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Study of the prediction of
gamma passing rate in
dosimetric verification of
intensity-modulated
radiotherapy using machine
learning models based on
plan complexity

Shizhen Bin1, Ji Zhang1, Luyao Shen2, Junjun Zhang1*

and Qi Wang1*

1Radiotherapy Center, Third Xiangya Hospital of Central South University, Changsha, China,
2Radiotherapy Center, The Central Hospital of Shaoyang, Shaoyang, China
Objective: To predict the gamma passing rate (GPR) in dosimetric verification of

intensity-modulated radiotherapy (IMRT) using three machine learning models

based on plan complexity and find the best prediction model by comparing and

evaluating the prediction ability of the regression and classification models of

three classical algorithms: artificial neural network (ANN), support vector

machine (SVM) and random forest (RF).

Materials andmethods: 269 clinical IMRT plans were chosen retrospectively and

the GPRs of a total of 2340 fields by the 2%/2mm standard at the threshold of

10% were collected for dosimetric verification using electronic portal imaging

device (EPID). Subsequently, the plan complexity feature values of each field

were extracted and calculated, and a total of 6 machine learning models

(classification and regression models for three algorithms) were trained to

learn the relation between 21 plan complexity features and GPRs. Each model

was optimized by tuning the hyperparameters and ten-fold cross validation.

Finally, the GPRs predicted by the model were compared with measured values

to verify the accuracy of the model, and the evaluation indicators were applied to

evaluate each model to find the algorithm with the best prediction performance.

Results: The RF algorithm had the optimal prediction effect on GPR, and its mean

absolute error (MAE) on the test set was 1.81%, root mean squared error (RMSE)

was 2.14%, and correlation coefficient (CC) was 0.72; SVM was the second and

ANN was the worst. Among the classification models, the RF algorithm also had

the optimal prediction performance with the highest area under the curve (AUC)

value of 0.80, specificity and sensitivity of 0.80 and 0.68 respectively, followed by

SVM and the worst ANN.
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Conclusion: All the three classic algorithms, ANN, SVM, and RF, could realize the

prediction and classification of GPR. The RF model based on plan complexity had

the optimal prediction performance which could save valuable time for quality

control workers to improve quality control efficiency.
KEYWORDS

machine learning, plan complexity, IMRT QA, dosimetric verification prediction, gamma
passing rate
1 Introduction

Intensity-modulated radiotherapy (IMRT) is a precise

radiotherapy technique that achieves a highly conformable dose

distribution by adjusting the intensity distribution in the irradiation

field, and it has been widely used for the precise treatment of

tumors. In clinical practice, a dynamic intensity modulation

method for controlling the multi-leaf collimator (MLC) to form

multiple small subfields is often used. Therefore, the process of

designing a dynamic IMRT plan involves continuous modulation

and optimization of various parameters of each subfield, which is

highly complex. To ensure the safety and accuracy of IMRT, plan

quality assurance (QA) must be performed before the

implementation of radiotherapy (1), among which dose

verification is the most important part (2). The gamma index

analysis is the most widely used evaluation method for dose

verification in clinic at present (3). Studies have shown that there

is a certain correlation between the complexity of the plan and the

GPR (4, 5). A plan with a high complexity yields a low GPR (6). A

recent review also summarized the ability of different plan

complexities in 163 studies to pre-identify failed plans in patients

pre-treatment QA, finally plan complexity was suggested to be used

as a tool for pre-treatment QA, although it was not yet a complete

replacement for pre-treatment QA (7).

Machine learning has gradually become an actively researched

field in recent years owning to its efficiency and predictability. It is

currently being applied in IMRT to perform tasks, such as the

automatic delineation of plan target volume and organs at risk and

automated treatment planning (8, 9). Machine learning has

powerful capabilities for data mining, analysis and prediction.

