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Introduction: Diffusion-weighted imaging (DWI) with parallel reconstruction may

suffer from a mismatch between the coil calibration scan and imaging scan due to

motions, especially for abdominal imaging.

Methods: This study aimed to construct an iterative multichannel generative

adversarial network (iMCGAN)-based framework for simultaneous sensitivity map

estimation and calibration-free image reconstruction. The study included 106

healthy volunteers and 10 patients with tumors.

Results: The performance of iMCGAN was evaluated in healthy participants and

patients and compared with the SAKE, ALOHA-net, and DeepcomplexMRI

reconstructions. The peak signal-to-noise ratio (PSNR), structural similarity index

measure (SSIM), root mean squared error (RMSE), and histograms of apparent

diffusion coefficient (ADC) maps were calculated for assessing image qualities. The

proposed iMCGAN outperformed the other methods in terms of the PSNR

(iMCGAN: 41.82 ± 2.14; SAKE: 17.38 ± 1.78; ALOHA-net: 20.43 ± 2.11 and

DeepcomplexMRI: 39.78 ± 2.78) for b = 800 DWI with an acceleration factor of

4. Besides, the ghosting artifacts in the SENSE due to the mismatch between the

DW image and the sensitivity maps were avoided using the iMCGAN model.

Discussion: The current model iteratively refined the sensitivity maps and the

reconstructed images without additional acquisitions. Thus, the quality of the

reconstructed image was improved, and the aliasing artifact was alleviated when

motions occurred during the imaging procedure.

KEYWORDS

multi-channel generative adversarial network, calibration-free, simultaneous estimation,
coil sensitivity estimation, DWI reconstruction, liver
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1 Introduction

Diffusion-weighted imaging (DWI) has been widely used in the

diagnosis of tumors Kim et al. (1); Zarghampour et al. (2); Tang and

Zhou (3), stroke Sartoretti et al. (4); Nazari-Farsani et al. (5); Nagaraja

et al. (6), and trauma Wortman et al. (7); Lindsey et al. (8);

Mohammadian et al. (9). Single-shot echo-planar imaging (SS-EPI)

Baliyan et al. (10) is frequently used in DWI due to its rapid

acquisition speed. But the readout duration of the SS-EPI is

relatively long. Therefore, to acquire an acceptable resolution, the

echo train length should be increased. But it results in T2* blurring

artifacts and geometric distortion Farzaneh et al. (11); Liu et al. (12),

especially in abdominal imaging.

Parallel imaging (PI) can be applied to the SS-EPI to eliminate these

untoward effects. In abdominal DWI, an extra coil calibration scan with

the turned-off diffusion gradients (b = 0 , b0) is employed to extract the

required PI calibration information. Depending on the use of

calibration information, the PI can be categorized into three groups,

explicit calibration, auto-calibration, and calibration-free approaches.

Explicit-calibration approaches, including sensitivity-encoding

(SENSE) Pruessmann et al. (13), rely on coil sensitivities that are

estimated using a separate calibration scan before or after the

accelerated imaging, which prolongs the total scan time.

Furthermore, a mismatch between calibration and imaging due to

the interscan motion causes significant artifacts in reconstructed images

Blaimer et al. (14), which is a critical problem in abdominal imaging.

The auto-calibration either obtains the sensitivity information by

interpolating kernels gained from the calibration areas or by using its

spatial reconstruction to overcome challenges associated with explicit

calibration. Algorithms included generalized auto-calibrating partially

parallel acquisitions GRAPPA Griswold et al. (15), SPIRiT Lustig and

Pauly (16), L1-SPIRiT Murphy et al. (17), and ESPIRiT Uecker et al.

(18). Since these methods failed when the acceleration factors were

high, several other algorithms, such as JSENSE Ying and Sheng (19),

IRGN-TV Uecker et al. (20), self-feeding sparse SENSE Huang et al.

