was

performed to evaluate the odds ratio (OR) and to assess the

parameters’ ability to predicting the risk of IAC. Variables with

p-value <0.1 selected in the univariate analysis were included into

the multivariate analysis. The variables with significant clinical

meanings and the parameters with p-value <0.05 in the

multivariate logistical regression analysis were used to establish

three predictive models: clinical model (Model 1), histogram model

(Model 2), and integrated model (Model 3).

The predictive models were subjected to a 10-fold cross-internal

validation within the training cohort and independent validation in

the validation cohort. Calibration plots were drawn to evaluate the
FIGURE 1

Overall study design process for the training and validation cohorts
and prediction performance by each model for predicting invasive
adenocarcinoma (IAC). AIS, adenocarcinoma in situ; MIA, minimally
invasive adenocarcinoma; AUC, area under the ROC curve. The
length of the ruler in the figure is 10 nm.
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goodness of fit of models, and the discriminative ability was

assessed by receiver operating characteristic (ROC), the area

under the curve (AUC), Akaike information criterion (AIC), and

Bayesian information criterion (BIC). Higher AUC and lower AIC/

BIC values represent higher discriminative ability. Delong’s test was

performed to compare the AUCs of different models.
Statistical analysis

Statistical analyses were performed using SPSS 26.0 software and

R software version 3.6.0. Categorical variables were analyzed by

Pearson chi-square test, continuous variables that conformed to a

normal distribution were analyzed by independent samples t-test,

and the part that did not conform to a normal distribution was

analyzed by rank sum test (Mann–Whitney U test). Variables with

p<0.1 in the univariate analysis were included in the multi-factor

logistic regression analysis, and the assessment model of IAC in PSN

was constructed. The “caret” package in R software was used to depict

the calibration plots, and the “pROC” package was utilized to draw

the ROC curve, to calculate the AUC, sensitivity, and specificity of the

ROC curve, and to perform the Delong’s test. The “stats” package was

used to calculate the AIC and BIC values. All statistical tests were

two-tailed, and a p-value <0.05 was considered statistically significant.

Results

Clinical characteristics and
histopathological nodule features

Among all included PSNs, 30 cases (2.5%) were AIS, 269 cases

(22.6%) were MIA, and 889 cases (74.8%) were IAC (Figure 1).
Frontiers in Oncology 04
Women were the majority (66.5%) of all PSNs. Only a relatively

small number of patients had a combined history of smoking

(18.5%), previous malignancy (6.8%), and family history of

malignancy (12.4%). The mean age of IAC group (60.31) was

significantly greater than that of the AIS/MIA group (55.74), and

the proportion of smokers was significantly higher than that of the

AIS/MIA group. There was no statistical difference between the two

groups in terms of previous history of malignancy and family

history of malignancy (Table 1).
Imaging features of the different
pathological types in PSNs

In assessing the imaging metrics of PSN, we incorporated three-

dimensional metrics such as density, volume, mass, and percentage

of solid components; morphological metrics such as fractional lobe

sign, spiculation sign, and pleural traction sign; and density

histogram-related metrics such as variance, kurtosis, skewness,

and entropy. The imaging information of the two groups is

detailed in Table 2.

All imaging features were statistically different between the two

groups. Mean density (−408.40 ± 130.08 vs. −483.07 ± 96.11,

e<0.001), mean density of the solid component (−168.19 ± 54.71

vs. −212.83 ± 55.16, e<0.001), volume (1.96 ± 1.67 vs. 0.57 ± 0.68,

p<0.001), solid component volume (0.59 ± 0.83 vs. 0.08 ± 0.17,

p<0.001), mass (1.17 ± 1.08 vs. 0.29 ± 0.35, p<0.001), mass of solid

components (0.51 ± 0.75 vs. 0.06 ± 0.15, p<0.001), and percentage

of solid components (14.00 ± 14.55 vs. 28.09 ± 22.55, p<0.001) were

relatively larger in the IAC group compared to the AIS/MIA group

in terms of in the 3Dmetrics. Among the morphological signs, lobar

signs (77.1% vs. 35.1%, p<0.001), spiculation signs (72.6% vs. 27.4%,
FIGURE 2

The CT histogram parameters using InferRead CT Lung, an AI-based pulmonary nodule auxiliary diagnosis system. Mixed GGN, mixed ground-glass
nodule.
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p<0.001), and pleural traction signs (24.2% vs. 1.3%, p<0.001) were