Recently, some researchers have applied the random forest

algorithm to IMRT QA. For example, Sakai et al. (10) used the

imaging features of the fluence map collected by EPID in IMRT QA

to build a machine learning model for predicting the modeling error

of MLC, and the results demonstrated that the random forest

algorithm had a higher sensitivity than logistic regression model.

Osman et al. (11) successfully built a proposed ANN model capable

of accurately predicting the individual MLC leaf positional

deviations during the dynamic IMRT delivery priori based on 14

feature parameters such as leaf planned positions, dose fraction, leaf

velocity, and so on, which extracted from the planning data in the

log files. Their results could be extended to actual application in the

dose calculation/optimization, hence enhancing the GPR for
02
patient-specific IMRT QA. Tomori et al. (12) used a CNN model

to successfully predict GPRs for IMRT plans in prostate cancer

patients based on plan dosimetry features. Lam et al. (13) applied

three tree-based machine learning algorithms (AdaBoost, Random

Forest, and XGBoost) to predicted gamma passing rates, and found

that RF method had accurately prediction results. The results of the

above studies all indicate that machine learning technology can

identify failed QA plans in advance without using a linear

accelerator and minimize wasted time measuring and adjusting

those treatment plans which may not pass in QA, thereby

improving the efficiency of radiotherapy QA and reducing

QA workload.

Since planning complexity has an important influence on GPRs

of plan dose verification, recent studies have begun to apply

planning complexity features to predict GPRs. For example, Ono

et al. (14) used plan complexity parameters to predict GPRs of

volume modulated arc therapy (VMAT) plans measured by

ArcCHECK via machine learning models, and compared the

predictive performance of: regression tree analysis (RTA),

multiple regression analysis (MRA) and ANN three models. Their

results showed that ANN performed slightly better than RTA and

MRA in terms of prediction error. While the study by Hirashima

et al. (15) showed that RF had good prediction and classification

performance for GPR based on plan complexity features. However,

SVM machine learning model was shown to be more suitable for

predicting GPR measured by MapCHECK2 diode arrays for VMAT

plans based on plan complexity features (16). Thus, it can be seen

that the planning complexity features selected by different studies

are different, and the equipment for GPR dose verification is also

different, which may affect the prediction performance of the model.

Among various classical algorithms, which machine learning model

is more suitable for predicting and classifying GPR of IMRT plan

dose verification needs to be investigated in further study.

This study aimed to use machine learning algorithms to develop

machine learning models of plan complexity features and GPR to

realize the prediction of GPR in dosimetric verification of IMRT,

and sought the optimal prediction model by comparing and

evaluating the prediction performance of the regression and

classification models of three classical algorithms: ANN, SVM

and RF. The impact of each complexity feature value on the

GPRs was analyzed through feature importance ranking and the

number of samples required for model accuracy convergence

was evaluated.
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2 Materials and methods

2.1 Plan patient selection

269 clinical IMRT plans (total 2340 fields) were selected

retrospectively from multiple treatment disease sites: brain (N =

34), nasopharyngeal (N = 50), lung (N = 32), breast (N = 31),

esophagus (N = 31), cervical (N = 53), and rectal (N = 38). All

dynamic IMRT plans were created using Varian’s Eclipse v.11.0.13

treatment plan system (Varian Medical Systems, Palo Alto, CA).