(21), and Sparse BLIP She et al. (22) were used to simultaneously

estimate the image and the sensitivity. Nevertheless, these joint

estimating methods are sensitive to initialization. Additionally, these

auto-calibration methods cannot be used for DWI because PI requires

uniformly sampled k-space for SS-EPI. If used, it results in insufficient

autocalibration signals (ACSs). Therefore, an additional coil calibration

scan and acquisition are required, which bring the same effect as explicit

calibration Yi et al. (23). To overcome these drawbacks, several

calibration-free strategies were developed recently. The SAKEShin

et al. (24) (Simultaneous Auto-calibration and k-space Estimation),

P-LORAKS Haldar and Zhuo (25) (Parallel-imaging LOw-RAnking

matrix modeling of local k-space neighborhoods), and ALOHA Jin and

Ye (26) (Annihilating filter-based LOw-rank HAnkel matrix) use

structured low-rank matrix completion to recover a full k-space from

incomplete data. Besides, CLEAR Trzasko and Manduca (27)

(Calibration-free Locally low-rank EncourAging Reconstruction)

exhibits the property of low-rankness in the image domain. These

methods are capable of producing state-of-the-art reconstruction

performance. However, the algorithms have three main

shortcomings. First, they are limited by their computational

complexity which requires a long time for iterative calculations;

Second, the CS algorithms require access to the k-space data, so
Frontiers in Oncology 02
quality improvement in the image domain using post-processing

techniques is not possible; Third, they cannot rectify the artifacts due

to uniformly under-sampling.

Recently, several deep learning-based calibrations-free algorithms

Kwon et al. (28); Zhang et al. (29); Han et al. (30); McRobbie et al. (31);

Arvinte et al. (32); Hu et al. (33) were successfully applied to the PI to

shorten the reconstruction time and prevent the separate coil-

calibration procedure. Kwon et al. Kwon et al. (28) adopted a

learning-based design using the multilayer perceptron (MLP) training

algorithm to reconstruct the images from subsampled data. Line-by-

line processing of the learned MLP architecture reduced the aliasing

artifacts. Zhang et al. Zhang et al. (29) developed a multi-channel

generative adversarial network for MRI reconstruction without using

sensitivity maps. The images were generated from under-sampled

multi-channel raw data directly by estimating missing data with the

trained network. The deep complex MRI Wang et al. (34) was used to

develop end-to-end learning and it directly reconstructed the multi-

channel images without explicitly using coil sensitivity maps. Deep J-

Sense Arvinte et al. (32) unrolls an alternating optimization to jointly

solve for the image and sensitivity map kernels directly in k-space for

parallel MRI reconstruction. RUN-UP Hu et al. (33) utilize an unrolled

network with U-Nets alternating in k-space and image space as deep

priors to achieve fast and high-quality multi-shot DWI reconstruction.

Furthermore, Han et al. Han et al. (30) proposed ALOHA-net, a fully

data-driven deep learning algorithm for k-space interpolation,

connecting the ALOHA and deep learning. Nevertheless, most of the

aforementioned studies were based on variable density sampling for

image reconstruction. None of the elucidations considered

reconstructing DWIs acquired with uniform under-sampling. Also,

the uniform under-sampling in Cartesian trajectory resulted in wrap-

around artifacts (also called aliasing artifacts) in MR images McRobbie

et al. (31). Further, the obtained sensitivity maps also contained aliasing

artifacts with a low signal-to-noise ratio.

In this study, an iterative multi-channel generative adversarial

network (iMCGAN)-based framework was constructed for joint

sensitivity map and calibration-free image reconstruction in multi-

channel EPI-based abdominal DWI with uniform subsampling. First,

the iMCGAN reconstructed the multi-channel uniform under-

sampling abdominal DW data and coil sensitivity maps. Second, it

effectively eliminated the mismatch between the coil calibration scan

and the main scan due to the inter-scan motion.
2 Theory

2.1 General image reconstruction

The forward measurement model is formulated as follows for

multi-coil acquisition:

yu = MSFx, (1)

where M denotes an under-sampling mask, F indicates the

Fourier Transform operator, S denotes the coil sensitivity map, is

the acquired under-sampled k-space data, and x denotes the images

that are reconstructed from fully sampled k-space. In calibration-free

image reconstruction, the coil sensitivity maps are usually estimated

using the following equation:
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where the xi represents the image that is acquired from the ith coil

while Si represents the ith coil sensitivity map. The optimization

problem is expressed as minimized reconstruction error to solve the

ill-posed inverse problem:

x̂ = argmin
x̂

‖ x̂ − Rx(xu; qx) ‖22 + l ‖ yu −MFS x̂ ‖22, (3)

where the x̂ is the alias-free image to be reconstructed, Rx is the

network prior with parameters qx and input of the zero-filled (ZF)

image xu=F-1(yu). The second term in Eq. 3 is the data consistency

term, which is implemented in the generator of iMCGAN as a DC

block. The k-space data in M is replaced by the corresponding data

from during each iteration. The conditional GANs are also included

in MRI reconstruction. The GAN is composed of a generator network

G and a discriminator network D. The generator G aims to generate

data that could fool the discriminator D. The discriminator D

distinguishes the true data from the output of the generator.