more frequently seen in the IAC group (Table 2). As to the variables

of the density histogram, the IAC group had greater values of

variance (×10,000) (2.51 ± 1.23 vs. 1.87 ± 1.20, p<0.001) and

entropy (8.63 ± 0.46 vs. 7.94 ± 0.55, p<0.001), and relatively

smaller skewness (0.69 ± 0.54 vs. 0.83± 0.49, p<0.001) and

kurtosis (3.09 ± 1.49 vs. 3.39 ± 1.50, p=0.003) than the AIS/

MIA group.
Frontiers in Oncology 05
Independent risk factors for IAC in the
training cohort

The clinical characteristics and imaging information were

balanced in the training and validation cohorts (Supplementary

Table S1). The clinical information, 3D imaging metrics,

morphological signs, and density histogram-related metrics were

included in the multivariate logistic regression analysis. The mass of
TABLE 2 Comparison of imaging features of AIS/MIA and IAC in 1,188 cases of PSNs.

Features AIS/MIA IAC p-value

Average density (HU) -483.07 ± 96.11 -408.40 ± 130.08 <0.001

Solid mean density (HU) -212.83 ± 55.16 -168.19 ± 54.71 <0.001

Volume (cm3) 0.57 ± 0.68 1.96 ± 1.67 <0.001

Volume of solid components (cm3) 0.08 ± 0.17 0.59 ± 0.83 <0.001

Mass (g) 0.29 ± 0.35 1.17 ± 1.08 <0.001

Mass of solid components (g) 0.06 ± 0.15 0.51 ± 0.75 <0.001

lobar sign 105 (35.1) 685 (77.1) <0.001

Spiculation sign 82 (27.4) 645 (72.6) <0.001

Pleural traction sign 4 (1.3) 215 (24.2) <0.001

Percentage of solid components (%) 14.00 ± 14.55 28.09 ± 22.55 <0.001

Density Histogram

Variance (×10000) 1.87 ± 1.20 2.51 ± 1.23 < 0.001

Skewness 0.83 ± 0.49 0.69 ± 0.54 < 0.001

Kurtosis 3.39 ± 1.50 3.09 ± 1.49 0.003

Entropy 7.94 ± 0.55 8.63 ± 0.46 < 0.001
fron
Data are expressed as mean ± standard deviation or as a number (percentage).
TABLE 1 Comparison of clinical information of AIS/MIA and IAC in 1,188 cases of PSNs.

Features AIS/MIA IAC p-value

Gender 0.085

Women 211 (70.6) 579 (65.1)

Male 88 (29.4) 310 (34.9)

Age (years) 55.74 ± 10.21 60.31 ± 9.94 <0.001

Smoking history 0.001

Non-smokers 263 (88.0) 705 (79.3)

Current/previous smokers 36 (12.0) 184 (20.7)

History of malignancy 0.369

Yes 17 (5.7) 64 (7.2)

None 282 (94.3) 825 (92.8)

Family history of malignant tumors 0.068

Yes 28 (9.4) 119 (13.4)

None 271 (90.6) 770 (86.6)
Data are expressed as mean ± standard deviation or as a number (percentage).
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PSN was calculated based on the mean density and volume.

Moreover, there was multi-collinearity between the three-

dimensional metrics of PSN as a whole and the solid component,

which is generally considered to represent the invasive portion of

PSN. In order to avoid the impact of multi-collinearity on the

multivariate analysis, the mass-related metrics were excluded from

the subsequent analysis, and the three-dimensional metrics of solid

component were preferentially selected for the analysis. The results

of the multivariate logistic regression analysis showed that solid

mean density [odds ratio (OR), 1.015; 95% CI, 1.004–1.027,

p=0.009], solid volume (OR, 1.085; 95% CI, 1.028–1.143,
Frontiers in Oncology 06
p=0.003), diameter (OR, 1.183; 95% CI, 1.085–1.291, p<0.001),

variance (OR, 0.605; 95% CI, 0.410–0.893, p=0.011), and entropy

(OR, 2.008; 95% CI, 2.750–7.717; p=0.039) were independent risk

factors for the pathological invasiveness of PSN as IAC (Table 3).
Optimal model for predicting IAC in PSNs

Three prediction models (clinical, histogram, and integrated

model) were built based on the results of the multivariate logistic

regression analysis. The clinical model incorporated the diameter of
TABLE 3 Univariate and multivariate analyses of the ability of each factor in predicting invasive adenocarcinoma in the training cohort.