Analytical anisotropic algorithm was used for dose calculation. All

cases were performed using 6MV X-ray energy at a dose rate of

600MU/min, and treated with Varian’s Unique accelerator (Varian

Medical Systems, Palo Alto, CA). The grid size used in calculation

was 2mm.
2.2 Plan dosimetric verification

The EPID of the Unique accelerator provides images in digital

format to detected the dose distribution with an amorphous silicon

flat-panel detector. The detector has an effective detection area of

40cm×30cm2 with a matrix of 1024 × 768 pixels2, and each square

pixel has a side length of 0.0392 cm. To eliminate the influence of

the dose-response of the detector and the output of the accelerator

on the verification result, the absolute dose calibration as well as

background and general field calibrations were performed before

each dose verification. The detailed steps of dose calibration were

performed according to Varian’s portal dosimetry calibration

operation manual, and finally 1 calibrated unit (CU) of the EPID

image was equivalent to 1Gy dose. The portal dosimetry software

configured in Eclipse was used to compare the actual dose

distribution collected by EPID with the measurement distribution

calculated using the plan system. Perpendicular field-by-field

method was used to perform pre-treatment QA measurements

according to AAPM Task Group 218 (17). The GPRs of 2340

beams were collected and analyzed by the 2%/2mm with a 10%

maximum-dose threshold and global dose normallization which

was recommended in the AAPM Task Group 119 and 218 (17, 18).

When GPR was greater than 95%, the radiation therapy plan dose

verification result indicated “pass”, otherwise it was “fail”. Values of

measured GPRs that were used in the test and training group was

discontinuously distributed, mainly in 90%~98%. 71.5% of

measured GPRs values were “pass”, and the remaining was “fail”.
2.3 Feature parameter extraction

The plan complexity describes the degree of modulation of the

complexity of the plan produced by IMRT optimization,

particularly in term of the frequency and amplitude of

fluctuations in the intensity distribution of a field (19), including

multiple quantification methods and corresponding evaluation

indicators. Based on the MLC file of each field exported from the

planning system, 21 plan complexity feature values were calculated

using in MATLAB R2017b programming. The specific
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abbreviations and definitions of all features are shown in Table 1.

Beam irregularity (BI), beam aperture area were weighted by MU

(BA), beam modulation (BM), and union of area of aperture (UAA)

were defined by Du et al. (4) BI reflected the deviation of the shape

of the segments relative to a circle. BM reflected the extent of a large

open field being broken into multiple small segments, ranging from

0 to 1. UAA was the union area of all apertures of a beam, which was

greater than or equal to the area of any individual aperture. Small

aperture score (SAS) and mean asymmetry distance (MAD) were

defined by Crowe et al. (20) The SAS referred to the part where

small segments were used in the beam, and was calculated as the

ratio of open leaf pairs where the aperture was less than a defined

criteria (5, 10 and 20 mm in this study) to all open leaf pairs. The

MAD was the average of the distance from the centre of every open

leaf pair aperture to the central beam axis. Younge et al. (21) defined

edge metric (EM), which described the ratio of MLC side-length to

segments area. Modulation complexity score (MCS), leaf sequence

variability (LSV), and aperture area variability (AVV) were defined

by Mcniven et al. (22) MCS represented the relative variability in

leaf position, segments area, and MU of each segment. LSV was the

variability in segment shape. The shape of each segment was

considered according to the change of leaf position between

adjacent MLC leaves. AVV was the change in the area of the

segments relative to the maximum field defined by all segments. The

number of segments (NS), mean aperture area (MAA) and

coefficient of variation of segments area (CVA) were

recommended by Guo et al. (23), which were proved to be

important factors affecting GPR of IMRT plan. In addition, the

total number of jumps in the field (MU), Mean MU per control

point (MUCP), the maximum position of the lead gate (MAXJ), the

ratio of the average area of the segments to the area defined by the

lead gate (MAA over the area defined by jaws, AAJA) were

calculated referring to the study of Lam et al. (13) Compared to

the study of Lam et al., we added three complexity feature values of

NS, MAA and CVA which were the factors that had a significant

impact on GPR found in actual clinical QA work. In addition, our

clinical data came from the same accelerator, so we removed those

features related to different equipment and different MLCmodeling.
2.4 Data preprocessing

Portal dosimetry system was used to perform a verification

analysis of the dose distribution for each field to obtain GPR values.

The GPR of each field and the 21 feature parameters were integrated

into the original data. In essence, the GPR prediction model

established by the machine learning method in this study was to

use the training set with result labels to train the model, and then

optimized the model to obtain the model with the highest accuracy,

so as to realize the prediction of samples with unknown results.