Therefore, the conditional GAN loss is incorporated into MRI

reconstruction instead of using a CNN.

min
G

max
D

Ladv(G,D)

= Ex∼Ptrain(x)½log D(x)� + Exu∼PG(xu)½− logD(G(xu))� : (4)

Upon learning, the generator yields the corresponding de-aliasing

reconstruction x̂ , which is fed to the discriminator. The objective is to

keep the training until the discriminator distinguishes the de-aliasing

reconstruction x̂ from the fully sampled ground truth x. Any

inaccuracy in sensitivity map estimation propagates to the image

reconstruction process during the network training.
2.2 Proposed iMCGAN

A novel iterative multi-channel GAN (iMCGAN)-based

framework is constructed for joint sensitivity map estimation and

calibration-free DWI reconstruction to improve the accuracy.

Starting with an initial sensitivity map estimation using Eq. 2,
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updating the image and the coil sensitivity maps is alternated using

two GANs. First, the image is fixed to update the sensitivity map

estimation. One generator (GAN2n-1 in Figure 1) is trained by

minimizing the following equation:

Lcsm = LGEN (Su) + aLiMAE(Su) + bLfMAE(Su): (5)

where, a and b are the hyperparameters that controlled the trade-

off between functions. The mean absolute error (MAE) loss is

represented as

min
qG

LiMAE(qG) =o
C

i=1
‖ Si − Ŝ i

u ‖1, (6)

min
qG

LfMAE(qG) =o
C

i=1
‖ ℑ i − ℑ̂ i

u ‖1, (7)

where Si and Ŝ i
urepresented the full-sampled and under-sampled

coil sensitivity map calculated from Eq. 2, ℑi and ℑ̂ i
uare the Fourier

transformation format of and Ŝ i
uThe C is the total number of receiver

coils. The adversarial loss of the generator was as follows:

min
qG

LGEN(qG) = − log (DqD (GqG (Su))) (8)

Once the generator of GAN2n-1 was trained based on the , any

new is fed to it to yield the de-aliasing sensitivity map reconstruction.

Then, the sensitivity maps for the previous iteration is fixed to

update the image. The remaining reconstruction is implemented

using the PIC-GAN Lv et al. (35) framework. In the PIC-GAN, the

estimated coil sensitivity map Ŝ uand the combined reconstructed

image x̂ uare simultaneously passed to the GAN2n. This network is

trained by minimizing the following equation:

Limage = LGEN(xu) + aLiMAE(xu) + bLfMAE(xu) (9)

where, a and b are hyperparameters that control the trade-off

functions. The three loss functions were written as:

min
qG

LiMAE(qG) =o
C

i=1
‖ xi − Ŝ i

ux̂ u ‖1, (10)

min
qG

LfMAE(qG) =o
C

i=1
‖ yi − FŜ i

ux̂ u ‖1, (11)
FIGURE 1

The overall framework of the proposed iterative multi-channel GAN. Gen represents the generator and Dis indicates the discriminator. Three iterations
are included.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1095637
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lyu et al. 10.3389/fonc.2023.1095637
min
qG

LGEN(qG) = − log (DqD (GqG (xu))) : (12)

The followings are considered for the separation of image-domain

and k-space losses. The LiMAE (qG) term removes the aliasing artifacts

of the reconstruction and results in the image domain, which is

necessary for spatial recovery of aliasing-free images. The LfMAE (qG)
term guarantees that the reconstruction produces corresponding

under-sampled image that matches the acquired under-sampled k-

space measurements. Additionally, it minimizes the difference

between the interpolated k-space data and the GT in our setting.