Features

Univariate analysis (input method) Multivariate analysis (input method)

OR (95% confidence
interval) p-value OR (95% confidence interval) p-value

Gender 0.157

Women Reference

Male 1.276 (0.911-1.788)

Age (years) 1.042 (1.025-1.058) <0.001 1.009 (0.990-1.029) 0.358

Smoking history 0.006 0.087

Non-smokers Reference Reference

Current/previous smokers 1.867 (1.194-2.920) 1.626 (0.932-2.837)

Family history of malignant tumors 0.156

Yes 1.453 (0.867-2.435)

None Reference

Solid mean density (HU) 1.015 (1.012-1.019) <0.001 1.015 (1.004-1.027) 0.009

Solid volume (cm3) 554.326 (122.713-2504.019) <0.001 1.085 (1.028-1.143) 0.003

lobar sign <0.001 0.933

None Reference Reference

Yes 6.248 (4.463-8.775) 0.971 (0.487-1.934)

Spiculation sign <0.001 0.266

None Reference Reference

Yes 6.958 (4.916-9.850) 1.490 (0.738-3.008)

Pleural traction sign <0.001 0.263

None Reference Reference

Yes 22.585 (7.121-71.637) 2.092 (0.574-7.615)

Diameter (mm) 1.341 (1.278-1.407) <0.001 1.183 (1.085-1.291) <0.001

Percentage of solid components (%) 52.754 (18.592-149.685) <0.001 0.557 (0.033-9.455) 0.686

CT Histogram

Variance (×10,000) 1.617 (1.370- 1.909) <0.001 0.605 (0.410-0.893) 0.011

Skewness 0.624 (0.467-0.833) 0.001 0.447 (0.122-1.6273) 0.222

Kurtosis 0.898 (0.817-0.986) 0.025 1.001 (0.717-1.396) 0.997

Entropy 13.293 (8.693-20.236) <0.001 2.008 (1.036-3.891) 0.039
fron
Bold values denote statistical significance at the P < 0.05 level.
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the nodule and CT signs with clinical significance (spiculation sign

and pleural traction sign), while the histogram model included AI-

derived histogram features, which were independent predictors for

the invasion status (variance, entropy, the mean density of the solid

component, and volume of the solid component). Finally, we

established an integrated model incorporating independent

variables in both the clinical and histogram models.

The calibration curves presented good consistency in three

models between the predicted and actual observed probability of

IAC in the training and validation cohort (Figure 3). The AUCs in

the training cohort and validation cohort indicated a better

discriminative ability of the histogram model (AUC=0.892)

compared with the clinical model (AUC=0.852) and integrated

model (AUC=0.886), although the clinical model showed better

AIC and BIC values (Figure 4; Table 4). Delong’s test showed that

the histogram model (model 2) had a significantly higher AUC than

the clinical model (p=0.005), while the comparison between

histogram model and integrated model fell short of statistical

significance (p<0.05, Supplementary Table S2).
Discussion

In recent years, the digital processing of medical images

becomes a current hot spot. The quantitative analysis of CT

information has advanced the understanding of the internal

structure of lung nodules. Especially the artificial intelligence

technology represented by deep learning has been widely used in

the field of medical imaging. The screening, analysis, and diagnosis

of lung nodules based on CT images have entered the era of

precision and intelligence. The clinical diagnosis process and

efficiency of pulmonary nodules have been greatly improved (19,

22). At the same time, AI’s accurate lesion segmentation, lesion

volume measurement, and sensitive sign recognition also provide

richer features and more reproducible objective indicators for

accurate prediction of the pathological invasiveness of lung

nodules (23).