Therefore, the corresponding output variable GPR had two ways to

achieve the purpose of regression and classification respectively in

this study. In the regression model, the value of GPR was a

continuous numerical variable; in the classification model, there

were two types of GPR results――”pass” and “fail” according

to a given GPR threshold. Since the classification model was to filter
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out the fields that pass the dose verification, “fail” corresponds to

“positive”, which was represented by “1”, and “pass” corresponds to

“negative”, which was represented by “0”.
2.5 Model training and evaluation method

The process of model training and evaluation was shown in

Figure 1. The dataset was randomly divided into a training set (1872

fields) and a test set (468 fields) according to the ratio of 8:2, where

the training set was used for model training, and the test set was

used to evaluate the model performance. Because of their better

prediction performance in recent studies, ANN, SVM, and RF were

used to establish regression models and classification models based

on the plan complexity, namely ANN-RM, SVM-RM, RF-RM and

ANN-CM, SVM-CM, RF-CM. RF was an ensemble tree-based

learning algorithm, which aggregated the results from a large

number of decision trees to decide the final class of the test object

(24, 25). SVM was a typical statistical-learning based algorithm for

classification, which had good robustness and sparsity performance,

and had advantages in solving small sample, nonlinear and high-

dimensional classification problems (26). CNN was a network

structure model composed of a large number of basic unit-neuron

nodes connected with each other, as it was considered one of the

most powerful ways to learn useful representations of images and

other structured data (27, 28). The regression model was used to

predict the value of GPR, and the classification model was used to

judge whether the GPR reached the threshold. These three

algorithms were provided by the nnet, e1071, and randomForest
Frontiers in Oncology 04
packages in the R language, respectively. The ANN algorithm

provided in the nnet package can solve regression and

classification problems. In actual modeling, the nnet() function

was used to build a feed forward ANN model with a three-layer

network structure, and the number of input nodes was equal to the

number of input variables. There was only one hidden layer in the

network structure, and the number of nodes needed to be set by

yourself. The model was optimized by adjusting the number of

nodes in the hidden layer of the model through the tune function.

The SVM algorithm provided by the e1071 package could also be

used to solve regression and classification models. The SVM model

was constructed via the svm() function based on the given data

structure, and was optimized by adjusting the cost and gamma

parameters. Cost represented the penalty coefficient, and gamma

represented the high-dimensional mapping of low-dimensional

samples. The larger the gamma value, the higher the mapping

dimension. The initial value defaults to cost = 1 and gamma = 0.1.

After training, the optimal parameters were found by using the tune

function with ten-fold cross validation within a certain range which

was found by viewing the model overview. The RF algorithm

provided by the randomForest package can also be used to solve

regression and classification models. The RF model was constructed

using the randomForest() function and optimized by adjusting the

ntree and mtry hyperparameters. Ntree was the number of decision

trees contained in RF, and mtry was the number of variables used in

the binary tree in the node. During model training, the value of mtry

with the smallest model error was first found using a for loop, and

then the optimal ntree value was found using ten-fold cross

validation. The feature independent variables are also randomly

selected when constructing each decision tree. Each decision tree

predicted the input features and obtained the predicted value. The

average of these predicted values was the final prediction result.

Then the out-of-bag data was used to verify the accuracy of the

model’s prediction results.

For the regression model, the root mean squared error (RMSE)

and mean absolute error (MAE) were used to evaluate the model. In

addition, Spearman correlation analysis was performed on the

predicted value and the actual GPR to obtain the correlation

coefficient (CC). CC > 0.8 meant high correlation; 0.4 < CC < 0.8

meant moderate correlation; CC < 0.4 meant low correlation. For

classification models, the receiver operating characteristic curve

(ROC) was drawn based on the prediction results, and the area

under the curve (AUC) value, sensitivity and specificity were used

to evaluate the model. Finally, the optimal prediction algorithm was

selected by comparison.
3 Results

3.1 Model prediction results and evaluation

3.1.1 Regression model
The prediction results of the regression models of three

algorithms were shown in Figures 2A, C, E, and the performance

of the models on the test set were shown in Figures 2B, D, F. In the

scatter plot, the blue and red dots represented the correspondence
TABLE 1 Features used in machine learning prediction.