The GAN models are difficult to be trained because they need to be

trained alternatively Quan et al. (36) 134. Therefore, refinement

learning Yang et al. (37) is incorporated to stabilize the training of

the proposed model. Therefore, is used. The x̂ u = GqG (xu) + xu
generated information is not acquired, which significantly reduces

the complexity of the model.
2.3 Architecture of iMCGAN

The proposed iMCGAN is presented in this section. Three

iterations are used to obtain both coil sensitivities and high-quality

DW images from the under-sampled multi-channel data. In the

constructed iteration architecture, each iteration includes two

GANs, sharing the same architecture. As shown in Figure 2A, the

generator is composed of an encoding path and a symmetric decoding

path. The encoder modules (e1, e2, e3, and e4) are fed up with a 4D

tensor input and perform the 2D convolution with a filter size of 3×3.

The number of feature maps f and stride s is indicated at the bottom of

each block. The decoder modules (d1, d2, d3, and d4) perform

transpose convolution. As illustrated in Figure 2C, the residual

block of the encoder and decoder consists of three convolution

layers that aim to increase the depth of the generator and

discriminator. The final reconstruction is obtained by inputting the

ZF images and outputting aliasing free images through the generator,

which is similar to many deep learning-based procedures. The
Frontiers in Oncology 04
architecture of the discriminator, shown in Figure 2B, is the same

as the encoding path of the generator. In the present study, the real

and imaginary components of the complex data were fed into separate

channels during the network training.
3 Materials and methods

3.1 Image acquisition

This study was approved by the Institutional Review Board. The

written informed consent documents were obtained from 106 healthy

participants and 10 patients who had hepatic tumors. Participants

underwent scans using a 3T Philips Ingenia MRI system (Philips

Healthcare, Best, the Netherlands) containing an eight-channel coil.

Two breath-hold DW imaging acquisitions were done for b values of

0 and 800 with the following parameters: single-shot spin-echo EPI;

repetition time (TR)/echo time (TE) of 4000/55 ms; matrix size of

336×336; field of view (FOV) of 360×360 mm; the number of slices of

30; slice thickness of 6 mm; bandwidth of 2548 Hz/Px. The data were

split into training and testing sets (Table 1). Additionally, a reference-

free ghost correction algorithm Skare et al. (38) was implemented to

remove the N/2 ghosting artifact. The acquisition time was about 12 s

for each b value.
3.2 Implementation details

The iMCGAN model was compared with three state-of-the-art

methods including SAKE Shin et al. (24), ALOHA-net Han et al. (30),

and DeepcomplexMRI Wang et al. (34). Three acceleration factors

(AF, 2, 3, and 4) with uniform under-sampling patterns were

validated. The recommended parameter settings were implemented

in the corresponding studies. Besides, the sensitivity map was

calculated using ESPIRiT Uecker et al. (18) with 24 ACS lines for

the SENSE reconstruction. The reconstruction was performed on a

workstation using specifications of Intel (R) Xeon (R) CPU E5-2698

v4 @ 2.20 GHz with 256 GB RAM and an NVIDIA GV100GL (Tesla
A

B C

FIGURE 2

The detailed architecture of each GAN consisted of a (A) Generator and a (B) Discriminator and (C) the residual block used in the network.
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V100 DGXS 32GB) graphics processing unit. The iMCGAN was

implemented in Python with a TensorFlow backend. The maximum

number of iterations 170 was set to 500 epochs during the training

process. Based on previous studies Yang et al. (37); Quan et al. (36),

171 it was set at a=1 and b=10 with the Adam optimizer to balance

the values of different loss terms into similar scales. The batch size was

16 and the initial learning rate was set at which was decreased

monotonically for the training. The loss was calculated for each

iteration and the parameters were independent in this study. Each

sub-unit of GAN in the iMCGAN was trained separately. The training

time for a sensitivity estimation of the GAN was about 2 hours and

image reconstruction for the GAN was 2.5 hours, while the testing

time was 0.02 ms and 0.01 ms for coil sensitivity map and

image, respectively.
3.3 Quantitative evaluation

The reconstruction parameters were quantified using three

metrics: peak signal-to-noise ratio (PSNR), structural similarity

index measure (SSIM), and root mean squared error (RMSE). A
Frontiers in Oncology 05
paired Wilcoxon signed-rank test compared the PSNR, SSIM,

and RMSE measurements between different approaches. A

P-value of<0.05 indicated a statistically significant difference.