In view of the fact that most of the previous reports took SSN as

the whole study object, we investigated the clinical and imaging
Frontiers in Oncology 07
indicators associated with the degree of pathological invasiveness

only in PSNs, which are more in need of surgical intervention. The

multivariate analysis revealed that diameter, solid mean density,

solid volume, variance, and entropy were independent risk factors

of IAC in the training cohort. Furthermore, we constructed three

prediction models of IAC using clinical information, AI-based

density histogram features, and both from a large sample cohort.

The histogram model constructed by AI-based density histogram

features showed the best performance in assessing the pathological

invasiveness of PSNs in the validation cohort (AUC=0.892). The

possible reason that the integrated model has lower AUC value than

the histogram model is that the addition of morphological signs

may reduce the specificity.

In the selection of the differentiation threshold between solid

and ground glass components, previous studies found that the

sensitivity of solid component recognition gradually decreases

and the specificity gradually increases with the gradual increase in

the set threshold in a certain range, while the recognition effect of

the ground glass component is the opposite. One of the thresholds

with a better integrative performance of solid component

recognition is −300 HU (18, 24). Therefore, −300 HU was used as

the threshold for the classification of ground glass components and

solid components in this study.

Considering that the solid component of PSN tends to

correspond to the fraction of histological invasive growth, we

preferentially selected the solid component indicators in the

multivariate logistic regression analysis. Yu et al. from Korea

suggested that the assessment effect of high-dimensional

indicators was better than that low-dimensional indicators (3D >

2D > 1D) in the assessment of pathological invasiveness in the PSN

(25). Many previous studies have demonstrated the correlation

between the diameter of the solid component or CTR and the

pathological invasiveness of PSNs (26, 27). However, there are still

relatively few studies on the correlation between three-dimensional

metrics of PSN and the degree of pathological invasiveness. One

study reported that mass and volume were independent factors for

IAC in PSNs, but this study did not evaluate metrics such as mean

density of solid components and mass of solid components (28). In

the present study, the volume, mean density, and mass of both the
A B

FIGURE 3

Calibration plot of the prediction models for predicting invasive adenocarcinoma lesions from the training cohort (A) and the validation cohort (B).
Model 1, clinical model; Model 2, histogram model; Model 3, integrated model.
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total nodule and solid component were investigated. The volume

and mean density of the solid component were independent risk

factors of IAC after ruling out of the mass index to avoid the impact

of multi-collinearity on the multivariate analysis. Because of the

comprehensive nature of 3D metrics, especially 3D metrics of solid

component, they can reflect the overall nature of nodules more

comprehensively and are good indicators for assessing pathological

invasiveness of PSNs.

The CT histogram metrics have undergone a gradual transition

from the number and size of peaks to the integrated calculation

metrics. We calculated the four most frequently used composite

metrics, variance, skewness, kurtosis, and entropy to describe the

distribution of the overall CT values of PSNs. The results of our

study showed that although all four metrics were associated with the

degree of pathological invasiveness in PSN, only variance (OR,
Frontiers in Oncology 08
0.605; 95% CI, 0.410–0.893, p=0.011) and entropy (OR, 2.008; 95%

CI, 2.750–7.717; p=0.039) were independent risk factors for IAC.

Most of the current studies on CT histogram indicators and the

degree of pathological invasiveness of SSN did not distinguish

pGGN and PSN, with SSN as a whole study. Yagi et al. also

showed that AIS/MIA had significantly higher skewness and

kurtosis and relatively lower values of variance and entropy

compared to IAC, and the results of multivariate logistic

regression analysis showed that entropy was an independent risk

factor between the two groups (29). However, when Chae et al.

explored imaging metrics for assessing invasiveness in PSNs, they

found that a higher kurtosis was an independent factor in

distinguishing pre-invasive lesions (AAH/AIS) from invasive

lesions (MIA/IAC) (9). It follows that less invasive lesions tend to

show lower variance and entropy and greater kurtosis and skewness

in the univariate analysis, representing lower heterogeneity and a

more concentrated state at lower CT values. Entropy and variance

are important indicators for differentiating pathological

invasiveness in PSNs, but the grouping of pathological types

expected to be differentiated should also be considered.