Number Abbreviation Interpretation

1 MU Monitor unit

2 NS Number of segments

3 MUCP Mean MU per control point

4 MAA Mean aperture area

5 SAS5,10,20 Mean of Small aperture score

6 MSAS5,10,20 Max of fraction of aperture smaller

7 CVA Coefficient of variation of segments area

8 LSV Leaf sequence variability

9 AVV Aperture area variability

10 MCS Modulation complexity score

11 MAD Mean asymmetry distance

12 BI Beam irregularity

13 BM Beam modulation

14 AAJA MAA over the area defined by jaws

15 MAXJ Maximum of x-y jaw positions

16 EM Edge Metric

17 UAA Union area of aperture
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between the model predicted value and the actual measured value

on the training set and test set, respectively, and the three dotted

lines represented the predicted value deviated from the actual value

by -3% (purple), 0% (orange), +3% (green), the closer to the orange

line the more accurate the predicted value.

When the number of nodes in the hidden layer was 19, the

prediction result of CNN-RM was optimal. As shown in Figure 2A,

the error of ANN-CM on the training set and the test set was

partially beyond the range of ±3%, and the fitting result to the data

was not ideal. For some samples with lower actual GPR, the

predicted value was higher than the actual; for some samples with

higher actual GPR, the predicted value was lower than the actual.

Statistical analysis was carried out on the prediction error of ANN-

CM on the test set. The histogram was shown in Figure 2B. The

MAE and RMSE were 2.18% and 2.84%, respectively, and the
Frontiers in Oncology 05
maximum error exceeded 8%, indicating that the prediction

performance of ANN-CM was poor. In addition, spearman

correlation analysis was performed on the predicted GPR of

ANN-CM on the test set and the actual measured value, and CC

was 0.53.

When cost = 1, gamma = 0.14, the prediction result of SVM-RM

was optimal, and the number of support vectors in the model was

1686. As shown in Figure 2C, the phenomenon that the predicted

value was higher than the actual for some samples with lower actual

GPR also existed, while the predicted value was lower than the

actual for some samples with higher actual GPR. The error

histogram of SVM-RM on the test set was shown in Figure 2D,

and the maximum error exceeded 7%. Compared with ANN-RM,

the MAE and RMSE of SVM-RM on the test set were 2.17% and

2.76%, respectively, and the prediction performance of the model
FIGURE 1

Flowchart for model training and evaluation.
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had been improved to a certain extent. The CC of the test set was

0.56, which was slightly higher than ANN.

When mtry = 5, ntree = 373, the prediction result of RF-RMwas

optimal. As shown in Figure 2E, the performance of RF-CM on the

training set and the test set was different. The error on the training

set was almost within ±3%, but there were still samples with low

actual GPR in the model on the test set, but the maximum error was

within 5%. The error histogram of RF-RM on the test set was shown

in Figure 2F. Compared with the previous two models, the

prediction effect of the RF-RM had been improved, and its MAE

was 1.81%, the RMSE was 2.14%, and the CC was 0.72.

As shown in Table 2, the RMSE, MAE, and CC of the three

models were comparable. The ANN-RM had the highest RMSE and
Frontiers in Oncology 06
MAE on the test set, and the CC between the predicted value on the

test set and the actual GPR was also the smallest. On the contrary,

the RMSE and MAE of the RF regression model on the test set were

the lowest, and the CC was the largest, indicating that the regression

model established by the RF algorithm had the best prediction

performance on GPR among the three algorithms.