The ADC maps were calculated from the images using the

following equation:

ADC = −log(ID, I0)b (13)

where ID and I0 represented the signal intensities for b = 800 s/

mm2 DWI and b = 0 s/mm2, respectively. The parameters derived

from the histogram of the ADC maps included ADCmean,

ADCmedian, skewness, and kurtosis.
4 Results

As shown in Figure 3, the value of the loss is large and decreases

very rapidly during the Iter 1st stage, and then it is relatively stable

after 200 epochs. In the Iter 2nd and Iter 3rd stages, the value of the loss

remains basically unchanged. Therefore, it is reasonable that the

model has converged in three iterations and it can achieve better

reconstruction performance.
TABLE 1 Number of images used for training and test sets.

Examination Participants Number of slices

Training 85 healthy participants 2550

Test 21 healthy participants 630

10 patients with tumors 300
A B

FIGURE 3

The loss curves of the generator and discriminator during training with different acceleration factors for (A) b = 800 s/mm2 and (B) b = 0 s/mm2.
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The DWI and ZF images showed prominent aliasing artifacts for

b = 0 s/mm2 and b = 800 s/mm2 (Figure 4). Some blurring and

residual artifacts still existed, as indicated by the red arrows in the first

iteration (Iter 1st) image. The GAN considered the result of Iter 1st

and reconstructed a better image with very few artifacts in the second

iteration (Iter 2nd). Nevertheless, some small vessels were missing, and

the vessel edges were not clear on the image (indicated by the green

arrows). The GAN took the result of Iter 2nd into account and

reconstructed a clear image with almost no artifacts in the third

iteration (Iter 3rd). The measurements obtained from the liver on

ADC maps were lower in the Iter 1st and Iter 2nd compared with the

Iter 3rd. As the number of iterations increased, the ADC value of the

Iter 3rd was closer to that of the GT. The histogram of ZF was different

compared with the GT, which was due to the under-sampling in the

k-space and thus the aliasing artifacts in the spatial domain. The
Frontiers in Oncology 06
histogram parameters of the Iter 3rd (ADCmean = 1.76; ADCmedian

= 1.93; Sknew = -1.12; kurtosis = 3.68) were consistent with those of

the GT (ADCmean = 1.77; ADCmedian = 1.95; Sknew= -1.16,

kurtosis = 3.67).

The iterative iMCGAN reconstruction resulted in the tumor

at AF of 4 (Figure 5). Although all the iMCGAN reconstruction

provided good results the tumor edges and textures were

very accurate in the Iter 3rd image as shown in the enlarged

and other images. Also, based on the PSNR and RMSE (×10)

values, the Iter 3rd produced the best quantitative values (PSNR =

29.06, RMSE = 3.52 for b = 0, and PSNR = 31.99, RMSE = 2.52 for b =

800 s/mm2).

The representative iterative reconstruction estimated the

sensitivity maps of coils 3 and 7 at the AF of 2 (Figure 6). Iter 1 (a)

showed a spatial artifact that was obvious at the liver edge and on the
FIGURE 4

Iterative iMCGAN reconstruction at the AF of 4. The PSNR and RMSE values are shown in the corner. For a fair visual comparison, the images were
normalized to [0, 1]. The selected whole-liver ADC maps and the corresponding ADC histograms are shown in the third and fourth rows. The histogram
parameters are displayed in the upper left corner.
FIGURE 5

The iterative iMCGAN reconstruction with the tumor at the AF of 4. The PSNR and RMSE values are shown in the corner. For a fair visual comparison, the
images were normalized to [0, 1]. The enlarged and different images with the tumor are illustrated with the reconstruction.
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vessel area (red arrows). Iter 2 (b) showed fewer artifacts (green

arrows). The map estimated by the Iter 3 (c) visually agreed with the

smooth GT (d) with no artifacts. The quality metric values of both

magnitude and phase indicated that the iMCGAN improved the

sensitivity maps through iterations.

Representative DWI reconstruction using different methods, and

the ADC maps constructed from the reconstructed data and

corresponding ground truth, are shown in Figure 7. The images

reconstructed by SAKE and ALOHA-net exhibited aliasing artifacts

on the liver when the AF was 2 as indicated by the yellow arrows. In

contrast, the DeepcomplexMRI and iMCGAN reconstruction were

free of artifacts. As the AF increased, the liver structure was blurred in
Frontiers in Oncology 07
the reconstruction images using SAKE and ALOHA-net. In contrast,

the model iMCGAN significantly improved the image quality by

recovering vessels (as indicated by yellow circles) that were not visible

by the other reconstruction methods. Furthermore, the iMCGAN

outperformed other methods significantly (p< 0.001). The ADC maps

of the iMCGAN were also superior to those obtained using the

other methods.