Beyond the first-order histogram features, the second- and

higher-order texture features extracted by radiomics techniques

were also integrated in the assessment of invasiveness among SSNs

(30–32). Li et al. obtained the CT texture features of 109 SSNs and
found that the surface area feature and the extruded surface area

feature could be predictors of IACs compared with MIAs (33). Wu

et al. analyzed the association between CT−based conventional

features/selected radiomic features and histological invasiveness of

203 SSNs in the training cohort and 57 SSNs in the validation

cohort. The diagnostic performance of the radiomic feature was as

great as that of quantitative CT feature (nodular size and solid

component) (34). Recently, they further studied the radiomics

features of 260 SSNs and constructed a LASSO-derived model

integrating semantic–radiomic features, which showed excellent

diagnosis performance (AUC, 0.957) to predict invasive SSNs (35).

In the majority of above studies, the SSNs were investigated as a

whole, while only three studies focused on the assessment of

invasiveness in PSNs by radiomics technology. Chae et al.

constructed a three-layered artificial neural networks model with
TABLE 4 Diagnostic performance of three predictive models for predicting invasive adenocarcinoma lesions.

AUC 1 AUC 2 AIC BIC Sensitivity Specificity

Model 1
Clinical model
(diameter, spiculation sign, pleural traction sign)

0.833 0.852 699.102 717.998 0.759 0.791

Model 2
Histogram model
(variance, entropy, the mean density of the solid component, volume of the solid
component)

0.833 0.892 694.037 717.656 0.822 0.849

Model 3
Integrated model
(Clinical model+ Histogram model)

0.833 0.886 673.056 710.847 0.830 0.814
AUC 1, 10-fold AUC result based on training cohort; AUC 2, results based on validation cohort. AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion.
FIGURE 4

Receiver operating characteristic (ROC) analysis of assessing
pathological invasiveness of PSN. AUC, area under the ROC curve;
Model 1, clinical model; Model 2, histogram model; Model 3,
integrated model.
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mean attenuation, standard deviation of attenuation, mass, kurtosis,

and entropy in 86 PSNs (9). Even though the model showed

excellent performance in differentiation of preinvasive lesions

from IACs (AUC, 0.981), the small sample and lack of validation

limited the model’s application. Weng et al. identified that four

radiomics features, including MaxIntensity, RMS, ZonePercentage,

and Long-RunEmphasis_angle0_offset7, were the best

discriminators to predict invasiveness of PSNs (12). A nomogram

that integrated lesion shape and radiomic signature could achieve a

satisfactory AUC of 0.888 (12). In a retrospective multicenter study

that included 297 PSNs, Wu et al. extracted radiomic features from

the different regions [gross tumor volume (GTV), solid, ground-

glass, and perinodular] (13). The radiomics model based on

ground-glass and solid features yielded an AUC of 0.98 on the

test data set, which was significantly higher compared with the

Brock, clinical–semantic features, and volumetric models. However,

the model required ground-glass and solid CT radiomic features,

which was too complicated to apply in clinical practice.

Nevertheless, the above studies mostly used the manual

delineation method for ROI delineation and segmentation, which

was time consuming and prone to inter-observer inconsistency in a

real-world setting (8). Deep-learning AI techniques, as a high-

efficiency and promising automatic method, has been increasingly

applied in automatic lesion delineation to accelerate radiomics pipeline

(32, 36, 37). In the comparison of the clinical model, histogrammodel,

and integrated model, the histogram model constructed by AI-based

histogram features demonstrated the best performance in the

validation cohort (AUC=0.892), while the integrated model did not

achieve better diagnostic efficiency compared with the histogram

model (p=0.34, Delong’s test). As the histogram features could be

calculated automatically by the deep-learning AI software (InferRead

CT Lung), surgeons could apply the histogram model for surgical

planning of PSNs in the real-world clinical practice after embedding

this software in the medical imaging system.

This study has some limitations. First, this study is a

retrospective single-center study with selective bias and no

external validation. Second, the solid component diameter and

CTR were not included in the analysis considering the

measurement of solid component diameter is inherently

subjective. Third, only the first order radiomic features, no more

in-depth second or third radiomic features, were studied this time.

There is still much room for improvement in the diagnostic

performance of our model. However, the more complex radiomic

features make it more difficult in practical clinical application.
Conclusion

This large sample study demonstrated that AI-based CT

histogram features could assess the pathological invasiveness of

PSNs accurately. With further external validation in the future, this

convenient histogram model is very promising to be applied to

guide clinical treatment decisions of PSNs in the real-world setting.
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