3.1.2 Classification model
When the number of nodes in the hidden layer was 11 and

decay = 0.1, the prediction result of ANN-CM was optimal. When

cost = 8, gamma = 0.14, the prediction result of SVM-CM was

optimal and the number of support vectors in the model was 1250.

When mtry = 9, ntree = 256, RF-CM showed the optimal
A B

D

E F

C

FIGURE 2

The prediction results of the regression models of three algorithms: The prediction results of the regression models of three algorithms: (A, C, E)
Measured vs predicted GPRs, (B, D, F) The prediction error.
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performance. The ROC curves of the three models on the training

set and test set were shown in Figure 3, (a) was the training set, (b)

was the test set, the green line represented ANN-CM, the blue line

represented SVM-CM, and the red line represented RF-CM. The

lines represented the RF classification model. It can be seen that the

ANN-CM had the lowest ROC on the test set, and its prediction

result was the worst, while the ROC curve of SVM-CM and the RF-

CM on the test set were relatively close.

AUC values, specificity and sensitivity of the three models were

calculated and shown in Table 3. The AUC value of ANN-CM was

0.71, indicating its poor predictive ability. The AUC value of SVM-

CM was 0.79, and the prediction performance was greatly improved

compared with ANN-CM. RF-CM had the highest AUC value of

0.80, and the prediction effect was the best among the three models.

Meanwhile, compared with the other two models, RF-CM had

higher specificity and sensitivity.
3.2 Feature value importance evaluation

To better reveal the impact of each feature value on the GPR,

the regression and classification models of RF algorithm with the

best prediction performance previous were selected to rank all

features according to the importance (Figures 4A, B). Among

them, the top three most important features were: NS、BI、MU

and NS、BI、CVA MA. When the number of subfields was larger,

the irregularity of the field was larger, the number of MU was more,

the value of the coefficient of variation of the subfield area was

larger, and lower GPR of the field.

Spearman correlation analysis was performed of the features

and the GPR was performed. The results showed that the features

were weakly correlated with GPR. 18 of the 21 features had a p-

value of less than 0.05, indicating statistical significance. The

correlation coefficient of 8 features was greater than 0.2, and the

CC of NS was the largest, which was 0.40(p<0.001) with moderate

correlation. The CC of BI was -0.33 (p<0.001), ranking second,

showing a weak correlation. In addition, to assess the ability to

identify plans that “fail” for dose validation based on these two

features alone, ROC analysis was performed on these two features

separately, and ROC curves were drawn in Figures 4C, D. The AUC

values of NS and BI were 0.69 and 0.64, respectively. The two

features were consistent with the results of the feature importance

ranking, and the relationship between feature and GPR were shown

in Figures 4E, F.
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3.3 Impact of the number of samples

To evaluate the number of samples required for the

convergence of the accuracy of the model, samples equivalent to

5%, 10%, 15%,…, 100% of the original sample size were randomly

selected as training data to build 20 sets of models, the prediction

error was calculated, and the learning curves were drawn. As shown

in Figure 5A, the number of samples rarely affected the training

error; the test error decreased with an increase in the sample size.

When the sample number reached 800, the predicted error of RF-

RM was close to the minimum (1.81%) and tended to be stable.

When the sample number exceeded 800, the accuracy of the

prediction reached the upper limit, and the performance of the

model could not be further improved.