Representative reconstructed DWI (b = 800 s/mm2) of tumors

using different methods at the AF of 4 are shown in Figure 8. The

image reconstructed using SAKE and ALOHA-net exhibited ghosting

artifacts, which obscured the tumor characteristics. The iMCGAN

and DeepcomplexMRI greatly improved the ZF image quality by
FIGURE 6

The representative iterative sensitivity map estimation of the two coil units. The 1st and 3rd rows show the magnitude images with the sensitivity profiles.
The 2nd and 4th rows indicate phase images with sensitivity profiles.
FIGURE 7

The visual comparison between several advanced DWI (b = 800 s/mm2) reconstruction methods under different AFs. The first and third row shows the
reconstructed DWI with corresponding PSNR and SSIM values, and the second and fourth row shows the corresponding ADC maps.
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recovering sharpness and adding more structural details to the ZF

images. The quantitative indicators from the histogram showed that

iMCGAN (ADCmean = 3.69; ADCmedian = 3.71, Sknew = –0.17,

kurtosis = 5.28) achieved the closest quantifications to the GT
Frontiers in Oncology 08
(ADCmean = 3.63; ADCmedian = 3.70; Sknew = 0.10; kurtosis =

6.23) as compared to other methods.

The conventional SENSE and the proposed iMCGAN for two

participants at different AFs were compared (Figure 9). When the AF
FIGURE 8

The representative reconstructed DWI (b=800 s/mm2) of the tumor at the AF of 4. The second to fourth rows show the whole-liver ADC maps and the
corresponding histograms of the tumor ADC maps. The histogram parameters are displayed in the upper left corner.
FIGURE 9

The comparisons between the SENSE and iMCGAN reconstructions with the Afs of 2, 3, and 4. All images reconstructed with the proposed iMCGAN
were free of aliasing artifacts.
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was 2, some ghosting artifacts (red arrows) were observed in the

SENSE reconstructions due to the mismatch between the DWI image

and the sensitivity map. However, such kinds of artifacts were

eliminated using the proposed iMCGAN. As the AF increased, the

SENSE reconstruction gradually worsened and the performance

differences between the iMCGAN and SENSE became larger. These

ghosting artifacts severely affected the estimation of ADC maps.

Residual aliasing artifacts were not noticeable on the images

reconstructed using the proposed method. Iter 1st (PSNR: 46.55 ±

3.63; SSIM: 0.99 ± 0.01; NMSE: 0.52 ± 0.32) showed the best results

when the AF was 2 for b = 0 images (Figure 10A). Iter 3rd (PSNR:

41.46 ± 3.00; NMSE: 0.91 ± 0.42) significantly increased the PSNR

and decreased the RMSE compared with other two iterations when

the AFs were 3 and 4. The metrics of Iter 1st showed the optimal

results when the AFs were 2 and 3 for b = 800 images (Figure 10B).

Iter 3rd (PSNR: 41.24 ± 2.4, SSIM: 0.96 ± 0.03, NMSE: 0.90 ± 0.28)

obviously increased the PSNR and SSIM and decreased the

RMSE compared with other two iterations when the AF was 4.

The quantitative metrics of different models on b = 0 s/mm2

and 800 s/mm2 images at the AF of 2, 3, and 4 are shown

in Table 2. The proposed iMCGAN resulted in the best

performance in terms of the greatest PSNR (41.82 ± 2.14), least

RMSE (0.90 ± 0.28), and highest SSIM (0.96 ± 0.03) for b = 800 s/mm2

DWI at the AF of 4.

The quantitative metrics of different models on b = 0 and 800

images at the AF of 2, 3, and 4 are shown in Table 2. The proposed

iMCGAN resulted in the best performance in terms of the greatest

PSNR (41.82 ± 2.14), least RMSE (0.90 ± 0.28), and highest SSIM

(0.96 ± 0.03) for b = 800 DWI at the AF of 4.
5 Discussion

This study constructed an iterative multi-channel GAN-based

framework for simultaneous sensit ivity estimation and

reconstruction. The iMCGAN model showed two advantages: (1)

The architecture iteratively refined the sensitivity maps and the multi-

channel reconstructed images. Thus, the quality of reconstruction was
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improved, and the aliasing artifact was reduced. (2) The sensitivity

maps obtained from the data effectively eliminated the mismatch

between coil calibration scan and main scan due to the

interscan motion.