The AUC value of RF-CM increased with the increase of the

number of samples (Figure 5B). When the number of training

samples exceeded 900, the AUC value reached the upper limit of

0.80, and the performance of the model would not be

further improved.
4 Discussion

In this study, 21 planning complexity features of 2340 fields of

269 patients with different diseases were calculated and extracted as

input data, and the regression and classification models were

constructed by using ANN, SVM, and RF algorithms. All the

three algorithms realized the prediction of GPR in dosimetric

verification of IMRT plan. Among the three regression models,

RF-RM had the optimal prediction performance on GPR and most

recommended, the RMSE and MAE on the test set were the lowest,

and CC was the largest. RF-RM achieved relatively accurate

prediction of GPR with a maximum error of less than 5%. This

was consistent with the results demonstrated by Lam et al. (13),

which indicated that the GPR of IMRT QA measured by portal

dosimetry could be accurately predicted using a tree-based

ensemble learning model, and showed that RF method had the

optimal prediction results. However, the prediction results of SVM-

RM and ANN-RM were not very ideal, the maximum error

exceeded 7%, and CC was as low as 0.53~0.56, which was

basically the same as the research results (CC = 0.50~0.58) of

Ono et al. (14). In addition, all three models over predicted samples

with lower actual GPR and under predicted samples with higher

actual GPR, which might be caused by data imbalance (29). There

were relatively few GPR samples greater than 98% and less than

90% in actual clinically measured datasets. Therefore, the under

sampling approach which removes a fraction of the majority

samples and the over sampling approach which duplicates the

minority samples can be used to re-balance the data distribution

for improvement in subsequent research (30).

Among the classification models, the prediction performance of

ANN-CM was poor, while both RF-CM and SVM-CM could

classify GPR well, and RF-CM showed higher sensitivity and
TABLE 2 Performance of regression models on the test set.

Evaluation indicators ANN-RM SVM-RM RF-RM

RMSE(%) 2.84 2.76 2.14

MAE(%) 2.18 2.17 1.81

CC 0.53 0.56 0.72
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specificity, and had excellent classification performance. This was

also confirmed in the research results of Li et al. (31): RF model with

100% sensitivity was preferred for the classification of QA results.

The AUC value of RF-CM reached 0.80, which was better than the

classification result of the complexity-based model of Hirashima

et al. (15) (AUC = 0.73).

To sum up, compared with ANN and SVM, the regression

model and the classification model constructed by RF had better

prediction performance on GPR of IMRT plan dose verification

result. A typical advantage of random forests as an ensemble

algorithm was the ability to aggregate resulting from a large

number of decision trees that utilized various combinations of

features using a random bagging scheme to give each feature a

chance to be considered in the final model (24, 25). To a certain

extent, RF model achieved relatively accurate prediction of GPR,

but there were still difficulties in practical clinical practice. The

patient treatment must be carried out after the plan dose

verification QA was passed, so the prediction and recognition

ability of the “fail” plan that could not pass the dose verification

should better be close to 100%. However, the current model cannot

achieve, it could only help reduce the workload of dose verification

QA instead of completely replacing. In addition, this model was

built based on planning complexity features. In actual clinical

practice, different linacs and different verification devices might

affect the verification results. Therefore, this model can only provide

a modularization reference of planning complexity features for the

development of an automated QA dose verification prediction tool

which can be applied to clinical practice.

In addition, based on the high complexity of the dynamic IMRT

plan, the plan complexity was quantified by combining different
Frontiers in Oncology 08
mathematical formulas used in various studies and 21 characteristic

parameters were extracted. The top factors that had the greatest

impact on the GPRs were determined through the feature

importance ranking analyzed by RF algorithm in this study.

Among them, NS had the greatest impact on GPR and the

Spearman CC was 0.40 (p < 0.001), which was negatively

correlated. Jubbier et al. (32) and Chi et al. (33) found that a

large number of subfields led to a greater deviation and lower GPR,

which was consistent with our findings. Therefore, when the IMRT

plan was designed, the GPR of dose verification could be improved

by controlling the number of subfields. In addition, BI also had a

significant impact on the GPR, which depended on the shape of the

subfield and quantifies the narrowness of the subfield (4). The

results showed that a narrow subfield led to low GPR when

designing IMRT plans with a sliding window dynamic intensity

modulation technology. With the continuous improvement of

clinical requirements for dose distribution, the subfield of

dynamic IMRT was gradually narrowing, and a narrow the

subfield led to a greater deviation. Therefore, at the design plan

stage, it might be necessary to make a trade-off between the dose

distribution and dose accuracy. It can also provide direction for

improving the plan design optimization. If the predicted GPR does

not meet the clinical requirements, the complexity of the plan can

be reduced by adjusting the features that have a high correlation

with the GPR. Thus, the consistency between the planned dose

distribution, and the actual dose distribution can be improved.