The image quality and quantitative parameters for both b = 0 s/

mm2 and 800 s/mm2 reconstructions were improved with the

increasing number of iterations at a high AF (AF = 4). However,

the parameters from b = 0 s/mm2 and 800 s/mm2 reconstructions

were not improved as the number of iterations increased at a lower AF

(AF = 2). This outcome might have been because one iteration was

already satisfied when the AF was small and the model converged

more quickly. Also, at the AF of 3, the best outcome was obtained for

b = 0 s/mm2 at the 3rd iteration and b = 800 s/mm2 at the 1st

iteration. The edge characteristics on the image presented high

intensities when b = 0 s/mm2 and it was difficult to recover the

edge signal when the images were aliased together. When the AF is

low, only one iteration is required. More iterations are recommended

when the AF becomes higher.

It is observed that iMCGAN model trained only with healthy

images performed well on images with tumors. These can be

explained by that the iMCGAN contains the data-fidelity term,

which guarantees the consistency of the reconstruction with the

acquired data.

The iMCGAN model outperformed SAKE, ALOHA-net, and

DeepcomplexMRI methods at different AFs. The iMCGAN

significantly increased the PSNR and SSIM and lowered the RMSE

compared with other reconstruction methods. The PI based on EPI

sequences usually requires uniform sampling. Therefore, it is difficult

to estimate the true underlying coil sensitivity maps. The SAKE

reconstruction depends on the low-rank recovery and requires

manual tuning parameters. Further, the computational complexity

of the SAKE is large. The ALOHA-net learns k-space interpolation

kernels in an end-to-end fashion from the k-space to the image

domain using mean square error loss. However, it is not fitting for the

under-sampled multi-channel DWI reconstruction without the ACS

line. The DeepcomplexMRI is also end-to-end learning without

explicitly using coil sensitivity maps to recover the channel-wise

images. When the AF increases, the iterative approach is better
FIGURE 10

The quantitative metrics were calculated on the ZF, Iter 1st, Iter 2nd, and Iter 3rd reconstructions at different AFs. The error bars on each series indicate
the standard deviation of each quantitative variable.
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than the direct reconstruction approach. Nevertheless, the iMCGAN

model, a learning-based method, benefits from large amounts of

previously acquired data. Hence, this framework performs better in

acquiring and preserving the structure and details of the

reconstructed images. Many previous studies Shaul et al. (39);

Murugesan et al. (40); Liu et al. (41) proved that GAN

reconstructed significantly better compared with plain CNN

architecture in terms of the PSNR, SSIM, and RMSE.

The single-shot EPI had the drawbacks of low spatial resolution

and signal-to-noise ratio Ni et al. (42). The multi-shot EPI technique

addresses this drawback. Segmented EPI Wu and Miller (43)

separates the k-space in an interwoven manner along the phase

encoding direction. Since the traverse of the k-space is accelerated

at each shot, segmented EPI has higher resolution and SNR and lower

distortion compared with the single-shot EPI. However, shot-to-shot

phase changes due to the patient’s motion severely degrade the image

quality. Therefore, segmented EPI is not yet widely used for

abdominal DW imaging Lewis et al. (44). The iMCGAN model

could avoid the inconsistency of the sensitivity maps and DW data

caused by respiratory motion.

This current model used a different architecture compared with the

previous method, MLP Kwon et al. (28). All voxels in the multi-channel

aliased images along the phase encoding direction were used as the input

of the network in the MLP. The MLP is also a fully connected network

and is more computationally expensive to be trained than the iMCGAN

model. Besides, the MLP uses vector as input while the iMCGAN uses

matrix as input. Therefore, the iMCGAN can extract the spatial relation

better between pixels of images. In addition, the other two previous

methods Zhang et al. (29); Wang et al. (34) estimated missing data

directly with the trained network. However, the iMCGAN not only

calculated the sensitivity maps but also optimized the DW image
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iteratively., The first iteration of the process is the most effective in

removing artifacts and the next two iterations refine them. The number

of GANs must be an integer multiple of 2 for each iteration, one of them

is used to learn the coil sensitivity map and the other is used to learn the

reconstruction of the image. Therefore, each network performs a

different task, and a single deep GAN without iteration canâ€™t carry

out an acceptable reconstruction.