Furthermore, our increased complexity feature CVA was also

shown to affect GPR, consistent with findings in real clinical QA

work. Studies had shown that a large CVA, corresponds to a greater

degree of dispersion of the subfield area, as well as, higher

complexity and lower GPR of the field (23). Several other factors

affect the GPR of plan verification. It remains to be investigated

whether adding other feature parameters can improve the

prediction accuracy of the model.

Correlations between GPR and different complexity features

vary. For example, the research results of Crowe et al. (20) showed

that the QA results of the IMRT fields were significantly related to

MCS, SAS, MAD. The study of Gödtstedt et al. (5) showed that the
A B

FIGURE 3

ROC curve of the classification model (A: training set, B: test set).
TABLE 3 Performance on classification models.

Evaluation indicators ANN-CM SVM-CM RF-CM

AUC 0.71 0.79 0.80

specificity 0.76 0.77 0.80

sensitivity 0.53 0.66 0.68
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QA results of the IMRT fields had a strong correlation with EM and

MU, a moderate correlation with MAA, and a weak correlation with

MCS and BI. Our results also showed that the NS complexity

feature was moderately correlated with GPR. For other QA systems,

although some of the complexity indexes were not related to GPR in

previous studies (22, 34), most of the plan complexity metrics were

moderately correlated or weakly correlated. This might be due to

the increased complexity of other QA systems in the QA operation

process and the greater differences of human operation between

different centers.

The number of samples directly affects the prediction accuracy

of the model. In the RF-RM constructed by Lam et al. (13), the
Frontiers in Oncology 09
accuracy of the model on the test set could reach a high level and

became stable when the number of training samples exceeded 1000

while in this study, the machine learning model of RF-RM and RF-

CM used required 800 fields and 900 fields to achieve the best

prediction accuracy. The reason why this result was slightly better

than that of Lam et al. might be due to the analysis of verification

data from only one accelerator in this study, which also showed that

if the dataset was uniform, small sample size was required to build a

model with high accuracy.

This study was a single-center study on single linac types of

equipment without multi-center validation, which was its

limitation. Whether this model had the same results in different
A B

D

E F

C

FIGURE 4

(A) Feature importance ranking of RF-RM; (B) Feature importance ranking of RF-CM; (C) ROC curves of NS feature; (D) ROC curves of BI feature; (E)
The relationship between the NS feature and GPR; (F) The relationship between the BI feature and GPR.
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treatment planning systems and accelerators in different centers

needs further study. Although the conventional quality assurance

of the accelerator, including mechanical, dose and EPID imaging

equipment, had been implemented according to AAPM TG142

report (35), the uncertainty of portal dosimetry delivery was not

considered which could be improved in the future clinical dose

verification and research as follow: a previous plan was selected

randomly for the second dose verification before each verification,

and then compared the GPRs results with the first delivery (13).

Studies had shown that expanding the category and number of

feature values could improve the prediction accuracy of the model

(36, 37). Therefore, if the model could integrate the plan

dosimetry or imageomics and other features, while increasing

the number of samples, then the maximum error of prediction

could be further reduced and the prediction accuracy can be

improved. In addition, the parameter adjustment of the model

in the training process was performed manually. If the optimal

parameters generated based on an optimization theory could be

automatically completed, the model would be easier to be applied

in different centers.
5 Conclusion

In summary, three classic algorithms, ANN, SVM, and RF, were

used in this study to establish machine learning models, which

realized the prediction and classification of GPR. The results of the

comparison and evaluation of the models showed that RF model

based on plan complexity had the optimal prediction performance

which could save valuable time for quality control workers to

improve quality control efficiency.
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