This study had several limitations. First, the improvement of the

generalization performance of the iMCGAN is required by tuning our

network according to the number of coils from each scanner. Like

other deep learning-based methods, the iMCGAN should be retrained

for the dataset using different channel numbers. Several networks can

be trained with a certain number of channels. The appropriate

network can be selected to reconstruct the unseen under-sampled

data using different multi-channel. Second, the image reconstruction

performance can be improved by introducing some edge- or texture-

preserved regulations into the loss function of the network. Third,

further studies are needed to assess the performance of the proposed

iMCGAN in patients with other diseases. Besides, data collection

from different devices, field strengths, and different anatomies should

be considered.
6 Conclusions

The study constructed a novel calibration-free sensitivity

estimation and image reconstruction framework for under-sampled

multi-channel liver DWI. The performance was validated on healthy

volunteers and patients with tumors. The quality of the reconstructed

image was improved, and the aliasing artifact was alleviated when

motions occurred during the imaging procedure.
TABLE 2 The PSNR, SSIM and RMSE of different reconstruction methods with the AF of 2, 3, and 4.

b = 0 s/mm2 DWI

AF = 2 AF = 3 AF = 4

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

ZF 20.47 ± 1.82 0.76 ± 0.03 9.67 ± 1.86 19.34 ± 2.05 0.69 ± 0.06 11.08 ± 2.46 16.41 ± 1.57 0.64 ± 0.05 15.37 ± 2.71

SAKE 20.69 ± 1.95 0.75 ± 0.06 9.46 ± 1.99 19.77 ± 2.07 0.66 ± 0.06 10.55 ± 2.34 17.4 ± 1.96 0.65 ± 0.05 13.82 ± 3

ALOHA-net 22.07 ± 2.01 0.44 ± 0.07 8.08 ± 1.73 20.2 ± 1.72 0.33 ± 0.06 9.96 ± 1.84 19.59 ± 1.57 0.3 ± 0.04 10.65 ± 1.9

DeepcomplexMRI 41.98 ± 3.52 0.97 ± 0.02 0.90 ± 0.41 39.30 ± 3.17 0.97 ± 0.02 0.94 ± 0.42 38.68 ± 2.37 0.95 ± 0.02 1.53 ± 1.08

iMCGAN 42.00 ± 3.21 0.97 ± 0.02 0.86 ± 0.41 41.46 ± 3.00 0.97 ± 0.02 0.91 ± 0.42 39.80 ± 2.69 0.95 ± 0.02 1.18 ± 0.45

b = 800 s/mm2

AF=2 AF=3 AF=4

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

ZF 21.41 ± 1.98 0.77 ± 0.03 8.71 ± 1.87 20.53 ± 1.90 0.74 ± 0.04 9.63 ± 2.04 17.01 ± 1.69 0.69 ± 0.04 14.37 ± 2.72

SAKE 21.61 ± 2.09 0.79 ± 0.05 8.54 ± 1.97 20.63 ± 1.78 0.71 ± 0.06 9.52 ± 2.05 17.38 ± 1.78 0.69 ± 0.05 13.81 ± 2.73

ALOHA-net 23.70 ± 2.10 0.45 ± 0.07 6.72 ± 1.56 20.76 ± 2.11 0.30 ± 0.08 9.39 ± 2.03 20.43 ± 2.11 0.21 ± 0.06 9.79 ± 2.26

DeepcomplexMRI 49.45 ± 4.55 0.98 ± 0.01 0.49 ± 0.30 43.84 ± 3.31 0.98 ± 0.01 0.74 ± 0.30 39.78 ± 2.78 0.95 ± 0.02 1.09 ± 0.43

iMCGAN 51.22 ± 4.47 0.99 ± 0.01 0.32 ± 0.22 44.7 ± 3.26 0.98 ± 0.01 0.63 ± 0.29 41.82 ± 2.14 0.96 ± 0.03 0.90 ± 0.28
fr
The numbers in bold indicates the best performance.
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